
A Novel Bit Level Time Series Representation with Implications for Similarity 
Search and Clustering  

 
 
Chotirat Ann Ratanamahatana1 Eamonn Keogh1 Anthony J. Bagnall2 Stefano Lonardi1 

1Dept. of Computer Science & Engineering 
University of California, Riverside, USA 

2School of Computing Sciences 
University of East Anglia, Norwich, UK 

 ratana@cs.ucr.edu  eamonn@cs.ucr.edu  ajb@cmp.uea.ac.uk  stelo@cs.ucr.edu  
 
 

 
Abstract 
 
Because time series are a ubiquitous and increasingly 
prevalent type of data, there has been much research 
effort devoted to time series data mining in recent years. 
As with all data mining problems, the key to effective 
and scalable algorithms is choosing the right 
representation of the data. Many high level 
representations of time series have been proposed for 
data mining, including spectral transforms, wavelets, 
Singular Value Decomposition (SVD), piecewise 
polynomial models, symbolic models, etc. In this work, 
we introduce a new technique based on a bit level 
approximation of the data. The representation has 
several important advantages over existing techniques. 
One unique advantage is that it allows raw data to be 
directly compared to the reduced representation, while 
still guaranteeing lower bounds to either Euclidean 
distance or DTW. This fact can be exploited to produce 
faster exact algorithms for similarly search. In addition, 
we demonstrate that our new representation allows time 
series clustering to scale to much larger datasets. 
Keywords: Time series representation, similarity 
search, clustering. 
 

1  Introduction 
 
Time series are a ubiquitous and increasingly prevalent 
type of data. Because of this fact, there has been much 
research effort devoted to time series data mining in the 
last decade [1][7][8][22][39]. As with all data mining 
problems, the key to effective and scalable algorithms is 
choosing a suitable representation of the data. Many 
high level representations of time series have been 
proposed for data mining, including spectral transforms, 
wavelets, Singular Value Decomposition (SVD), 
piecewise polynomial models [39], symbolic models, 
etc. Figure 1 shows a complete hierarchy of all 
techniques proposed for data mining (see [20] for a 
survey). In this work, we introduce a novel technique 
based on a bit level approximation of the data. As we 
will show, our clipped representation has several 
important advantages over existing techniques.  

Note that the proposed approach is not only a new 
representation; it is a new type of representation.  For 
data adaptive, non-data adaptive, and model-based 
approaches, the user has a choice (implicit or explicit) of 
the compression ratio.  This allows the user to fine tune 
the parameters to achieve the ideal compression/ fidelity 
tradeoff for their particular application. 

  
 

Figure 1.  A Hierarchy of all time series representations proposed for data mining.  The representation that is the 
contribution of this work is highlighted 
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In contrast, with the clipped representation, the data 
itself dictates the compression ratio; the user has no 
choice to make.  This may be seen as somewhat of a 
disadvantage (although removing parameters from a data 
mining task is often a good thing [23]).  However, this 
apparent lack of flexibility is counterbalanced by another 
unique property of the clipped representation.  For all 
other dimensionality reduction approaches, we must 
transform the query into the same representation as the 
dimensionality reduced database.  This means we have a 
loss of fidelity for the candidate matches stored in the 
index and a loss of fidelity for the query.  The compound 
fidelity loss combines to produce weak lower bounds, and 
thus weak pruning power.  In contrast, the clipped 
representation is unique in that the original raw query can 
be compared directly to the clipped candidate sequences, 
thus producing tighter lower bounds, greater pruning 
power and thus faster query by content. 

The rest of the paper is organized as follows.  In 
Section 2, we introduce the clipped representation and the 
distance measures defined on it with some background 
material.  We further expand the reader’s appreciation for 
the clipped representation in Section 3 by showing 
additional desirable properties, including its ability to 
support clustering.  Section 4 contains a comprehensive 
empirical evaluation.  Finally, in Section 5, we offer some 
conclusions to this work. 
 
2  The clipped representation 
 
Our proposed representation works by replacing each real 
valued data point with a single bit. Figure 2 gives the 
visual intuition. 

 

Figure 2. A time series of length 64, denoted C, is 
converted to the clipped representation, denoted c, 
simply by noting the elements of C that data points are 
strictly above zero, and setting the corresponding bits 
to 1, and setting all other corresponding bits to 0 
More formally, we can define c, the clipped 

representation of C as: 
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where µ is the mean of C.  Since virtually all researchers 
have noted the importance of normalizing the data before 
attempting any clustering, classification or indexing [22], 
we can simply assume µ = 0, without loss of generality 

for the rest of this work. Note that this representation has 
been considered before in the statistical community 
[16][17], but its utility for data mining, in particular the 
ability to lower bound distance functions, is first 
documented here. 

2.1  Lower bounding Euclidean distance 
 
Before we define the lower bound for the clipped data, we 
will review some background of the main distance 
measure used in this paper. 

