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ABSTRACT 
Efficient indexing is at the heart of many data mining 
algorithms. A simple and extremely effective algorithm for 
indexing under any metric space was introduced in 1991 by 
Orchard. Orchard’s algorithm has not received much 
attention in the data mining and database community 
because of a fatal flaw; it requires quadratic space. In this 
work we show that we can produce a reduced version of 
Orchard’s algorithm that requires much less space, but 
produces nearly identical speedup. We achieve this by 
casting the algorithm in an anyspace framework, allowing 
deployed applications to take as much of an index as their 
main memory/sensor can afford. As we shall demonstrate, 
this ability to create an anyspace algorithm also allows us 
to create auto-cannibalistic algorithms. Auto-cannibalistic 
algorithms are algorithms which initially require a certain 
amount of space to index or classify data, but if unexpected 
circumstances require them to store additional information, 
they can dynamically delete parts of themselves to make 
room for the new data. We demonstrate the utility of auto-
cannibalistic algorithms in a fielded project on insect 
monitoring with low power sensors, and a simple 
autonomous robot application.     
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1. INTRODUCTION 
Efficient indexing is at the heart of many data mining 
algorithms. A simple and extremely effective algorithm for 
indexing under any metric space was introduced in 1991 by 
Orchard [11]. The algorithm is commonly known as 
Orchard’s algorithm, however Charles Elkan points out 
that a nearly identical algorithm was proposed by Hodgson 
in 1988 [9], [5]. While Orchard’s algorithm is currently 
used in some specialized domains such as vector 
quantization [6] and compression [20], it has not received 
much attention in the data mining and database community 
because of a fatal flaw; it requires quadratic space. In this 
work we show that we can produce a reduced version of 
Orchard’s algorithm which requires much less space, but 

produces nearly identical speedup. We further show that 
we can cast our ideas in an anyspace framework [21], 
allowing deployed applications to take as much of an index 
as their main memory/sensor can afford. It is important to 
note that our reduced space algorithms produce exactly the 
same results as the full algorithm, they simply trade freeing 
up (a lot of) space for (very little) reduction in speed.   

As we shall demonstrate, the ability to cast indexing as an 
anyspace algorithm allows us to create auto-cannibalistic 
algorithms. Auto-cannibalistic algorithms are algorithms 
which initially require a certain amount of space to index or 
classify data, but if unexpected circumstances require them 
to store additional information, they can dynamically delete 
(“eat”) parts of themselves to make room for the new data. 
This allows the algorithm to be extremely efficient for a 
given memory allocation at the beginning of its life, and 
then gracefully degrade as it encounters outliers which it 
must store. We demonstrate the utility of auto-cannibalistic 
algorithms in a fielded project on insect monitoring with 
low power sensors and show that it can greatly extend the 
battery life of field deployed sensors. 

The rest of the paper is organized as follows. Section 2 
reviews the classic Orchard's algorithm and Section 3 
introduces our extensions and modifications. We conduct a 
detailed empirical evaluation in Section 4, and in Section 5 
we consider two concrete applications, including one 
which is already being tested in the field. We conclude 
with a discussion of related and future work in Section 6. 

2. CLASSIC ORCHARD'S ALGORIHM 
In order to help the reader understand Orchard’s algorithm, 
and our extensions and modifications to it, we will 
introduce a simple example dataset in Figure 1 as a running 
example. 



 

Dataset A 
 X Y 

a1 1 10 

a2 1 2 

a3 2 2 

a4 6 5 

a5 9 8 

a6 6 10 

a7 9 10  

Figure 1: A small dataset A containing 7 items, used 
as a running example in this work 

The preprocessing for Orchard’s algorithm requires that we 
build for each item ai in our dataset A, a sorted list of its 
neighbors, annotated with the actual distances to ai in 
ascending order. We denote a sorted list for instance ai as 
P[ai], and the full set of these lists for the entire dataset A 
as P[A]. Table 1 shows this data structure for our running 
example. Note that even for our small running example, the 
size of the ranked lists data structure is considerable, and 
would clearly be untenable for real world problems.  

