
A Novel Bit Level Time Series Representation with Implications for Similarity
Search and Clustering

Chotirat Ann Ratanamahatana1 Eamonn Keogh1 Anthony J. Bagnall2 Stefano Lonardi1

1Dept. of Computer Science & Engineering
University of California, Riverside, USA

2School of Computing Sciences
University of East Anglia, Norwich, UK

 ratana@cs.ucr.edu eamonn@cs.ucr.edu ajb@cmp.uea.ac.uk stelo@cs.ucr.edu

Abstract

Because time series are a ubiquitous and increasingly
prevalent type of data, there has been much research
effort devoted to time series data mining in recent years.
As with all data mining problems, the key to effective
and scalable algorithms is choosing the right
representation of the data. Many high level
representations of time series have been proposed for
data mining, including spectral transforms, wavelets,
Singular Value Decomposition (SVD), piecewise
polynomial models, symbolic models, etc. In this work,
we introduce a new technique based on a bit level
approximation of the data. The representation has
several important advantages over existing techniques.
One unique advantage is that it allows raw data to be
directly compared to the reduced representation, while
still guaranteeing lower bounds to either Euclidean
distance or DTW. This fact can be exploited to produce
faster exact algorithms for similarly search. In addition,
we demonstrate that our new representation allows time
series clustering to scale to much larger datasets.
Keywords: Time series representation, similarity
search, clustering.

1 Introduction

Time series are a ubiquitous and increasingly prevalent
type of data. Because of this fact, there has been much
research effort devoted to time series data mining in the
last decade [1][7][8][22][39]. As with all data mining
problems, the key to effective and scalable algorithms is
choosing a suitable representation of the data. Many
high level representations of time series have been
proposed for data mining, including spectral transforms,
wavelets, Singular Value Decomposition (SVD),
piecewise polynomial models [39], symbolic models,
etc. Figure 1 shows a complete hierarchy of all
techniques proposed for data mining (see [20] for a
survey). In this work, we introduce a novel technique
based on a bit level approximation of the data. As we
will show, our clipped representation has several
important advantages over existing techniques.

Note that the proposed approach is not only a new
representation; it is a new type of representation. For
data adaptive, non-data adaptive, and model-based
approaches, the user has a choice (implicit or explicit) of
the compression ratio. This allows the user to fine tune
the parameters to achieve the ideal compression/ fidelity
tradeoff for their particular application.

Figure 1. A Hierarchy of all time series representations proposed for data mining. The representation that is the
contribution of this work is highlighted

Symbolic
Aggregate

Approximation

Time Series Representations

Data Adaptive Non Data Adaptive

SpectralWavelets Piecewise
Aggregate

Approximation

Piecewise
Polynomial

SymbolicSingular
Value

Decomposition

Random
Mappings

Piecewise Linear
Approximation

Adaptive
Piecewise
Constant

Approximation

Discrete
Fourier

Transform

Discrete
Cosine

Transform
Haar Daubechies

dbn n > 1
Coiflets Symlets

Sorted
Coefficients

Orthonormal Bi-Orthonormal

Interpolation Regression

Trees

Natural
Language

Strings

Non Lower
Bounding

Chebyshev
Polynomials

Data DictatedModel Based
Hidden
Markov
Models

Statistical
Models

Value Based Slope Based

Clipped
Data

Symbolic
Aggregate

Approximation

Time Series Representations

Data Adaptive Non Data Adaptive

SpectralWavelets Piecewise
Aggregate

Approximation

Piecewise
Polynomial

SymbolicSingular
Value

Decomposition

Random
Mappings

Piecewise Linear
Approximation

Adaptive
Piecewise
Constant

Approximation

Discrete
Fourier

Transform

Discrete
Cosine

Transform
Haar Daubechies

dbn n > 1
Coiflets Symlets

Sorted
Coefficients

Orthonormal Bi-Orthonormal

Interpolation Regression

Trees

Natural
Language

Strings

Non Lower
Bounding

Chebyshev
Polynomials

Data DictatedModel Based
Hidden
Markov
Models

Statistical
Models

Hidden
Markov
Models

Statistical
Models

Value Based Slope Based

Clipped
Data

In contrast, with the clipped representation, the data
itself dictates the compression ratio; the user has no
choice to make. This may be seen as somewhat of a
disadvantage (although removing parameters from a data
mining task is often a good thing [23]). However, this
apparent lack of flexibility is counterbalanced by another
unique property of the clipped representation. For all
other dimensionality reduction approaches, we must
transform the query into the same representation as the
dimensionality reduced database. This means we have a
loss of fidelity for the candidate matches stored in the
index and a loss of fidelity for the query. The compound
fidelity loss combines to produce weak lower bounds, and
thus weak pruning power. In contrast, the clipped
representation is unique in that the original raw query can
be compared directly to the clipped candidate sequences,
thus producing tighter lower bounds, greater pruning
power and thus faster query by content.

The rest of the paper is organized as follows. In
Section 2, we introduce the clipped representation and the
distance measures defined on it with some background
material. We further expand the reader’s appreciation for
the clipped representation in Section 3 by showing
additional desirable properties, including its ability to
support clustering. Section 4 contains a comprehensive
empirical evaluation. Finally, in Section 5, we offer some
conclusions to this work.

2 The clipped representation

Our proposed representation works by replacing each real
valued data point with a single bit. Figure 2 gives the
visual intuition.

Figure 2. A time series of length 64, denoted C, is
converted to the clipped representation, denoted c,
simply by noting the elements of C that data points are
strictly above zero, and setting the corresponding bits
to 1, and setting all other corresponding bits to 0
More formally, we can define c, the clipped

representation of C as:

⎩
⎨
⎧ >

=
otherwise

iCif
ic

0
)(1

)(
µ 1)

where µ is the mean of C. Since virtually all researchers
have noted the importance of normalizing the data before
attempting any clustering, classification or indexing [22],
we can simply assume µ = 0, without loss of generality

for the rest of this work. Note that this representation has
been considered before in the statistical community
[16][17], but its utility for data mining, in particular the
ability to lower bound distance functions, is first
documented here.

2.1 Lower bounding Euclidean distance

Before we define the lower bound for the clipped data, we
will review some background of the main distance
measure used in this paper.

Suppose we have two time series, a query Q, and a
candidate match C, of length n, where

Q = Q1,Q2,…,Qi,…,Qn
C = C1,C2,…,Cj,…,Cn

2)
3)

If we wish to compare the two time series, we can use
the ubiquitous Euclidean Distance [19][20]

 () ()∑ −≡
=

n

i
ii CQCQD

1

2, 4)

Since the square root function is monotonic and
concave, we can remove the square root step to get the
squared Euclidean distance that gives identical rankings,
clustering, and classifications [22].