Suppose we have two time series, a query Q, and a 
candidate match C, of length n, where 

Q = Q1,Q2,…,Qi,…,Qn 
C =  C1,C2,…,Cj,…,Cn 

2) 
3) 

If we wish to compare the two time series, we can use 
the ubiquitous Euclidean Distance [19][20] 
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Since the square root function is monotonic and 
concave, we can remove the square root step to get the 
squared Euclidean distance that gives identical rankings, 
clustering, and classifications [22]. 
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In addition to the utility of slightly speeding up the 
calculations, working with this latter distance measure 
also allows other optimizations [22].  

Now that the distance measure has been described, if 
we are given a clipped time series c, and a raw time series 
Q, we can lower bound the squared Euclidean distance 
between C and Q, with the following equation (Figure 3 
illustrates its visual intuition) 
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Figure 3. The lower bounding function LB_clipped(Q, c) 
We will now prove the claim of lower bounding of the 

clipped representation. 
Proposition 1: For any two time series Q and C of 

length n, we have  
LB_clipped(Q,c) ≤  D(Q,C) 
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Proof:  
Since the distance between any two points with 

either measure is non-negative, it is sufficient to show 
that given any two points x,y∈ℜ we have 
LB_clipped(x,y) ≤ D(x,c), where c is the clipped value 
of y. The result for a summation of n points then 
naturally follows. Firstly we note that by definitions 
(4), D(x,y) ≥0 ∀x,y∈ℜ. We then consider the four 
possible cases.  

(1)  x > 0 and y > 0 
(2)  x ≤ 0 and y ≤  0 
(3)  x > 0 and y ≤ 0 
(4)  x ≤ 0 and y > 0 

In cases (1) and (2), by equation 6),  LB_clipped(x,y) = 
0, hence LB_clipped(x,y) ≤ D(x,c). 
In cases (3) and (4), 
LB_clipped(x,c) =x2. D(x,y) can be rewritten as x2+y2-
2xy.  Since y2 ≥ 0 and xy ≤ 0, y2-2xy ≥ 0. Hence  

LB_clipped(x,y) ≤ D(x,cy) 
Thus, for any two real valued points, the clipped 
distance is less than or equal to the Euclidean distance. 
Since both distance measures are metrics, the distance 
between two points is never negative, hence  

LB_clipped(Q,c) ≤ D(Q,C) 
For any series of real numbers Q and C ■ 

 
 

Figure 4.  The distance returned by both 
LB_clipped(Q,c) and D(Q,C)  is the sum of squared 
lengths of the gray hatch lines.  Because every hatch 
line for LB_clipped(Q,c) is matched with corresponding 
line in D(Q,C) which is at least as long, we must have 
LB_clipped(Q,c) ≤  D(Q,C) 
Figure 4 illustrates the visual intuition of the proof. 
The extension of this proof to the Euclidean distance 

(or any Lp norm [39]) is trivial, and will be omitted. 

2.2  Lower bounding Dynamic Time Warping 
 
Recently, there has been increasing evidence that for 
some problems, the Euclidean distance may be too 
sensitive to minor distortions in the time axis. It has been 
forcefully shown that Dynamic Time Warping (DTW) 
can mitigate this problem [22]. Fortunately, we can also 
lower bound the DTW distance between Q and C, using Q 

and c.  To do so, we simply need to slightly adapt the 
enveloping lower bounding function introduced in [18] 
that is subsequently adapted and extended by many 
research groups, including [33]. 

The amount of warping allowed in calculating DTW is 
determined by a single parameter r.  The parameter r is 
known variously as the warping window width, the 
warping scope, the warping constraint, etc [18][32].  We 
can use the term r to define two new sequences, U and L: 

Ui = max(Qi-r : Qi+r) 
                                          Li = min(Qi-r : Qi+r) 

7) 
8) 

Where U and L stand for Upper and Lower, 
respectively; we can see the reason once we plot them 
together with the original sequence Q, as seen in Figure 5.   
They simply form a bounding envelope that encloses Q 
from above and below. 

 

Figure 5.  The intuition behind the lower bounding 
function LB_Keogh_clipped(Q,c), which lower bounds 
DTW(Q,C) 
Having defined U and L, we can now define a function 

LB_Keogh_clipped(Q,c), which lower bounds 
DTW(Q,C): 
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The proof that LB_Keogh_clipped(Q,c) ≤  DTW(Q,C) is a 
straightforward combination of the proof above and the 
proof  in [18]; we omit it for brevity. 

If we assume that each data point in the raw time series 
requires 4 bytes (a very conservative estimate), then 
converting to the clipped representation as presented 
above achieves a 32 to 1 compression ratio.  However, as 
we shall see in the next section, we can use various 
techniques to achieve further compression. 

2.3  Run length encoding 
 

Consider the clipped sequence c, which we have been 
using as a running example.  Its value is 
0000000000000000000000111111111111001000111111111111111111111111 
Note that we could write this as 22#0, 11#1, 2#0, 1#1, 
3#0, 24#1, which we can interpret as 22 zeros followed 
by 12 ones, etc.  The shorter format allows us to fit more 
data in main memory. 
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In fact, we can be even terser; because we always 
toggle from zero to one or vice versa, we only need to 
record the parity of the first bit, giving us 22#0, 
11,2,1,3,24.  This classic lossless compression technique 
is known as Run Length Encoding (RLE) [12].  To make 
the representation even shorter, we can represent the 
parity bits of 0 and 1 with two special characters, e.g. 
“@” and “!”, respectively; our run length encoding now 
can be represented as @22,11,2,1,3,24.  We can use this 
to further reduce the clipped representation of the data.  
Note that while the example above illustrates the idea 
with ASCII characters, we actually do RLE at the bit 
level. 