Table 1: Orchard's Algorithm Ranked Lists P[A] 
Item 1st NN 

{dist} 
2nd NN 
{dist} 

3rd NN 
{dist} 

4th  NN 
{dist} 

5th NN 
{dist} 

6th NN 
{dist} 

a1 6 {5.0} 4 {7.1} 2 {8.0} 7 {8.0} 3 {8.1} 5 {8.2} 
a2 3 {1.0} 4 {5.8} 1 {8.0} 6 {9.4} 5 {10.0} 7 {11.3} 
a3 2 {1.0} 4 {5.0} 1 {8.1} 6 {8.9} 5 {9.2} 7 {10.6} 
a4 5 {4.2} 3 {5.0} 6 {5.0} 2 {5.8} 7 {5.8} 1 {7.1} 
a5 7 {2.0} 6 {3.6} 4 {4.2} 1 {8.2} 3 {9.2} 2 {10.0} 
a6 7 {3.0} 5 {3.6} 1 {5.0} 4 {5.0} 3 {8.9} 2 {9.4} 
a7 5 {2.0} 6 {3.0} 4 {5.8} 1 {8.0} 3 {10.6} 2 {11.3} 

The basic intuition behind Orchard’s algorithm is to prune 
non-nearest neighbors based on the triangular inequality 
[5]. Suppose we have a dataset A = {a1, a2, …, a|A|}, in 
which we want to find the nearest neighbor of query q. 
Further suppose ai is the nearest neighbor found in A thus 
far. For any unseen element aj, which will not be the 
nearest neighbor if: 
  ),(),( qadistqadist ij ≥   (2.1) 

Given that we are dealing with a metric space, the principle 
of triangular inequality [5] illustrated in Figure 2 applies 
here: 
 ),(),(),( qadistqadistaadist jiji +≤  (2.2) 

Combining (2.1) and (2.2), we can derive the fact that if: 
  ),(2),( qadistaadist iji ×≥  (2.3) 

is satisfied, aj can be pruned, since it could not be the 
nearest neighbor. This is how a combination of the 

triangular inequality and the information stored in the 
ranked lists data structure P[A], can allow us to prune some 
items aj without the expense of calculating the actual 
distance between q and aj. 

 
Figure 2: (above, left) Assume we know the pairwise 
distances between ai, aj and aj'. A newly arrived 
query q must be answered. (above, right) After 
calculating the distance dist(q,ai) we can conclude 
that items with  a distance to ai less than or equal to 
2 × dist(q,ai) (i.e. the gray area) might be the nearest 
neighbor of q, but everything else, including aj' in 
this example, can be excluded from consideration 

The algorithm, as outlined in Table 2, begins by choosing 
some random element in A as the tentative nearest 
neighbor. It records the index of the element in A in nn.loc 
and calculates the distance nn.dist between q and the 
element ann.loc in lines 1 and 2. Thereafter, the algorithm 
inspects the items in list P[ann.loc] in ascending order until 
one of three things happen. If either the end of the list is 
reached, or the next item on the list has value that is more 
than twice the current nn.dist (line 4), the algorithm 
terminates and returns ann.loc as the nearest neighbor and the 
corresponding distance dist(ann.loc, q). The third possibility 
is that the item in the list is closer to the query than the 
current tentative nearest neighbor (line 9). In that case the 
algorithm simply jumps to the head of the list associated 
with this new nearest neighbor to the query and continues 
from there (lines 10 to 12). 

Table 2: Orchard's Algorithm Search  
 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

 

Function [nn.loc, nn.dist] = Orchards(P[A], q ) 
nn.loc = random_interger_in_range_of(1, |A|) 
nn.dist = dist(ann.loc, q) 
index = 1 
While P[ann.loc].dist[index] < 2 * nn.dist AND index < |A| do 
     node = P[ann.loc].node[index] 
     If node is not yet tested then 
           d = dist(anode, q) 
          If d < nn.dist then 
                nn.dist = d 
                nn.loc = node 
                index = 1 
          Else 
               index = index + 1 
          EndIf 
     Else 
         index = index + 1  
     EndIf 
EndWhile 
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Note that as the algorithm is traversing down the lists, it 
may encounter an item more than once. To avoid redundant 
calculations, a record is kept of all items encountered thus 
far, and an O(n) hash is sufficient to check if we have 
already calculated the distance to that item (line 7). 

As the reader can appreciate, the algorithm has the 
advantages of simplicity, and being completely parameter 
free. Furthermore as shown both here (cf. Section 4) and 
elsewhere [3], [12], [20], it is a very efficient indexing 
algorithm. However, while we typically would be willing 
to spare the quadratic time complexity to build the ranked 
lists dataset, the quadratic space complexity has all but 
killed interest in this method. In the next section we show 
how we can achieve the same efficiency in a fraction of the 
space. 