 () ()∑ −≡
=

n

i
ii CQCQD

1

2, 5)

In addition to the utility of slightly speeding up the
calculations, working with this latter distance measure
also allows other optimizations [22].

Now that the distance measure has been described, if
we are given a clipped time series c, and a raw time series
Q, we can lower bound the squared Euclidean distance
between C and Q, with the following equation (Figure 3
illustrates its visual intuition)

() ∑
⎪
⎩

⎪
⎨

⎧

=≤
=>

≡
=

n

i
ii

iii

otherwise
cdanQ

orcdanQifQ
cQclippedLB

1

2

0
)10(

)00(
,_

6)

Figure 3. The lower bounding function LB_clipped(Q, c)
We will now prove the claim of lower bounding of the

clipped representation.
Proposition 1: For any two time series Q and C of

length n, we have
LB_clipped(Q,c) ≤ D(Q,C)

C

0 10 20 30 40 50 60

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0000000000000000000000111111111111001000111111111111111111111111

c

C
0 10 20 30 40 50 60

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0000000000000000000000111111111111001000111111111111111111111111

c

Q

0 10 20 30 40 50 60

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0000000000000000000000111111111111001000111111111111111111111111

c

Q

0 10 20 30 40 50 60

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0000000000000000000000111111111111001000111111111111111111111111

c

Proof:
Since the distance between any two points with

either measure is non-negative, it is sufficient to show
that given any two points x,y∈ℜ we have
LB_clipped(x,y) ≤ D(x,c), where c is the clipped value
of y. The result for a summation of n points then
naturally follows. Firstly we note that by definitions
(4), D(x,y) ≥0 ∀x,y∈ℜ. We then consider the four
possible cases.

(1) x > 0 and y > 0
(2) x ≤ 0 and y ≤ 0
(3) x > 0 and y ≤ 0
(4) x ≤ 0 and y > 0

In cases (1) and (2), by equation 6), LB_clipped(x,y) =
0, hence LB_clipped(x,y) ≤ D(x,c).
In cases (3) and (4),
LB_clipped(x,c) =x2. D(x,y) can be rewritten as x2+y2-
2xy. Since y2 ≥ 0 and xy ≤ 0, y2-2xy ≥ 0. Hence

LB_clipped(x,y) ≤ D(x,cy)
Thus, for any two real valued points, the clipped
distance is less than or equal to the Euclidean distance.
Since both distance measures are metrics, the distance
between two points is never negative, hence

LB_clipped(Q,c) ≤ D(Q,C)
For any series of real numbers Q and C ■

Figure 4. The distance returned by both
LB_clipped(Q,c) and D(Q,C) is the sum of squared
lengths of the gray hatch lines. Because every hatch
line for LB_clipped(Q,c) is matched with corresponding
line in D(Q,C) which is at least as long, we must have
LB_clipped(Q,c) ≤ D(Q,C)
Figure 4 illustrates the visual intuition of the proof.
The extension of this proof to the Euclidean distance

(or any Lp norm [39]) is trivial, and will be omitted.

2.2 Lower bounding Dynamic Time Warping

Recently, there has been increasing evidence that for
some problems, the Euclidean distance may be too
sensitive to minor distortions in the time axis. It has been
forcefully shown that Dynamic Time Warping (DTW)
can mitigate this problem [22]. Fortunately, we can also
lower bound the DTW distance between Q and C, using Q

and c. To do so, we simply need to slightly adapt the
enveloping lower bounding function introduced in [18]
that is subsequently adapted and extended by many
research groups, including [33].

The amount of warping allowed in calculating DTW is
determined by a single parameter r. The parameter r is
known variously as the warping window width, the
warping scope, the warping constraint, etc [18][32]. We
can use the term r to define two new sequences, U and L:

Ui = max(Qi-r : Qi+r)
 Li = min(Qi-r : Qi+r)

7)
8)

Where U and L stand for Upper and Lower,
respectively; we can see the reason once we plot them
together with the original sequence Q, as seen in Figure 5.
They simply form a bounding envelope that encloses Q
from above and below.

Figure 5. The intuition behind the lower bounding
function LB_Keogh_clipped(Q,c), which lower bounds
DTW(Q,C)
Having defined U and L, we can now define a function

LB_Keogh_clipped(Q,c), which lower bounds
DTW(Q,C):

() ∑
⎪
⎩

⎪
⎨

⎧

=≤
=>

≡
=

n

i
iii

iii

otherwise
cdanQifU

cdanQifL
cQclippedKeoghLB

1

2

2

0
10
00

,__

9)

The proof that LB_Keogh_clipped(Q,c) ≤ DTW(Q,C) is a
straightforward combination of the proof above and the
proof in [18]; we omit it for brevity.

If we assume that each data point in the raw time series
requires 4 bytes (a very conservative estimate), then
converting to the clipped representation as presented
above achieves a 32 to 1 compression ratio. However, as
we shall see in the next section, we can use various
techniques to achieve further compression.

2.3 Run length encoding

Consider the clipped sequence c, which we have been
using as a running example. Its value is
0000000000000000000000111111111111001000111111111111111111111111
Note that we could write this as 22#0, 11#1, 2#0, 1#1,
3#0, 24#1, which we can interpret as 22 zeros followed
by 12 ones, etc. The shorter format allows us to fit more
data in main memory.

Q

0 10 20 30 40 50 60

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0000000000000000000000111111111111001000111111111111111111111111

c

L

U
Q

0 10 20 30 40 50 60

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0000000000000000000000111111111111001000111111111111111111111111

c

L

U

Q

C
c

Q

C
c

Q

C
c

D(Q,C) LB_clipped(Q,c)

Q

C
c

Q

C
c

Q

C
c

D(Q,C) LB_clipped(Q,c)

In fact, we can be even terser; because we always
toggle from zero to one or vice versa, we only need to
record the parity of the first bit, giving us 22#0,
11,2,1,3,24. This classic lossless compression technique
is known as Run Length Encoding (RLE) [12]. To make
the representation even shorter, we can represent the
parity bits of 0 and 1 with two special characters, e.g.
“@” and “!”, respectively; our run length encoding now
can be represented as @22,11,2,1,3,24. We can use this
to further reduce the clipped representation of the data.
Note that while the example above illustrates the idea
with ASCII characters, we actually do RLE at the bit
level.

The following observation motivates a further
optimization. Consider the example in Figure 6 below; it
shows a subsequence of the power-demand data being
extracted in preparation for conversion to the clipped
representation.

Figure 6. The first 512 data points of the Power Demand
dataset just before being converted to the clipped
representation
This dataset exhibits the classic structure of a dataset

that is highly correlated to a working week, with the first
five peaks corresponding to the 9am to 5pm shift on
weekdays, and the relatively flat section between 500 and
700 corresponding to a weekend. Note that in this
dataset, the run lengths are highly structured. We can see
this more clearly in Figure 7, where we plotted the
frequency of all sliding windows’ run lengths,
accumulated over a year’s worth of data.