The following observation motivates a further 
optimization.  Consider the example in Figure 6 below; it 
shows a subsequence of the power-demand data being 
extracted in preparation for conversion to the clipped 
representation. 

 

Figure 6.  The first 512 data points of the Power Demand 
dataset just before being converted to the clipped 
representation 
This dataset exhibits the classic structure of a dataset 

that is highly correlated to a working week, with the first 
five peaks corresponding to the 9am to 5pm shift on 
weekdays, and the relatively flat section between 500 and 
700 corresponding to a weekend.  Note that in this 
dataset, the run lengths are highly structured.  We can see 
this more clearly in Figure 7, where we plotted the 
frequency of all sliding windows’ run lengths, 
accumulated over a year’s worth of data. 

 

Figure 7.  The relative frequency of run lengths for the 
Power Demand dataset, accumulated over one year 
This highly skewed structure immediately suggests a 

further optimization.  We can encode the run lengths with 
variable length encoding (prefix encoding) [13][35].  For 
example, out of 514 (with two parity bit symbols 
included) possible run length symbols, we can encode 
431, the most common run length with a short symbol 
such as 0101, 42, the second most common run length as 
0100, or the next most common run length is 53, which 
can be coded as an equally terse 0010. 

                                                           
1 The data is sampled once every 15 minutes, so a run length of 43 
corresponds to 10 and ¾ hours.  This is longer than a normal shift 
because arrival times are staggered, see [36]. 

Under this scheme, rarely occurring symbols such as 
512 (a logical possibility, but never observed in this 
dataset) will have longer encodings, perhaps 
000001010010011001.  However, averaged over the 
entire dataset, variable length encoding produces 
significantly smaller files.  To create the encoding 
scheme, we use simple Huffman encoding (the more 
complex arithmetic encoding, yields only slightly more 
compact encodings in this case [34]).  With on-line 
implementation of Huffman encoding [24], only a single 
pass over the data is required.  Because of the prefix 
property of Huffman encoding, the separator ‘,’ between 
each run length is no longer required, which further 
improves its compression ratio.  In particular, the average 
Huffman code length obtained for this entire dataset is 
only 5.8 bits, giving a compression ratio of 281:1.  Note 
that to compute the compression ratio, we use the 
following formula: 

tionrepresentaclippedInOfBitsUsed

tionrepresentaregularInOfBitsUsed
nRatioCompressio

__#

__#
=  

 

We made a very conservative assumption that each 
number in the original representation is represented in 
only four bytes (32 bits). 

2.4  Numerosity reduction 
 
Even though the run length-encoding scheme itself gives 
an impressive compression ratio, we can improve it by 
numerosity reduction on sliding windows.  This step is 
motivated by observing that while applying a sliding 
window on the streaming data, time series in consecutive 
sliding windows are very often identical in the clipped 
representation, except for the first and the last values that 
are omitted and added, respectively.  If the time series in 
each sliding window has this property, we can exploit this 
fact and just record the maximum amount of time this 
property has consecutively been observed, along with a 
special character, $, that represents this reduction. 
Consider the run length encoding from our example in the 
previous section and let the encoding of the next five 
sliding windows be: 

@22,11,2,1,3,24 
@21,11,2,1,3,25 
@20,11,2,1,3,26 
@19,11,2,1,3,27 
@18,22,2,1,3,27,1 
@17,22,2,1,3,27,2 

We can readily see that the first four windows are very 
similar and can be reduced to one since the only values 
differ from each other are the first and the last (italicized 
for clarity).  However, the fifth window cannot be 
combined with the previous one since the last bit has 
changed from 1 to 0, but it can be combined with its next 
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window.  As a result, the final encoding with numerosity 
reduction becomes 

@22,11,2,1,3,24$3@18,22,2,1,3,27,1$1. 
As before, although we demonstrate the idea with 

ASCII text, we actually encode everything at the bit level. 
With the Power Demand dataset of size 10,000 data 

points, numerosity reduction together with Huffman 
coding yields a huge compression ratio of 1057:1. Note 
that while the factor of 32 to 1 achieved by clipping is 
lossy, the remaining factor of approximately 33 to 1 is 
lossless with respect to the clipped data. 