3. ANYSPACE ORCHARD'S 
ALGORIHM  
In this section we begin by giving the intuition behind our 
idea for an anyspace Orchard's algorithm, and then show 
concrete approaches to allow us to create such an 
algorithm.  

3.1 Truncated Orchard's Algorithm 
We motivate our ideas with a simple observation. Note that 
in Figure 1 the two data items a2 and a3 are very close 
together. As a result, their lists of nearest neighbors in 
Table 1 are almost identical. This is a redundancy; most 
queries that are efficiently pruned by a2 would also be 
pruned efficiently by a3, and vice-versa. We can exploit 
this redundancy by deleting one entire list, thus saving 
some space. For the moment let us assume we have 
randomly chosen to delete the list of a3, as shown in Table 
3.  

Table 3: Truncated Orchard's Algorithm 
T 1st NN 2nd NN 3rd NN 4th NN 5th NN 6th NN 

a1 6 {5.0} 4 {7.1} 2 {8.0} 7 {8.0} 3 {8.1} 5 {8.2} 
a2 3 {1.0} 4 {5.8} 1 {8.0} 6 {9.4} 5 {10.0} 7 {11.3} 
a3 goto a2 

a4 5 {4.2} 3 {5.0} 6 {5.0} 2 {5.8} 7 {5.8} 1 {7.1} 
a5 7 {2.0} 6 {3.6} 4 {4.2} 1 {8.2} 3 {9.2} 2 {10.0} 
a6 7 {3.0} 5 {3.6} 1 {5.0} 4 {5.0} 3 {8.9} 2 {9.4} 
a7 5 {2.0} 6 {3.0} 4 {5.8} 1 {8.0} 3 {10.6} 2 {11.3} 

Note that we cannot just delete the entire row. We have a 
small amount of bookkeeping to do. It is possible that as 
we are using the index and traversing down the one of the 
other lists, we will encounter a3 and find that it is the best-
so-far. We should therefore jump to the list for a3 and 
continue searching, however the list was deleted. To solve 
this problem we need to place a special “goto” pointer 
which tells the search algorithm that it should continue 
searching from a2’s list instead. 

As the reader will have already guessed, we can iteratively 
use this idea to delete additional lists, thus saving more 
space. In the limit, we will be left with a single list as 
shown in Table 4. 

Table 4: Highly Truncated Orchard's Algorithm 
Item 1st NN 2nd NN 3rd NN 4th  NN 5th NN 6th NN 

a1 goto a6 

a2 goto a4 

a3 goto a2 

a4 5 {4.2} 3 {5.0} 6 {5.0} 2 {5.8} 7 {5.8} 1 {7.1} 
a5 goto a4 

a6 goto a7 

a7 goto a5 

Note that whatever algorithm we use to delete lists, we 
must make sure that we don’t end up with cycles. For 
example if a2’s row says “goto a3” and if a3’s row says 
“goto a2” we have an infinite loop. Another important 
observation is that although we should not expect this 
highly truncated Orchard's algorithm to perform as well as 
the quadratic space version, we still have not (necessarily) 
degraded to sequential search. Queries that happen to land 
near a4 will be answered quickly, no matter which random 
starting position we choose.  

3.2 Anyspace Orchard's Algorithm 
As framed in the previous section, we appear to have a 
solution to the quadratic complexity of Orchard's 
algorithm. We can simply work out how much memory is 
available for our application, and delete the necessary 
number of lists to make our Truncated Orchard's Algorithm 
fit. However, there may be situations where the amount of 
memory is variable (we discuss such applications in more 
detail in Section 5). In these applications we may find it 
useful to delete additional lists on-the-fly, as memory 
becomes more precious. For example, an autonomous robot 
could use a 90% Truncated Orchard's Algorithm to 
efficiently classify the items it sees as friend, foe or 
unknown. For both the friend and foe categories, it suffices 
to count how many it encountered. However, for the 
unknown category we may want the robot to store a picture 
of the unidentified item for later analysis. In this case, it 
would be useful to throw out additional lists of the 
Truncated Orchard's Algorithm in order to make space for 
the new image. An obvious question is, which lists should 
we toss out? A random selection would be easy, but this 
may decrease indexing efficiency greatly.  Can we do 
better than random?   