Figure 7. The relative frequency of run lengths for the
Power Demand dataset, accumulated over one year
This highly skewed structure immediately suggests a

further optimization. We can encode the run lengths with
variable length encoding (prefix encoding) [13][35]. For
example, out of 514 (with two parity bit symbols
included) possible run length symbols, we can encode
431, the most common run length with a short symbol
such as 0101, 42, the second most common run length as
0100, or the next most common run length is 53, which
can be coded as an equally terse 0010.

1 The data is sampled once every 15 minutes, so a run length of 43
corresponds to 10 and ¾ hours. This is longer than a normal shift
because arrival times are staggered, see [36].

Under this scheme, rarely occurring symbols such as
512 (a logical possibility, but never observed in this
dataset) will have longer encodings, perhaps
000001010010011001. However, averaged over the
entire dataset, variable length encoding produces
significantly smaller files. To create the encoding
scheme, we use simple Huffman encoding (the more
complex arithmetic encoding, yields only slightly more
compact encodings in this case [34]). With on-line
implementation of Huffman encoding [24], only a single
pass over the data is required. Because of the prefix
property of Huffman encoding, the separator ‘,’ between
each run length is no longer required, which further
improves its compression ratio. In particular, the average
Huffman code length obtained for this entire dataset is
only 5.8 bits, giving a compression ratio of 281:1. Note
that to compute the compression ratio, we use the
following formula:

tionrepresentaclippedInOfBitsUsed

tionrepresentaregularInOfBitsUsed
nRatioCompressio

__#

__#
=

We made a very conservative assumption that each
number in the original representation is represented in
only four bytes (32 bits).

2.4 Numerosity reduction

Even though the run length-encoding scheme itself gives
an impressive compression ratio, we can improve it by
numerosity reduction on sliding windows. This step is
motivated by observing that while applying a sliding
window on the streaming data, time series in consecutive
sliding windows are very often identical in the clipped
representation, except for the first and the last values that
are omitted and added, respectively. If the time series in
each sliding window has this property, we can exploit this
fact and just record the maximum amount of time this
property has consecutively been observed, along with a
special character, $, that represents this reduction.
Consider the run length encoding from our example in the
previous section and let the encoding of the next five
sliding windows be:

@22,11,2,1,3,24
@21,11,2,1,3,25
@20,11,2,1,3,26
@19,11,2,1,3,27
@18,22,2,1,3,27,1
@17,22,2,1,3,27,2

We can readily see that the first four windows are very
similar and can be reduced to one since the only values
differ from each other are the first and the last (italicized
for clarity). However, the fifth window cannot be
combined with the previous one since the last bit has
changed from 1 to 0, but it can be combined with its next

0 200 400 600 800 1000

0

Power Demand

0 200 400 600 800 1000

0

Power Demand

0 100 200 300 400 500 600

during day shifts

between day shifts

weekends

0 100 200 300 400 500 600

during day shifts

between day shifts

weekends

window. As a result, the final encoding with numerosity
reduction becomes

@22,11,2,1,3,24$3@18,22,2,1,3,27,1$1.
As before, although we demonstrate the idea with

ASCII text, we actually encode everything at the bit level.
With the Power Demand dataset of size 10,000 data

points, numerosity reduction together with Huffman
coding yields a huge compression ratio of 1057:1. Note
that while the factor of 32 to 1 achieved by clipping is
lossy, the remaining factor of approximately 33 to 1 is
lossless with respect to the clipped data.

3 Clipped representation with clustering

Clustering time series is a problem that has applications in
a wide variety of fields, and has recently attracted a large
amount of research. There are three types of objectives
when clustering time series. Clusters may reflect
similarity in time (i.e. group series that are correlated),
similarity in shape (i.e. group series that have similar
patterns of change irrespective of time) or similarity in
change (i.e. group series that have similar autocorrelation
structure). The different objectives are reflected in
different distance functions. Thus, for example, Euclidean
distance is a metric of similarity in time and is commonly
used with the transformations described in Figure 1.
Similarity in shape is measured by specific algorithms or
by a transformation such as dynamic time warping
(DTW). The usual approach to measuring similarity in
change is to assume some underlying model form such as
hidden Markov models or an ARMA process [38] then
cluster based on similarity of fitted models. Given a
means of measuring similarity between series, time series
may be clustered with any of the numerous techniques
available. Clipping the series offers a means of clustering
to meet any of the three objectives faster and with less
memory and without necessarily decreasing the quality of
the clusters obtained.

3.1 Faster clustering with clipped data

Clipped series have been shown to be theoretically and
experimentally sufficient to cluster based on similarity of
change if the series are long enough, and to produce
similar clusterings on real world problems [4][6]. In
Section 4.3 we demonstrate that clipped series can form
clusters similar to those formed with unclipped data when
the objective is to group series based on Euclidean
distance.

In addition to the space benefits discussed in Section 2,
clustering with clipped data can also allow time
improvements for commonly used algorithms. This is
because the bit level representation allows for the
utilization of bitwise operators. For example, given two
clipped series c and d, the distance calculation given in

Equation 5) can be efficiently calculated by finding the
XOR of c and d then summing the number of 1s in the
result, i.e.
 () ()∑ ⊕≡

=

n

i
ii dcdcD

1
, 10)

If binary series are packed into integers we can find the
terms in the summation very quickly using bit operators.
We can also speed up the operation to sum the bits. Any
algorithm to count the bits is Ω(n). However, we can
improve the constant terms in the time complexity
function by using shift operators to evaluate the integer
value of each eight-bit sequence then using a lookup table
to find the number of bits in that integer. This mechanism
makes the distance calculation approximately five times
faster even when the series are loaded into main memory.

3.2 Kolmogorov complexity clustering

In a series of recent papers, Ming Li, Paul Vitanyi, and
collaborators [26], have championed an interesting new
approach to clustering.

The proposed method is inspired by the concept of
Kolmogorov complexity, a measure of randomness of
strings based on their information content. The
Kolmogorov complexity K(x) of a string x is defined as the
length of the shortest program capable of producing x on a
universal computer — such as a Turing machine. Different
programming languages will give rise to distinct values of
K(x), but one can prove that the differences are only up to
a fixed additive constant. Intuitively, K(x) is the minimal
quantity of information required to generate x by an
algorithm.

The conditional Kolmogorov complexity K(x|y) of x to
y is defined as the length of the shortest program that
computes x when y is given as an auxiliary input to the
program. The function K(xy) is the length of the shortest
program that outputs y concatenated to x.