 
3  Clipped representation with clustering 
 
Clustering time series is a problem that has applications in 
a wide variety of fields, and has recently attracted a large 
amount of research. There are three types of objectives 
when clustering time series. Clusters may reflect 
similarity in time (i.e. group series that are correlated), 
similarity in shape (i.e. group series that have similar 
patterns of change irrespective of time) or similarity in 
change (i.e. group series that have similar autocorrelation 
structure). The different objectives are reflected in 
different distance functions. Thus, for example, Euclidean 
distance is a metric of similarity in time and is commonly 
used with the transformations described in Figure 1. 
Similarity in shape is measured by specific algorithms or 
by a transformation such as dynamic time warping 
(DTW). The usual approach to measuring similarity in 
change is to assume some underlying model form such as 
hidden Markov models or an ARMA process [38] then 
cluster based on similarity of fitted models. Given a 
means of measuring similarity between series, time series 
may be clustered with any of the numerous techniques 
available. Clipping the series offers a means of clustering 
to meet any of the three objectives faster and with less 
memory and without necessarily decreasing the quality of 
the clusters obtained. 
 
3.1  Faster clustering with clipped data 

 
Clipped series have been shown to be theoretically and 
experimentally sufficient to cluster based on similarity of 
change if the series are long enough, and to produce 
similar clusterings on real world problems [4][6]. In 
Section 4.3 we demonstrate that clipped series can form 
clusters similar to those formed with unclipped data when 
the objective is to group series based on Euclidean 
distance.  

In addition to the space benefits discussed in Section 2, 
clustering with clipped data can also allow time 
improvements for commonly used algorithms. This is 
because the bit level representation allows for the 
utilization of bitwise operators. For example, given two 
clipped series c and d, the distance calculation given in 

Equation 5) can be efficiently calculated by finding the 
XOR of c and d then summing the number of 1s in the 
result, i.e.               
             ( ) ( )∑ ⊕≡

=

n

i
ii dcdcD
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If binary series are packed into integers we can find the 
terms in the summation very quickly using bit operators. 
We can also speed up the operation to sum the bits. Any 
algorithm to count the bits is Ω(n). However, we can 
improve the constant terms in the time complexity 
function by using shift operators to evaluate the integer 
value of each eight-bit sequence then using a lookup table 
to find the number of bits in that integer.  This mechanism 
makes the distance calculation approximately five times 
faster even when the series are loaded into main memory. 

 
3.2  Kolmogorov complexity clustering 

 
In a series of recent papers, Ming Li, Paul Vitanyi, and 
collaborators [26], have championed an interesting new 
approach to clustering.  

The proposed method is inspired by the concept of 
Kolmogorov complexity, a measure of randomness of 
strings based on their information content. The 
Kolmogorov complexity K(x) of a string x is defined as the 
length of the shortest program capable of producing x on a 
universal computer — such as a Turing machine. Different 
programming languages will give rise to distinct values of 
K(x), but one can prove that the differences are only up to 
a fixed additive constant. Intuitively, K(x) is the minimal 
quantity of information required to generate x by an 
algorithm. 

The conditional Kolmogorov complexity K(x|y) of x to 
y is defined as the length of the shortest program that 
computes x when y is given as an auxiliary input to the 
program. The function K(xy) is the length of the shortest 
program that outputs y concatenated to x. 

In using this motivation, the authors consider the 
distance between two strings x and y, defined as 
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Kolmogorov complexity is without a doubt the ultimate 
lower bound among all measures of information content. 
Unfortunately, it cannot be computed in the general case. 
As a consequence, one must approximate this distance. Li 
and Vitanyi suggested approximating this with standard 
off-the-shelf compression algorithms, such as WinZip or 
Stuffit. Their distance measure is thus 

        
)(

)|()|(),(
xyC

xyCyxCyxdc
+

=  12)

Where C(x) is the size of file x after compression, and 
C(x|y) is the size of file x after compressing it with the 
compression model built for y. 



In an impressive array of papers, Li and Vitanyi have 
shown that this distance measure works exceptionally well 
for clustering DNA strings, MIDI files, natural language 
text, computer programs, etc.  

The above results appear to have little implication for 
time series, because the approach requires a lossless 
compression technique where a model (typically a 
substitution dictionary) is learned from the data. While 
there are a host of compression algorithms for real-valued 
time series, virtually all of them are lossy (DFT, DWT, 
SVD, etc). The handful of lossless techniques (delta 
encoding, for example) do not produce a compression 
model. 

Our clipped representation offers a unique opportunity 
to avail of this work, we do build a compression model of 
the data, in particular the run length encoding discussed in 
Section 2.3. We can therefore define C(x|y) as the size of 
time series x when compressed with the run length 
dictionary learned for time series y. As we will 
empirically show in Section 4.4 This simple parameter 
free measure can outperform more complex distance 
measures such as Markov models and ARIMA, on a 
diverse array of problems. 
 
4  Empirical Evaluation 

 
In this section, we will provide an extensive empirical 
comparison among the raw and various representations of 
compressed data in two major data mining tasks, time 
series indexing and clustering.  Twelve datasets were used 
in our indexing experiments, and two were used for 
clustering experiments.  We also tested on a wide range of 
both real and synthetic datasets.  The datasets range from 
66 Kilobytes to 2 Gigabytes in size.  We also note that all 
data used in these experiments are freely available at [21]. 