Our solution is to frame the Truncated Orchard's Algorithm 
as an anyspace algorithm [21]. Anyspace algorithms are 
algorithms that trade space for quality of results. In general, 
an anyspace algorithm is able to solve the problem at hand 
with any amount of memory, and the speed at which it can 
solve the problem improves if more space is made 



available. In our particular case, we assume we start with 
all the memory of full data structure for the Truncated 
Orchard's Algorithm, and if we need space to store 
information about an unexpected event, we “cannibalize” a 
part of the Truncated Orchard's Algorithm's space to store 
it. We call such an approach an Auto-Cannibalistic 
algorithm. Figure 3 shows an idealized anyspace algorithm.  

 
Figure 3: An idealized Anyspace Indexing Algorithm 

Note that in this hypothetical case we get the best indexing 
performance if we use all the memory, however we can 
throw away 80% of the data and the performance only gets 
twice as bad. We could instead have thrown away 50% of 
the data with no significant difference in performance. 
Note that all anyspace algorithms have some absolute 
minimum amount of memory which they require.  In our 
case this is the O(|A|) space for the list of items in the 
dataset.  

Assume the size of the full data structure is denoted as 
unity. Then we can denote the size of an anyspace 
algorithm as S, where minimum_space ≤ S ≤ 1. In our 
particular problem we have O(|A|) ≤ S ≤ O(|A|2). 

The basic framework for using an anyspace algorithm is as 
follows. We precompute the full space truncated Orchard's 
Algorithm table and store it in main memory. At some 
point in the future we expect to get requests for the index 
which are space limited. For example, sensor A may need 
the index, but only have 2MB available. We simply pull off 
the best 2MB version and give it to sensor A. If sensor B 
requests a 3 MB version, we pull off the best 3MB version 
and give it to B. 

Note that for any memory size S of the anyspace algorithm, 
the data structure S is a proper subset of the data structure 
S+e. That is to say that a larger data structure is always the 
same as a smaller one, plus some additional data. This is a 
useful property. First of all it ensures that the size of the 
full data structure (S = 1) is no greater than the original 
(non anyspace) version (plus a tiny overhead). Thus we 
have no space overhead for keeping the data in an anyspace 
format. Second, it allows progressive transmission of the 
data structure. For example, in our scenario above, if 
sensor A manages to free up some addition memory, and 
can now devote 2.5MB to indexing the data, we only need 
to send it the 0.5MB difference. 

Anyspace algorithms are rare in machine learning/data 
mining applications [2], [4], however anytime algorithms, 
which are exact analogues that substitute time instead of 
space as the critical quality, have seen several data mining 
applications [13], [14], [15], [17]. Zilberstein and Russell 
give a number of desirable properties of anytime 
algorithms, which we can adapt for anyspace algorithms. 
Below we consider the desirable properties of anyspace 
algorithms, placing the desirable properties for anytime 
algorithms in parentheses: 

• Interruptability: After some small amount of 
minimum space (setup time), the algorithm returns an 
answer using any additional amount of space (time) 
given. 

• Monotonicity: the quality of the result is a non-
decreasing function of space (computation time) used 
(cf. Figure 3).  

• Measurable quality: the quality of an approximate 
result can be determined. In our case, this quality is the 
indexing efficiency, which can be measured by the 
number of distance calculations required to answer a 
query.  

• Diminishing returns: the improvement in solution 
efficiency (quality) is largest at the early stages of 
computation, and diminishes as more space (time) is 
given (cf. Figure 3). 

• Preemptability: The algorithm can use the space 
given, or additional space if it become available (the 
algorithm can be suspended and resumed) with 
minimal overhead. 

As we shall see, our anyspace indexing algorithm meets all 
these properties.  

Table 5 shows our proposed Anyspace Orchard’s algorithm 
data structure. It differs from the classic data structure (as 
shown in Table 1) in just two ways.  