In using this motivation, the authors consider the
distance between two strings x and y, defined as

)(

)|()|(),(
xyK

xyKyxKyxdk
+

= 11)

Kolmogorov complexity is without a doubt the ultimate
lower bound among all measures of information content.
Unfortunately, it cannot be computed in the general case.
As a consequence, one must approximate this distance. Li
and Vitanyi suggested approximating this with standard
off-the-shelf compression algorithms, such as WinZip or
Stuffit. Their distance measure is thus

)(

)|()|(),(
xyC

xyCyxCyxdc
+

= 12)

Where C(x) is the size of file x after compression, and
C(x|y) is the size of file x after compressing it with the
compression model built for y.

In an impressive array of papers, Li and Vitanyi have
shown that this distance measure works exceptionally well
for clustering DNA strings, MIDI files, natural language
text, computer programs, etc.

The above results appear to have little implication for
time series, because the approach requires a lossless
compression technique where a model (typically a
substitution dictionary) is learned from the data. While
there are a host of compression algorithms for real-valued
time series, virtually all of them are lossy (DFT, DWT,
SVD, etc). The handful of lossless techniques (delta
encoding, for example) do not produce a compression
model.

Our clipped representation offers a unique opportunity
to avail of this work, we do build a compression model of
the data, in particular the run length encoding discussed in
Section 2.3. We can therefore define C(x|y) as the size of
time series x when compressed with the run length
dictionary learned for time series y. As we will
empirically show in Section 4.4 This simple parameter
free measure can outperform more complex distance
measures such as Markov models and ARIMA, on a
diverse array of problems.

4 Empirical Evaluation

In this section, we will provide an extensive empirical
comparison among the raw and various representations of
compressed data in two major data mining tasks, time
series indexing and clustering. Twelve datasets were used
in our indexing experiments, and two were used for
clustering experiments. We also tested on a wide range of
both real and synthetic datasets. The datasets range from
66 Kilobytes to 2 Gigabytes in size. We also note that all
data used in these experiments are freely available at [21].

4.1 Indexing Experimental methodology

For indexing, we will demonstrate the superiority of our
clipped representation in terms of number of disk
accesses. We compare our proposed method with the
classic Piecewise Aggregate Approximation (PAA) and
Discrete Fourier Transform (DFT), all preserving similar
compression ratio. However, when managing each
representation, we try to best optimize every competing
method possible. For example, in PAA representation, if
m (the number of reduced section according to the
compression ratio) turns out to be a value less than two or
does not evenly divide the length of the sliding window,
we promote n to two or to the next smallest integer that
evenly divides the size of sliding window even if this may
largely decrease the compression ratio for that
representation. Our justification is that because all the
data we use in the experiment is z-normalized to have a
zero mean and standard deviation of one, the number of

sections (m) fewer than 2 is not a very meaningful
representation in that the value representing that entire
window will always be zero. We give all the advantage to
our competing methods; the smaller is the compression
ratio (larger n), the more accurate PAA and DFT will be
represented. DFT is treated similarly except that m does
not need to evenly divides the window size since it
represents the first m DFT coefficients that will be
preserved; m could then be any integer larger than 1.

We then demonstrate that clipped series can produce
clusters similar to those obtained with the raw data when
clustering a very large real world database introduced in
section 4.2. We show that clipping performs favorably
when compared to clustering with unclipped data since
clustering can be done faster and with much less memory
requirement.

For similarity search, we performed all experiments
over a range of query lengths. Since we want to include
PAA in our experiments, the query length is somewhat
limited. We therefore consider query lengths of 256 and
512 data points.

We tested our approach on a variety of twelve datasets
with various properties within the data, obtained from the
UCR Time Series Data Mining Archive
[http://www.cs.ucr.edu/~eamonn/TSDMA]. The sizes of
the datasets range from 6,875 data points to 198,400 data
points. In order to achieve realistic result, we only
consider queries that do not have exact matches in the
database, but have similar structure. Since our proposed
method focuses on streaming data, holdout cross
validation method may not be entirely appropriate.
Instead, leaving-one-out cross validation is used; on each
run, we randomly pick a query from a database and treat
that query and some portions before and after as withheld
subsections, create a run-length encoding with numerosity
reduction for the rest of the data, and determine the
resultant compression ratio. We then create PAA and
DFT on the same data and with the same compression
ratio (or with smaller compression ratio, in favor of PAA
and DFT as explained in Section 4 above) then measure
the number of random disk accesses for the nearest
neighbor queries of all methods. To determine the
number of dimensionality reduction (m) in PAA and DFT
in these cases, we assume that each value in PAA and
DFT can be represented by only two bytes (instead of four
or eight bytes) to strongly demonstrate that we still have
competitive results among all the approaches.

In addition, to avoid any possibility of implementation
bias, the number of I/O disk accesses of each method is
measured instead of recording the actual running time.
This is done by first computing the lower bound distances
using LB_clipped (Eq. 6), Euclidean distance,
LB_Keogh_clipped (Eq. 9), or LB_ZhuShasha (for PAA
and DFT with DTW) [39], as appropriated, between a
query and all the sequences in the dataset. Then to
retrieve the nearest neighbor, each sequence is visited in

the order according to the lower bound values. We count
the number of times the real disk accesses must be made.
These numbers also indicates the tightness of the lower
bounds for each representation. The results are averaged
over 100 separate runs for each dataset. For simplicity,
we only report results for one-nearest neighbor queries.

4.2 Indexing results

For completeness, we tested on a variety of time series.
Figure 8 shows a small snippet from each.

Figure 8. Some snippets (1,000 data points) from each of
the twelve datasets used in the experiments
As noted above, the amount of compression is dictated

by the data itself. For the twelve datasets considered the
compression ratios range between 60.2:1 to 1,089.5:1 (see
Appendix A for complete results). As one might expect,
higher compression ratios are achieved on smoother
datasets or ones with apparent repetitive patterns, such as
Koski_ecg or Power_data.

We compare different representations in terms of I/O
random disk accesses during the process of the one-
nearest neighbor retrieval of a query time series. In
particular, in each run, we reduce the dimensionality of
the data from n to m using Clipped, PAA2, and DFT
representations, and build their indices on the reduced
spaces based on their lower bounds between each
subsection (sliding window) of the time series and the
query. To allow a visual comparison, we normalize each
experiment on each particular dataset by the worst
performing algorithm; the raw numbers are available in
Appendix A.

Figure 9 and Figure 10 show the number of disk
accesses with lower bounding the Euclidean distance,
using the three dimensionality-reduction techniques over

2 The PAA representation has exactly the same indexing power as the
Haar wavelet when the length of time series is of power of two [19][39].

the range of query lengths of 256 and 512 data points,
respectively.