4.1  Indexing Experimental methodology 
 
For indexing, we will demonstrate the superiority of our 
clipped representation in terms of number of disk 
accesses.  We compare our proposed method with the 
classic Piecewise Aggregate Approximation (PAA) and 
Discrete Fourier Transform (DFT), all preserving similar 
compression ratio.  However, when managing each 
representation, we try to best optimize every competing 
method possible.  For example, in PAA representation, if 
m (the number of reduced section according to the 
compression ratio) turns out to be a value less than two or 
does not evenly divide the length of the sliding window, 
we promote n to two or to the next smallest integer that 
evenly divides the size of sliding window even if this may 
largely decrease the compression ratio for that 
representation. Our justification is that because all the 
data we use in the experiment is z-normalized to have a 
zero mean and standard deviation of one, the number of 

sections (m) fewer than 2 is not a very meaningful 
representation in that the value representing that entire 
window will always be zero.  We give all the advantage to 
our competing methods; the smaller is the compression 
ratio (larger n), the more accurate PAA and DFT will be 
represented. DFT is treated similarly except that m does 
not need to evenly divides the window size since it 
represents the first m DFT coefficients that will be 
preserved; m could then be any integer larger than 1. 

We then demonstrate that clipped series can produce 
clusters similar to those obtained with the raw data when 
clustering a very large real world database introduced in 
section 4.2. We show that clipping performs favorably 
when compared to clustering with unclipped data since 
clustering can be done faster and with much less memory 
requirement. 

For similarity search, we performed all experiments 
over a range of query lengths.  Since we want to include 
PAA in our experiments, the query length is somewhat 
limited.  We therefore consider query lengths of 256 and 
512 data points. 

We tested our approach on a variety of twelve datasets 
with various properties within the data, obtained from the 
UCR Time Series Data Mining Archive 
[http://www.cs.ucr.edu/~eamonn/TSDMA].  The sizes of 
the datasets range from 6,875 data points to 198,400 data 
points.  In order to achieve realistic result, we only 
consider queries that do not have exact matches in the 
database, but have similar structure.  Since our proposed 
method focuses on streaming data, holdout cross 
validation method may not be entirely appropriate.  
Instead, leaving-one-out cross validation is used; on each 
run, we randomly pick a query from a database and treat 
that query and some portions before and after as withheld 
subsections, create a run-length encoding with numerosity 
reduction for the rest of the data, and determine the 
resultant compression ratio.  We then create PAA and 
DFT on the same data and with the same compression 
ratio (or with smaller compression ratio, in favor of PAA 
and DFT as explained in Section 4 above) then measure 
the number of random disk accesses for the nearest 
neighbor queries of all methods.  To determine the 
number of dimensionality reduction (m) in PAA and DFT 
in these cases, we assume that each value in PAA and 
DFT can be represented by only two bytes (instead of four 
or eight bytes) to strongly demonstrate that we still have 
competitive results among all the approaches. 

In addition, to avoid any possibility of implementation 
bias, the number of I/O disk accesses of each method is 
measured instead of recording the actual running time.  
This is done by first computing the lower bound distances 
using LB_clipped (Eq. 6), Euclidean distance, 
LB_Keogh_clipped (Eq. 9), or LB_ZhuShasha (for PAA  
and DFT with DTW)  [39], as appropriated, between a 
query and all the sequences in the dataset.  Then to 
retrieve the nearest neighbor, each sequence is visited in 



the order according to the lower bound values.  We count 
the number of times the real disk accesses must be made.  
These numbers also indicates the tightness of the lower 
bounds for each representation.  The results are averaged 
over 100 separate runs for each dataset.  For simplicity, 
we only report results for one-nearest neighbor queries. 

4.2  Indexing results 
 

For completeness, we tested on a variety of time series. 
Figure 8 shows a small snippet from each. 

 

 

Figure 8. Some snippets (1,000 data points) from each of 
the twelve datasets used in the experiments 
As noted above, the amount of compression is dictated 

by the data itself. For the twelve datasets considered the 
compression ratios range between 60.2:1 to 1,089.5:1 (see 
Appendix A for complete results). As one might expect, 
higher compression ratios are achieved on smoother 
datasets or ones with apparent repetitive patterns, such as 
Koski_ecg or Power_data. 

We compare different representations in terms of I/O 
random disk accesses during the process of the one-
nearest neighbor retrieval of a query time series.  In 
particular, in each run, we reduce the dimensionality of 
the data from n to m using Clipped, PAA2, and DFT 
representations, and build their indices on the reduced 
spaces based on their lower bounds between each 
subsection (sliding window) of the time series and the 
query. To allow a visual comparison, we normalize each 
experiment on each particular dataset by the worst 
performing algorithm; the raw numbers are available in 
Appendix A. 

Figure 9 and Figure 10 show the number of disk 
accesses with lower bounding the Euclidean distance, 
using the three dimensionality-reduction techniques over 
                                                           
2 The PAA representation has exactly the same indexing power as the 
Haar wavelet when the length of time series is of power of two [19][39].  

the range of query lengths of 256 and 512 data points, 
respectively.   