Table 5: Anyspace Orchard's Ranked Lists (I) 
goto 
list 

Item 1st NN 
{dist} 

2nd NN 
{dist} 

3rd NN 
{dist} 

4th  NN 
{dist} 

5th NN 
{dist} 

6th NN 
{dist} 

Linear a4 5 {4.2} 3 {5.0} 6 {5.0} 2 {5.8} 7 {5.8} 1 {7.1} 

goto a4 a7 5 {2.0} 6 {3.0} 4 {5.8} 1 {8.0} 3 {10.6} 2 {11.3} 

goto a4 a3 2 {1.0} 4 {5.0} 1 {8.1} 6 {8.9} 5 {9.2} 7 {10.6} 

goto a4 a1 6 {5.0} 4 {7.1} 2 {8.0} 7 {8.0} 3 {8.1} 5 {8.2} 

goto a7 a6 7 {3.0} 5 {3.6} 1 {5.0} 4 {5.0} 3 {8.9} 2 {9.4} 

goto a3 a2 3 {1.0} 4 {5.8} 1 {8.0} 6 {9.4} 5 {10.0} 7 {11.3} 

goto a7 a5 7 {2.0} 6 {3.6} 4 {4.2} 1 {8.2} 3 {9.2} 2 {10.0} 

First, the rows are no longer in the original order, but 
sorted in a best first order. Second, note that in the leftmost 
column there is a small amount of additional information in 
the form of a goto list. This list tells us what to do if we 
need to free up some space by deleting lists. We will 
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always delete the lists from the bottom, and replace the 
entire list by the corresponding goto pointer.  

As a concrete example, suppose that we must free up 
approximately 40% of the space used. As shown in Table 
6, we can achieve this by deleting the last three lists and 
replacing them with their respective goto pointers. 

Table 6: Anyspace Orchard's Ranked Lists (II) 
goto 
list 

Item 
1st NN 
{dist} 

2nd NN 
{dist} 

3rd NN 
{dist} 

4th  NN 
{dist} 

5th NN 
{dist} 

6th NN 
{dist} 

Linear a4 5 {4.2} 3 {5.0} 6 {5.0} 2 {5.8} 7 {5.8} 1 {7.1} 

goto a4 a7 5 {2.0} 6 {3.0} 4 {5.8} 1 {8.0} 3 {10.6} 2 {11.3} 

goto a4 a3 2 {1.0} 4 {5.0} 1 {8.1} 6 {8.9} 5 {9.2} 7 {10.6} 

goto a4 a1 6 {5.0} 4 {7.1} 2 {8.0} 7 {8.0} 3 {8.1} 5 {8.2} 

 a6 goto a7      

 a2 goto a3      

 a5 goto a7      

3.3 Constructing Anyspace Orchard's  
Assume we have truncated Orchard's data structure, T. At 
one extreme, T has all lists P[ai] for 1 ≤ i ≤ |A|, and is thus 
the “classic” Orchard's data structure. At the other extreme, 
it has only a single list, and we can only efficiently answer 
queries that happen to be near the untruncated item.  

Assume that we have a black box function 
evaluate_addition(T,i) which given T returns the estimated 
utility of adding list P[ai]. This function estimates the 
expected number of items that an arbitrary query must be 
compared to in order to find its nearest neighbor by adding 
list P[ai] to the existing table, and returns the highest utility 
with the smallest comparison number. For the moment we 
will gloss over the details of this function, except to note 
that it allows us to create an Anyspace Orchard’s 
Algorithm. The basic idea of the algorithm is to start with 
an empty set T, and iteratively use function 
evaluate_addition(T,i) to decide which list to add next. For 
example, we can see from column 2 of Table 5, the lists 
were added in this order: a4, a7, a3, a1, a6, a2 and a5.  

The formal algorithm shown in Table 7 is divided into two 
phases; selection and mapping. The first phase is a simple, 
greedy-forward selection search. T is initialized as an 
empty stack in line 1. For each outer iteration, the 
algorithm tests every item (that was not previously 
selected) with the utility function (line 7), picks the item 
with highest utility and pushes it onto T (lines 8 to 10). 
This procedure continues until all the items are pushed onto 
T. In essence, this phase sorts all the items by their 
expected utility for indexing. For instance, in the running 
example shown in Table 5, it first selects a4, then a7, then 
a3, etc. 

The second phase is to create the goto list. Our strategy is 
to start from the bottom of the table, repeatedly selecting 

the candidate with the lowest utility, and change its goto 
pointer to point at its nearest neighbor with a higher utility.  