Figure 9. Number of disk accesses with lower bounding of
Euclidean distance, normalized by the worst performing
approach, using the three representations for the query
length of 256 data points

Figure 10. Number of disk accesses with lower
bounding of Euclidean distance, normalized by the
worst performing approach, using the three
representations for the query length of 512 data points

In general, the results show that the clipped
representation greatly outperforms or at least is
comparable to the other approaches, expressing the
superiority in its tightness of the lower bounds. For the
Burst dataset, the clipped representation works well for
shorter queries, but worst for longer sequences. Again,
we would like to emphasize that our results here are
obtained by conservatively assuming only two-byte
requirement to represent each number in PAA and DFT,
as well as having m promoted as described in Section 4.
If we assume 4 or 8 bytes or without m adjusted, the
results will be much improved.

Figure 11 and Figure 12 further show the stronger
results of the clipped representation in lower bounding the
Dynamic Time Warping distance. The experiments were
similar to those of Figures 9 and 10, except that the
Dynamic Time Warping was used instead of the

Anngun

Burst

Cstr

ERP_data

Foetal_ecg

Infrasound

Koski_ecg

Memory

Network

Power_data

Power_Italy

Winding

Anngun

Burst

Cstr

ERP_data

Foetal_ecg

Infrasound

Koski_ecg

Memory

Network

Power_data

Power_Italy

Winding

Anng
un

Burs
t

Cstr

ERP_d
ata

Fo
eta

l_ec
g

Inf
ras

ou
nd

Kos
ki_

ec
g

Memory

Netw
ork

Pow
er_

da
ta

Power_
ita

ly

Wind
ing

Clipped_256
PAA_256

DFT_256

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Anng
un

Burs
t

Cstr

ERP_d
ata

Fo
eta

l_ec
g

Inf
ras

ou
nd

Kos
ki_

ec
g

Memory

Netw
ork

Pow
er_

da
ta

Power_
ita

ly

Wind
ing

Clipped_512
PAA_512

DFT_512

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Euclidean Distance. The lower bounds for clipped data
were calculated using Equation 9); those for PAA and
DFT were calculated according to Zhu and Shasha [40].

Figure 11. Number of disk accesses with lower
bounding of DTW, normalized by the worst performing
approach, using the three representations for the query
length of 256 data points

Figure 12. Number of disk accesses with lower
bounding of DTW, normalized by the worst performing
approach, using the three representations for the query
length of 512 data points

These results impressively showed that the clipped
representation in lower bounding performed exceptionally
well, especially for Dynamic Time Warping. Note that
even though the four figures above convey the similar
information that clipped data almost always outperforms
PAA and DFT, we cannot directly compare between
lower boundings of Euclidean and DTW distance since
they were normalized by the worst performing approach
in each plot. The details of these results appear in
Appendix A, in which we could see that the clipped data
can outperform the other two approaches by up to
127,000 disk accesses for DTW.

4.3 General compression-based Clustering
We examine a class of problems where a DFT approach
should produce good results, and show that clipping does

better than the most commonly used DFT approach
described in [2].

The class of model we consider is generated from a
mixture of Sine waves. A generating model is of the form

∑
=

+⋅=
r

j
t

j
c

j
b

j
atM

1
)*sin()(

13)

The parameters a, b and c control the amplitude, offset
and frequency of the curves respectively. Each can take a
value on the range [0,1], but they are scaled so that any
particular sine wave has a maximum amplitude of 2 and a
maximum offset of n/2 (where n is the series length). A
frequency parameter of 0 means the sine wave completes
a single oscillation over the data length, and a frequency
parameter of 1 means the curve will complete n/4 cycles
over the n data points. For a clustering experiment we
generate k different models, M1, M2, ... Mk, then each time
series from cluster c is found by adding Gaussian noise to
Mc.

The objective is to cluster series based on similarity in
time, hence our benchmark for performance is Euclidean
distance on the raw data. Our aim is to evaluate which
representation provides clusters as accurate as the
baseline results on the class of model described.
Following the algorithm described in [2], we cluster with
DFT by performing an O(nlogn) FFT, retain the first fc
coefficients (set to n/64 to achieve a compression ratio of
32:1), then use Euclidean distance between the difference
of the coefficients as the clustering distance metric. We
cluster data from eight clusters, with five series in each
cluster, generated from functions of the form given in
Equation 13) above with parameters randomly selected in
the range [0,1], each model being a combination of three
sine waves (i.e. r = 3). We cluster with k-means restarted
100 times at random initial centroids. Each series is 1,024
data points long. An example of the data from 6 series is
shown in Figure 13.

Figure 13. Example of sine wave data series from three
separate cluster models.

Ann
gu

n
Burs

t
Cstr

ERP_d
ata

Foe
tal

_e
cg

Inf
ras

ou
nd

Kos
ki_

ec
g

Mem
ory

Netw
ork

Pow
er_

da
ta

Pow
er_

ita
ly

Wind
ing

Clipped_512
PAA_512

DFT_512

0
0.1

0.2
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ann
gu

n
Burs

t
Cstr

ERP_d
ata

Foe
tal

_e
cg

Inf
ras

ou
nd

Kos
ki_

ec
g

Mem
ory

Netw
ork

Pow
er_

da
ta

Pow
er_

ita
ly

W
ind

ing

Clipped_256
PAA_256

DFT_256

0
0.1

0.2
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900 1000

The results for 20 randomly generated sets of models
are shown in Table 1. Accuracies are measured by
enumerating all possible cluster labeling and measuring
the accuracy against the known correct clustering. The
clipped clusters are often identical to those found with the
raw data, and the difference in mean accuracy is very
small. On 12 out of the 20 runs, the clipped series found
completely correct clusters, whereas the DFT approach, in
addition to having a significantly lower average accuracy,
also only found the correct clustering on a single
occasion.

Table 1. The mean accuracies for 20 randomly
generated sets of models

 Mean
Accuracy

Number of Perfect
Clusterings

Raw 96.87% 15
Clipped 94.22% 12
DFT 81.56% 1

We do not claim that clipped clustering will always

perform better than a DFT approach for this class of
model. One of the reasons the DFT approach does worse
in these experiments is that the larger DFT coefficients
may be discarded. If we restrict the parameters (a,b,c) to
the range [0,0.2], the DFT approach performs at least as
well as the other methods. More recent DFT approaches
such as those described in [29][37] may perform better on
the data used in these experiments. It is also possible to
find parameter settings where the approach of keeping the
first fc coefficients does marginally better than clipping
(when the sine waves are all low in frequency and
amplitude). However, clipping is a very simple procedure
with no need for parameterization. It clusters well in
relation to using the raw data for all parameter settings
attempted, and has been shown to do well on data where a
DFT approach is not appropriate (see [3][4][6]).