 
 

Figure 9.  Number of disk accesses with lower bounding of 
Euclidean distance, normalized by the worst performing 
approach, using the three representations for the query 
length of 256 data points 
 

Figure 10.  Number of disk accesses with lower 
bounding of Euclidean distance, normalized by the 
worst performing approach, using the three 
representations for the query length of 512 data points 

In general, the results show that the clipped 
representation greatly outperforms or at least is 
comparable to the other approaches, expressing the 
superiority in its tightness of the lower bounds. For the 
Burst dataset, the clipped representation works well for 
shorter queries, but worst for longer sequences.   Again, 
we would like to emphasize that our results here are 
obtained by conservatively assuming only two-byte 
requirement to represent each number in PAA and DFT, 
as well as having m promoted as described in Section 4.  
If we assume 4 or 8 bytes or without m adjusted, the 
results will be much improved. 

Figure 11 and Figure 12 further show the stronger 
results of the clipped representation in lower bounding the 
Dynamic Time Warping distance.  The experiments were 
similar to those of Figures 9 and 10, except that the 
Dynamic Time Warping was used instead of the 
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Euclidean Distance.  The lower bounds for clipped data 
were calculated using Equation 9); those for PAA and 
DFT were calculated according to Zhu and Shasha [40]. 
 
 

Figure 11. Number of disk accesses with lower 
bounding of DTW, normalized by the worst performing 
approach, using the three representations for the query 
length of 256 data points 

 

Figure 12. Number of disk accesses with lower 
bounding of DTW, normalized by the worst performing 
approach, using the three representations for the query 
length of 512 data points 

These results impressively showed that the clipped 
representation in lower bounding performed exceptionally 
well, especially for Dynamic Time Warping.  Note that 
even though the four figures above convey the similar 
information that clipped data almost always outperforms 
PAA and DFT, we cannot directly compare between 
lower boundings of Euclidean and DTW distance since 
they were normalized by the worst performing approach 
in each plot.  The details of these results appear in 
Appendix A, in which we could see that the clipped data 
can outperform the other two approaches by up to 
127,000 disk accesses for DTW. 

4.3  General compression-based Clustering  
We examine a class of problems where a DFT approach 
should produce good results, and show that clipping does 

better than the most commonly used DFT approach 
described in [2]. 

The class of model we consider is generated from a 
mixture of Sine waves. A generating model is of the form 

∑
=

+⋅=
r

j
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j
c

j
b

j
atM

1
)*sin()(

 

13) 

The parameters a, b and c control the amplitude, offset 
and frequency of the curves respectively. Each can take a 
value on the range [0,1], but they are scaled so that any 
particular sine wave has a maximum amplitude of  2 and a 
maximum offset of n/2 (where n is the series length).  A 
frequency parameter of 0 means the sine wave completes 
a single oscillation over the data length, and a frequency 
parameter of 1 means the curve will complete n/4 cycles 
over the n data points. For a clustering experiment we 
generate k different models, M1, M2, ... Mk, then each time 
series from cluster c is found by adding Gaussian noise to 
Mc.  

The objective is to cluster series based on similarity in 
time, hence our benchmark for performance is Euclidean 
distance on the raw data. Our aim is to evaluate which 
representation provides clusters as accurate as the 
baseline results on the class of model described. 
Following the algorithm described in [2], we cluster with 
DFT by performing an O(nlogn) FFT, retain the first fc 
coefficients (set to n/64 to achieve a compression ratio of 
32:1), then use Euclidean distance between the difference 
of the coefficients as the clustering distance metric. We 
cluster data from eight clusters, with five series in each 
cluster, generated from functions of the form given in 
Equation 13) above with parameters randomly selected in 
the range [0,1], each model being a combination of three 
sine waves (i.e. r = 3). We cluster with k-means restarted 
100 times at random initial centroids. Each series is 1,024 
data points long.  An example of the data from 6 series is 
shown in Figure 13.  
 

Figure 13. Example of sine wave data series from three 
separate cluster models.    
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The results for 20 randomly generated sets of models 
are shown in Table 1.  Accuracies are measured by 
enumerating all possible cluster labeling and measuring 
the accuracy against the known correct clustering. The 
clipped clusters are often identical to those found with the 
raw data, and the difference in mean accuracy is very 
small. On 12 out of the 20 runs, the clipped series found 
completely correct clusters, whereas the DFT approach, in 
addition to having a significantly lower average accuracy, 
also only found the correct clustering on a single 
occasion. 

 
Table 1.  The mean accuracies for 20 randomly 
generated sets of models 

 Mean 
Accuracy 

Number of Perfect 
Clusterings 

Raw 96.87% 15 
Clipped 94.22% 12 
DFT 81.56% 1 

 
We do not claim that clipped clustering will always 

perform better than a DFT approach for this class of 
model. One of the reasons the DFT approach does worse 
in these experiments is that the larger DFT coefficients 
may be discarded. If we restrict the parameters (a,b,c) to 
the range [0,0.2], the DFT approach performs at least as 
well as the other methods. More recent DFT approaches 
such as those described in [29][37] may perform better on 
the data used in these experiments. It is also possible to 
find parameter settings where the approach of keeping the 
first fc coefficients does marginally better than clipping 
(when the sine waves are all low in frequency and 
amplitude). However, clipping is a very simple procedure 
with no need for parameterization. It clusters well in 
relation to using the raw data for all parameter settings 
attempted, and has been shown to do well on data where a 
DFT approach is not appropriate (see [3][4][6]). 