To demonstrate how clipping can help with a real
world problem, especially in large datasets, we clustered
optical recording data from a bee's olfactory system.
Analysis of this data can help understand the mechanisms
of the olfactory code and the temporal evolution of
activity patterns in the antennal lobe. Further information
can be found in [10]. The data consists of 980 images,
each image containing of 688x520 measurements. If we
consider each position in the image as a time series, the
data consists of 357,760 time series of length 980.
Preliminary analysis has shown that clustering the series
based on similarity in time produces results that have a
sensible physiological interpretation [10]. We cluster with
k-means (with k set to 16) restarted 50 times from random
initial centroids, and take as the best clustering the one
with the lowest within-cluster variation. We are assuming
the objective is to group together series with similarity in
time; hence we use a Euclidean distance metric to
measure similarity. Figure 14 shows the clusters produced

by the raw data. The dataset size is around 2 gigabytes
and clustering the raw data may be prohibitively
demanding of time and space resources. A single run of k-
means takes 50-150 iterations to converge (taking hours
to complete), and most machines do not have 2 gigabytes
of main memory. Hence, some form of data reduction is
appropriate for this problem. We use this data set to
demonstrate that compressing the data through clipping
can produce clusters more similar to those produced with
the whole data (Figure 14) than those found using DFT
and PAA.

Figure 14. Sixteen clusters produced using the whole 2-
gigabyte raw data

For comparison purposes, we assume that clipping
provides a compression ratio of 32:1 (in practice, it may
be much higher than this) and we set the parameters of
DFT and PAA to achieve a similar or smaller ratio to
guarantee in giving all the advantages in compression
ratio to the competing methods. For PAA, we compress
each series into 49 mean values since we mentioned
earlier that the number of PAA coefficients must evenly
divide the length of each time series, in this case giving a
compression ratio of 20:1. We again use Euclidean
distance.

Figure 15 to Figure 17 show the spatial clustering co-
occurrences found with clipped, DFT, and PAA data. It is
clear from these plots that the clipped series are much
more similar to those found with the raw data than those
found with DFT and PAA. There are structural
similarities between all four clusterings, but the clipped
clusterings are much cleaner than those found with PAA
and DFT. The only major difference between the
unclipped and the clipped clusters is an additional central
cluster formed around position (325,450) with the
unclipped data.

50 100 150 200 250 300 350 400 450 500

100

200

300

400

500

600

50 100 150 200 250 300 350 400 450 500

100

200

300

400

500

600

Figure 15. Clusters formed using the clipped data with
32:1 compression ratio. The spatial cluster co-
occurrences between this plot and the clusters formed
using raw data in Figure 14 shows its effectiveness in
the clipped data reduction technique

Figure 16. Cluster formed using a piecewise constant
approximation (PAA) with 49 coefficients, giving 20:1
compression ratio

Figure 17. Clusters formed using first 17 Discrete
Fourier Transform coefficients, giving 29.7:1
compression ratio

To measure the similarity between the clustering with
the raw data and the clusterings with the compressed data,
we use three well-known measures based on the count of
coincidence of common cluster membership: the Jaccard
coefficient [28]; the Rand statistic [31]; and the Folkes
and Mallows index [9] (higher values indicate a greater
degree of similarity). These statistics are given in Table 2.
By all three measures, the clipped clusterings are more
similar to the raw clusterings than those found with DFT
and PAA.

Table 2. similarity between the best clusters formed by
the raw and compressed data

 Jaccard Rand Folkes & Mallows

Clipped 0.4843 0.9512 0.6526

DFT 0.4424 0.9476 0.6136

PAA 0.2647 0.9222 0.4188

To demonstrate that for this data clipping gives

clusterings significantly closer to those with the whole
data, we randomly selected 10 clusterings from the run of
50 for each experiment with clipped, DFT, and PAA
compression. For each of these 10 clusterings, we
measure the similarity to 10 randomly selected clusterings
formed with the complete data, giving us 100 sets of
comparisons for each technique. The mean Jaccard, Rand,
and Folkes and Mallows statistics, along with the standard
deviations, are shown in Table 3.

Table 3. Average similarity and standard deviation
between the clusters formed with the raw and
compressed data, comparing among 10 clusterings for
each technique

 Jaccard Rand Folks &
Mallows

Clipped 0.4456 ± 0.042 0.9469 ± 0.006 0.6156 ± 0.04

DFT 0.2108 ± 0.017 0.9118 ± 0.012 0.3425 ± 0.093

PAA 0.2761 ± 0.017 0.9227 ± 0.003 0.4327 ± 0.021

For each of the three measures, we can, at the 1%

level, reject the null hypothesis that clipped and DFT, and
clipped and PAA average similarity are the same in favor
of the alternative that clipped similarity is higher (using a
one sided t-test for the mean and a Mann-Whittley test for
the median). This clearly demonstrates that, when using
restarted k-means with an objective to cluster based on
similarity in time, clipping is a more appropriate
compression than DFT or PAA for this data set.

50 100 150 200 250 300 350 400 450 500

100

200

300

400

500

600

50 100 150 200 250 300 350 400 450 500

100

200

300

400

500

600

50 100 150 200 250 300 350 400 450 500

100

200

300

400

500

600

4.2 Kolmogorov Inspired Clustering

For this experiment we examined the UCR Time Series
Archive for datasets that come in pairs. For example, in
the Bouy sensor dataset, there are two time series, East
and North, and in the Great Lakes dataset, there are two
time series, Ontario and Erie. We were able to identify
twenty-four such pairs, from a diverse collection of time
series covering the domains of finance, science, medicine,
industry, etc. Although our method is able to deal with
time series of different lengths, we truncated all time
series to length 1,000 to enhance the graphical
demonstration.

While the correct hierarchical clustering at the top of
the tree is somewhat subjective, at the lower level of the
tree, we would hope to find a single bifurcation separating
each pair in the dataset. Our metric, Q, for the quality of
clustering is therefore the number of such correct
bifurcations divided by twenty-four, the number of
datasets. For a perfect clustering, Q = 1, and because the
number of dendrograms of forty-eight objects is greater
than 2.2*10106, for a random clustering, we would expect
Q = 0. Figure 18 shows the resulting dendrogram for our
approach.

The clustering obtained is of very high quality, with Q
= 0.875. The minor mistakes made, particularly with the
grouping of the Furnace and Evaporator sequences are
reasonable and plausible. Markov models [11] scored Q =
0.458, and ARIMA/ARMA models [25][38] scored Q =
0.625. In the former case, it took considerable parameter
tuning to achieve this score, whereas our approach has no
parameters.

5 Conclusions
In this paper, we have shown that a simple dimensionality
reduction technique, i.e. the clipped representation, can
outperform the more sophisticated technique by a few
orders of magnitude. We have shown that our proposed
clipped representation can improve the compression ratio
by a wide margin, while being able to maintain or
increase the tightness of its lower bound, which allows
even faster nearest neighbor queries, especially in ones
that require Dynamic Time Warping distance measure.
Other than producing faster exact algorithms for
similarity search, we have also demonstrated that our
clipped representation approach can support clustering
and scale to much larger datasets.

Acknowledgments: This research was partly funded by
the National Science Foundation under grant IIS-
0237918.

Figure 18. Forty-eight time series (in twenty-four pairs)
clustered using the approach proposed in this paper.
Bold lines denote incorrect subtrees

6 References

[1] J. Aach & G. Church (2001). “Aligning gene expression time series
with time warping algorithms. “ Bioinformatics (17), 495-508.
[2] R. Agrawal, C. Faloutsos, & A.N. Swami (1993). Efficient Similarity
Search in Sequence Databases. Proc. of 4th International Conference of
Foundations of Data Organization and Algorithms (FODO), pp. 69-84.
[3] Bagnall, A.J. and Janacek, G.J., "Clustering Time Series with Clipped
Data", accepted for publication, Machine Learning, 2004/2005
[4] A. J. Bagnall, G. Janacek and B. de la Iglesia and M. Zhang (2003),
Clustering Time Series from Mixture Polynomial Models with Discretised
Data, Proc. of 2nd Australasian Data Mining Workshop.

Chest Volume 1

Chest Volume 2

Network 1

Network 2

Buoy Sensor: North

Buoy Sensor: East

Balloon 1

Balloon 2 (lagged)

Great Lakes (Erie)

Great Lakes (Ontario)

Power : Jan-March Italian

Power : April-June Italian

Power : Jan-March Dutch

Power : April-June Dutch

Blood Oxygen 1

Blood Oxygen 2

Reel 2: angular speed

Reel 2: tension

Koski ECG: slow 1

Koski ECG: slow 2

Koski ECG: fast 1

Koski ECG: fast 2

Chaotic 1

Chaotic 2

Trace 1

Trace 2

Phone 1

Phone 2

Furnace: heating input

Evaporator: feed flow

Furnace: cooling input

Evaporator: vapor flow

Space Shuttle X-axis 1

Space Shuttle X-axis 2

Space Shuttle Z-axis 1

Space Shuttle Z-axis 2

Exchange Rate: Swiss

Exchange Rate: German

Sunspots: 1749 to 1869

Sunspots: 1869 to 1990

MotorCurrent: 2

MotorCurrent: 1

Video : Ann, gun

Video : Ann, no gun

Video : Eamonn, gun

Video : Eamonn, no gun

Aerospace L-1b

Aerospace L-1c

Chest Volume 1

Chest Volume 2

Network 1

Network 2

Buoy Sensor: North

Buoy Sensor: East

Balloon 1

Balloon 2 (lagged)

Great Lakes (Erie)

Great Lakes (Ontario)

Power : Jan-March Italian

Power : April-June Italian

Power : Jan-March Dutch

Power : April-June Dutch

Blood Oxygen 1

Blood Oxygen 2

Reel 2: angular speed

Reel 2: tension

Koski ECG: slow 1

Koski ECG: slow 2

Koski ECG: fast 1

Koski ECG: fast 2

Chaotic 1

Chaotic 2

Trace 1

Trace 2

Phone 1

Phone 2

Furnace: heating input

Evaporator: feed flow

Furnace: cooling input

Evaporator: vapor flow

Space Shuttle X-axis 1

Space Shuttle X-axis 2

Space Shuttle Z-axis 1

Space Shuttle Z-axis 2

Exchange Rate: Swiss

Exchange Rate: German

Sunspots: 1749 to 1869

Sunspots: 1869 to 1990

MotorCurrent: 2

MotorCurrent: 1

Video : Ann, gun

Video : Ann, no gun

Video : Eamonn, gun

Video : Eamonn, no gun

Aerospace L-1b

Aerospace L-1c

Chest Volume 1

Chest Volume 2

Network 1

Network 2

Buoy Sensor: North

Buoy Sensor: East

Balloon 1

Balloon 2 (lagged)

Great Lakes (Erie)

Great Lakes (Ontario)