To demonstrate how clipping can help with a real 
world problem, especially in large datasets, we clustered 
optical recording data from a bee's olfactory system. 
Analysis of this data can help understand the mechanisms 
of the olfactory code and the temporal evolution of 
activity patterns in the antennal lobe. Further information 
can be found in [10]. The data consists of 980 images, 
each image containing of 688x520 measurements. If we 
consider each position in the image as a time series, the 
data consists of 357,760 time series of length 980. 
Preliminary analysis has shown that clustering the series 
based on similarity in time produces results that have a 
sensible physiological interpretation [10]. We cluster with 
k-means (with k set to 16) restarted 50 times from random 
initial centroids, and take as the best clustering the one 
with the lowest within-cluster variation. We are assuming 
the objective is to group together series with similarity in 
time; hence we use a Euclidean distance metric to 
measure similarity. Figure 14 shows the clusters produced 

by the raw data. The dataset size is around 2 gigabytes 
and clustering the raw data may be prohibitively 
demanding of time and space resources. A single run of k-
means takes 50-150 iterations to converge (taking hours 
to complete), and most machines do not have 2 gigabytes 
of main memory. Hence, some form of data reduction is 
appropriate for this problem. We use this data set to 
demonstrate that compressing the data through clipping 
can produce clusters more similar to those produced with 
the whole data (Figure 14) than those found using DFT 
and PAA.  

 
 

Figure 14. Sixteen clusters produced using the whole 2-
gigabyte raw data 

For comparison purposes, we assume that clipping 
provides a compression ratio of 32:1 (in practice, it may 
be much higher than this) and we set the parameters of 
DFT and PAA to achieve a similar or smaller ratio to 
guarantee in giving all the advantages in compression 
ratio to the competing methods. For PAA, we compress 
each series into 49 mean values since we mentioned 
earlier that the number of PAA coefficients must evenly 
divide the length of each time series, in this case giving a 
compression ratio of 20:1. We again use Euclidean 
distance. 

Figure 15 to Figure 17 show the spatial clustering co-
occurrences found with clipped, DFT, and PAA data. It is 
clear from these plots that the clipped series are much 
more similar to those found with the raw data than those 
found with DFT and PAA. There are structural 
similarities between all four clusterings, but the clipped 
clusterings are much cleaner than those found with PAA 
and DFT. The only major difference between the 
unclipped and the clipped clusters is an additional central 
cluster formed around position (325,450) with the 
unclipped data. 
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Figure 15. Clusters formed using the clipped data with 
32:1 compression ratio.  The spatial cluster co-
occurrences between this plot and the clusters formed 
using raw data in Figure 14 shows its effectiveness in 
the clipped data reduction technique 

 

Figure 16. Cluster formed using a piecewise constant 
approximation (PAA) with 49 coefficients, giving 20:1 
compression ratio 

 

Figure 17. Clusters formed using first 17 Discrete 
Fourier Transform coefficients, giving 29.7:1 
compression ratio 

To measure the similarity between the clustering with 
the raw data and the clusterings with the compressed data, 
we use three well-known measures based on the count of 
coincidence of common cluster membership: the Jaccard 
coefficient [28]; the Rand statistic [31]; and the Folkes 
and Mallows index [9] (higher values indicate a greater 
degree of similarity). These statistics are given in Table 2. 
By all three measures, the clipped clusterings are more 
similar to the raw clusterings than those found with DFT 
and PAA. 

 
 

Table 2.  similarity between the best  clusters formed by 
the raw and compressed data 

 

 Jaccard Rand Folkes & Mallows 

Clipped 0.4843 0.9512 0.6526 

DFT 0.4424 0.9476 0.6136 

PAA 0.2647 0.9222 0.4188 

 
To demonstrate that for this data clipping gives 

clusterings significantly closer to those with the whole 
data, we randomly selected 10 clusterings from the run of 
50 for each experiment with clipped, DFT, and PAA 
compression. For each of these 10 clusterings, we 
measure the similarity to 10 randomly selected clusterings 
formed with the complete data, giving us 100 sets of 
comparisons for each technique. The mean Jaccard, Rand, 
and Folkes and Mallows statistics, along with the standard 
deviations, are shown in Table 3.  