Power : Jan-March Italian

Power : April-June Italian

Power : Jan-March Dutch

Power : April-June Dutch

Blood Oxygen 1

Blood Oxygen 2

Reel 2: angular speed

Reel 2: tension

Koski ECG: slow 1

Koski ECG: slow 2

Koski ECG: fast 1

Koski ECG: fast 2

Chaotic 1

Chaotic 2

Trace 1

Trace 2

Phone 1

Phone 2

Furnace: heating input

Evaporator: feed flow

Furnace: cooling input

Evaporator: vapor flow

Space Shuttle X-axis 1

Space Shuttle X-axis 2

Space Shuttle Z-axis 1

Space Shuttle Z-axis 2

Exchange Rate: Swiss

Exchange Rate: German

Sunspots: 1749 to 1869

Sunspots: 1869 to 1990

MotorCurrent: 2

MotorCurrent: 1

Video : Ann, gun

Video : Ann, no gun

Video : Eamonn, gun

Video : Eamonn, no gun

Aerospace L-1b

Aerospace L-1c

[5] A.J. Bagnall & G.J. Janacek. Clustering Time Series with Clipped
Data. Information and Software Technology. To appear 2004/2005.
[6] A. J. Bagnall and G. Janacek (2004), Clustering time series from
ARMA models with clipped data, Proc. of ACM SIGKDD.
[7] D. Berndt & J. Clifford (1994). Using dynamic time warping to find
patterns in time series. AAAI-94 Workshop on Knowledge Discovery in
Databases. pp. 229-248.
[8] B. Chiu, E. Keogh, & S. Lonardi (2003). Probabilistic Discovery of
Time Series Motifs. In the 9th ACM SIGKDD.
[9] E. Fowlkes & C. Mallows (1983). A method for comparing two
hierarchical clusterings. Journal of American Statistical Association,
78:553-569.
[10] R.F. Galan, S. Sachse, C.G. Galizia, A.V.M. Herz (2004)
"Odor-driven attractor dynamics in the antennal lobe allow for simple and
rapid olfactory pattern classification." Neural Computation.
[11] X. Ge & P. Smyth. (2000). Deformable Markov model templates for
time-series pattern matching. In proceedings of the 6th ACM SIGKDD.
Boston, MA. pp. 81-90.
[12] S.W. Golomb. “Run-length Encodings”, IT(12), No. 7, July 1966, pp.
399—401.
[13] D. A. Huffman (1952). A Method for the Construction of Minimum-
Redundancy Codes.Inst. Radio Eng. 40, 1098-1101.
[14] M. W. Kadous (1999). Learning comprehensible descriptions of
multivariate time series. In Proc. of the 16th International Machine
Learning Conference. pp. 454-463.
[15] K. Kalpakis, D. Gada, & V. Puttagunta. (2001). Distance measures
for effective clustering of ARIMA time-series. In proc. Of the IEEE
ICDM, pp. 273-280.
[16] B. Kedem, Estimation of the Parameters in Stationary Autoregressive
Processes After Hard Limiting, Journal of the American Statistical
Association, Vol 75, 1980, pp. 146-153.
[17] B. Kedem and E. Slud, On Goodness of Fit of Time Series Models:
An Application of Higher Order Crossings, Biometrika, Vol 68, pp. 551-
556
[18] E. Keogh (2002). Exact indexing of dynamic time warping. In 28th
VLDB Intl Conf., pp. 406-417.
[19] E. Keogh, K. Chakrabarti, M. Pazzani & S. Mehrotra (2000).
Dimensionality reduction for fast similarity search in large time series
databases. KAIS Journal. pp. 263-286.
[20] E. Keogh, K. Chakrabarti, M. Pazzani & S. Mehrotra (2001). Locally
adaptive dimensionality reduction for indexing large time series databases.
In Proc. of ACM SIGMOD, pp. 151-162.
[21] E. Keogh & T. Folias (2002). The UCR time Series Data Mining
archive. Riverside, CA. [http://www.cs.ucr.edu/~eamonn/TSDMA].
[22] E. Keogh & Kasetty, S. (2002). On the Need for Time Series Data
Mining Benchmarks: A Survey and Empirical Demonstration. In the 8th
ACM SIGKDD pp. 102-111.
[23] E. Keogh, S. Lonardi, & CA. Ratanamahatana. (2004). Towards
Parameter-Free Data Mining. In proceedings of the tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
[24] D.E.Knuth (1985). Dynamic Huffman coding. J. of Algorithms. Vol.
6(2), pp. 163-180.
[25] J. B. Kruskall, & M. Liberman (1983). The symmetric time warping
algorithm: From continuous to discrete. Time Warps, String Edits and
Macromolecules. Addison-Wesley.
[26] M. Li, X. Chen, X. Li, B. Ma, & P. Vitanyi (2003). The similarity
metric. Proceedings of the 14th annual ACM-SIAM symposium on
Discrete algorithms. Pp. 863-872.
[27] R. Manmatha, & T.M. Rath (2003). Indexing Handwritten Historical
Documents – Recent Progress. In Proc. Of the Symp. on Document Image
Understanding.

[28] G.W. Milligan, L.M.Sokol, & S.C.Soon (1983). The effect of cluster
size, dimensionality and the number of clusters on recovery of true cluster
structure. IEE Trans PAMI, 5(1):40-47.
[29] F. Morchen (2003). Time series feature extraction for data mining
using DWT and DFT. Technical Report, Dept. of Mathematics and
Computer Science, Philipps-University Marburg.
[30] M. Munich, & P. Perona (1999). Continuous dynamic time warping
for translation-invariant curve alignment with applications to signature
verification. In Proc. of 7th Int’l Conf. on Computer Vision, Korfu, Greece.
pp. 108-115.
[31] W.M.Rand (1971). Objective criterion for evaluation of clustering
methods. Journal of American Statistical Association, 66: 846-851.
[32] C.A. Ratanamahatana & E. Keogh (2004). Making Time-series
Classification More Accurate Using Learned Constraints. In proc. of SDM
Int’l Conf., pp. 11-22
[33] T. Rath & R. Manmatha (2002). Word image matching using
dynamic time warping, Tec Report MM-38. Center for Intelligent Inf.
Retrieval, Univ. of Massachusetts Amherst.
[34] J. Rissanen and G.G.Langdon, Jr.(1979) “Arithmetic coding,” IBM J.
of Res. and Dev. 23(2), pp. 149—162.
[35] E. S. Schwarz "An Optimum Encoding with Minimum Longest Code
and Total Number of Digits." Inf. and Control 7, 37-44, 1964.
[36] J. J. van Wijk & E. R. van Selow (1999). Cluster and calendarbased
visualization of time series data. In Proc. IEEE Symp on Inf. Visualization,
pp. 4-9.
[37] M. Vlachose, C. Meet, & Z. Vagena (2004). Identifying similarities,
periodicities and bursts for online search queries. Proc. of the ACM
SIGMOD International Conference on Management of Data.
[38] Y. Xiong and D.-Y. Yeung, "Mixtures of ARMA models for model-
based time series clustering", ICDM'02.
[39] B K. Yi & C. Faloutsos.(2000). Fast time sequence indexing for
arbitrary Lp norms. VLDB. pp. 385-394.
[40] Y. Zhu & D. Shasha (2003). Warping Indexes with Envelope
Transforms for Query by Humming. SIGMOD, pp.181-192.

Appendix A. Experiment results (Section 4.2)

Query Size: EUCLIDEAN DISTANCE
256 512 Dataset Size

Ratio:1 Clipped PAA DFT Ratio:1 Clipped PAA DFT
Anngun 10,001 691.2 982 5478 1433 677.6 1053 5614 4656
Burst 9,382 381.7 2298 4785 2644 498.9 5481 4086 4424
Cstr 22,500 464 1885 6704 2433 608.8 2445 7533 2978
ERP_data 198,400 239.8 4897 17438 17701 321 8763 33210 1860
Foetal_ecg 20,000 121.5 3034 7802 10141 157.3 3507 15641 16843
Infrasound 8,192 390.8 1826 3778 1722 379.1 2474 3119 3263
Koski_ecg 144,002 419.2 3024 10098 2314 628.5 2931 28829 9386
Memory 6,875 396.9 973 1882 439 715 1513 2739 1134
Network 18,000 60.2 13421 16174 17084 62.4 12305 17074 17384
Power_data 35,040 437.3 1636 9071 4207 1089.5 708 9949 4214
Power_Italy 29,931 209.9 651 2919 3666 286 771 13430 16765
Winding 17500 152.3 2090 5433 4214 176.1 2684 5257 6101

Query Size: DTW DISTANCE
256 512 Dataset Size

Ratio:1 Clipped PAA DFT Ratio:1 Clipped PAA DFT
Anngun 10,001 714.2 995 9411 3074 694.6 2 9382 9164
Burst 9,382 390.3 1832 6607 4269 511.79 795 6248 6572
Cstr 22,500 474.4 614 12291 7904 612.7 28 16160 10573
ERP_data 198,400 204.2 6 127520 122025 321.5 1 127423 92590
Foetal_ecg 20,000 121.6 2 14394 11757 159.3 2 19082 6352
Infrasound 8,192 401.1 1314 6262 4796 387.7 72 1704 968
Koski_ecg 144,002 419.8 370 40955 3759 629.5 711 128576 27215
Memory 6,875 396.9 1271 2528 953 715.8 2293 4822 2454
Network 18,000 60.3 434 17583 17441 63 91 17378 17388
Power_data 35,040 440.8 42 21260 15401 1103.9 6 27037 19174
Power_Italy 29,931 210 2 29534 29575 286.2 7 28412 28946
Winding 17500 154.3 1 16464 14367 178.2 1 16869 16864