 
Table 3. Average similarity and standard deviation 
between the clusters formed with the raw and 
compressed data, comparing among 10 clusterings for 
each technique 

 

 Jaccard Rand Folks & 
Mallows 

Clipped 0.4456 ± 0.042 0.9469 ± 0.006 0.6156 ± 0.04 

DFT 0.2108 ± 0.017 0.9118 ± 0.012 0.3425 ± 0.093 

PAA 0.2761 ± 0.017 0.9227 ± 0.003 0.4327 ± 0.021 

 
For each of the three measures, we can, at the 1% 

level, reject the null hypothesis that clipped and DFT, and 
clipped and PAA average similarity are the same in favor 
of the alternative that clipped similarity is higher (using a 
one sided t-test for the mean and a Mann-Whittley test for 
the median).  This clearly demonstrates that, when using 
restarted k-means with an objective to cluster based on 
similarity in time, clipping is a more appropriate 
compression than DFT or PAA for this data set. 
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4.2  Kolmogorov Inspired Clustering 
 
For this experiment we examined the UCR Time Series 
Archive for datasets that come in pairs. For example, in 
the Bouy sensor dataset, there are two time series, East 
and North, and in the Great Lakes dataset, there are two 
time series, Ontario and Erie. We were able to identify 
twenty-four such pairs, from a diverse collection of time 
series covering the domains of finance, science, medicine, 
industry, etc. Although our method is able to deal with 
time series of different lengths, we truncated all time 
series to length 1,000 to enhance the graphical 
demonstration. 

While the correct hierarchical clustering at the top of 
the tree is somewhat subjective, at the lower level of the 
tree, we would hope to find a single bifurcation separating 
each pair in the dataset. Our metric, Q, for the quality of 
clustering is therefore the number of such correct 
bifurcations divided by twenty-four, the number of 
datasets. For a perfect clustering, Q = 1, and because the 
number of dendrograms of forty-eight objects is greater 
than 2.2*10106, for a random clustering, we would expect 
Q = 0.  Figure 18 shows the resulting dendrogram for our 
approach. 

The clustering obtained is of very high quality, with Q 
= 0.875. The minor mistakes made, particularly with the 
grouping of the Furnace and Evaporator sequences are 
reasonable and plausible. Markov models [11] scored Q = 
0.458, and ARIMA/ARMA models [25][38] scored Q = 
0.625. In the former case, it took considerable parameter 
tuning to achieve this score, whereas our approach has no 
parameters. 

 
5  Conclusions 
In this paper, we have shown that a simple dimensionality 
reduction technique, i.e. the clipped representation, can 
outperform the more sophisticated technique by a few 
orders of magnitude.  We have shown that our proposed 
clipped representation can improve the compression ratio 
by a wide margin, while being able to maintain or 
increase the tightness of its lower bound, which allows 
even faster nearest neighbor queries, especially in ones 
that require Dynamic Time Warping distance measure.  
Other than producing faster exact algorithms for 
similarity search, we have also demonstrated that our 
clipped representation approach can support clustering 
and scale to much larger datasets.  
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Figure 18. Forty-eight time series (in twenty-four pairs) 
clustered using the approach proposed in this paper.  
Bold lines denote incorrect subtrees 
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Appendix A.  Experiment results ( Section 4.2 ) 

Query Size: EUCLIDEAN DISTANCE 
256 512    Dataset   Size 

Ratio:1 Clipped PAA DFT Ratio:1 Clipped PAA DFT 
Anngun 10,001 691.2 982 5478 1433 677.6 1053 5614 4656 
Burst 9,382 381.7 2298 4785 2644 498.9 5481 4086 4424 
Cstr 22,500 464 1885 6704 2433 608.8 2445 7533 2978 
ERP_data 198,400 239.8 4897 17438 17701 321 8763 33210 1860 
Foetal_ecg 20,000 121.5 3034 7802 10141 157.3 3507 15641 16843 
Infrasound 8,192 390.8 1826 3778 1722 379.1 2474 3119 3263 
Koski_ecg 144,002 419.2 3024 10098 2314 628.5 2931 28829 9386 
Memory 6,875 396.9 973 1882 439 715 1513 2739 1134 
Network 18,000 60.2 13421 16174 17084 62.4 12305 17074 17384 
Power_data 35,040 437.3 1636 9071 4207 1089.5 708 9949 4214 
Power_Italy 29,931 209.9 651 2919 3666 286 771 13430 16765 
Winding 17500 152.3 2090 5433 4214 176.1 2684 5257 6101 

 
 

Query Size: DTW DISTANCE 
256 512    Dataset   Size 

Ratio:1 Clipped PAA DFT Ratio:1 Clipped PAA DFT 
Anngun 10,001 714.2 995 9411 3074 694.6 2 9382 9164 
Burst 9,382 390.3 1832 6607 4269 511.79 795 6248 6572 
Cstr 22,500 474.4 614 12291 7904 612.7 28 16160 10573 
ERP_data 198,400 204.2 6 127520 122025 321.5 1 127423 92590 
Foetal_ecg 20,000 121.6 2 14394 11757 159.3 2 19082 6352 
Infrasound 8,192 401.1 1314 6262 4796 387.7 72 1704 968 
Koski_ecg 144,002 419.8 370 40955 3759 629.5 711 128576 27215 
Memory 6,875 396.9 1271 2528 953 715.8 2293 4822 2454 
Network 18,000 60.3 434 17583 17441 63 91 17378 17388 
Power_data 35,040 440.8 42 21260 15401 1103.9 6 27037 19174 
Power_Italy 29,931 210 2 29534 29575 286.2 7 28412 28946 
Winding 17500 154.3 1 16464 14367 178.2 1 16869 16864 

 

 