 

 

Table 7: Build Anyspace Orchard's Construction 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

Function [goto_list, P'] = BuildAnyspaceOrchards(A, P) 
T = NULL 
For i = 1 to |A| 
   max_eval = evaluate_addition(T, 1) 
   additem = 1 
   For j = 2 to |A| 
      If aj is candidate 
         eval = evaluate_addition(T, j) 
         If (eval > max_eval) 
                max_eval = eval 
                additem = j 
         EndIf 
      EndIf 
   EndFor 
   push(T, additem) 
EndFor 
P' = sort P best first according to T 
For i = |A| to 2 
   For j = 1 to |A| - 1 
      index = P[ai].pointer[j] 
      If aindex appears above ai in P' 
         goto_list[ai] = aindex 
         break; 
      EndIf 
   EndFor 
EndFor 

To achieve this we scan the sorted Orchard's algorithm 
table bottom up (as in line 17). For each item ai under 
consideration, we scan down its nearest neighbor list 
P[ai].pointer in lines 18 and 19. If we find one nearest 
neighbor aindex that ranks above ai in sorted Orchard's 
algorithm table, we assign aindex to the entry of ai in the 
goto list goto[ai] in line 20 to 22. In the running example, 
we first consider the item a5. Following a5's nearest 
neighbor list, we check the item a7, which is on the second 
line of the sorted Orchard's algorithm table, and thus above 
a5. We therefore make goto[a5] point to a7. We next 
consider the item a2, and so on. 

We have yet to explain how our evaluate_addition function 
is defined. We propose a simple approach that takes both 
density and overlap of each item into consideration. 
Intuitively, we assume the density distribution of the 
queries to be at least somewhat similar to the density 
distribution of the data in the index, so we want to reward 
items for being in a dense part of the space. At the same 
time, if we have one item from the center of a dense region, 
then there is little utility in having another item from the 
same region (overlap), so we want to penalize for this.  

Concretely, our algorithm works as follows: the candidate's 
pool is initialized to include all the items. Given the 
parameter nearest neighbors number n, we set the item ai 
maximum utility in the candidate pool with smallest 
distance between ai and its nth valid nearest neighbor. We 
then delete ai from candidate pool. In addition, for all the 



items that on the ai's nearest neighbor list, ranked from 1 to 
n, we assign them the minimum utility value (overlap 
penalty) and they are never again considered to be 
neighbors of any other items. Suppose we have m items 
initially, in our approach, we first pick ⎣ ⎦)1/( +nm  pivot 
items according its radius to cover n valid nearest 
neighbors. After that, for those m%(n+1) items that are 
uncovered by any pivot item, we pick them in random 
order. Finally, we pick remaining nearest neighbors items 
in random order. We did consider several other 
possibilities, such as leaving-one-out evaluation, measuring 
the rank correlation, mutual information, or entropy gain 
between two lists as a measure of redundancy. However 
either these ideas did not work empirically, or required 
several parameters to be tuned. As a simple sanity check, 
we will include empirical comparisons to random, a variant 
of evaluate_addition which simply chooses a random list to 
add.  

3.4 Using Anyspace Orchard's Algorithm 
After constructing the sorted Orchard's algorithm table, it is 
easy to adapt the Orchard's algorithm search technique 
(Table 2) to allow it to search in the truncated version. The 
main task is to decide what we should do if the algorithm 
indicates a jump to the list of a certain item ai while that list 
has already been deleted.  

Simply jumping to the list of aj if goto[ai] = aj is not 
possible, as the list of aj may also have been deleted. 
Consider the running example in Table 6. If two more lists 
are deleted, the Orchard's Algorithm table shown in Table 
8 is produced.  

Suppose some query arrives, and the algorithm finds itself 
needing to jump to the list of a2. Since the list of a2 is 
deleted, it wants to jump to a3 which the goto entry of a2 
indicates. However, it cannot do so, because the list of a3 is 
also deleted. The algorithm should continue the jump 
action, and see whether the list of a4 = goto[a3] is deleted. 
The general approach to find a valid item to jump to is 
described in Figure 9. 

Table 8: Anyspace Orchard's Ranked Lists (III) 
goto 
list 

Item 
1st NN 
{dist} 

2nd NN 
{dist} 

3rd NN 
{dist} 

4th  NN 
{dist} 

5th NN 
{dist} 

6th NN 
{dist} 

Linear a4 5 {4.2} 3 {5.0} 6 {5.0} 2 {5.8} 7 {5.8} 1 {7.1} 

goto a4 a7 5 {2.0} 6 {3.0} 4 {5.8} 1 {8.0} 3 {10.6} 2 {11.3} 

 a3 goto a4      

 a1 goto a4      

 a6 goto a7      

 a2 goto a3      

 a5 goto a7      

 

 

Table 9: Find Valid goto for Single Item 
 
1 
2 
3 
4 
5 
6 
7 
8 

Function valid_goto = Find_goto(goto_list, ai) 
item = ai 
While 1 
   item = goto_list[item] 
   If the list of item is not deleted 
      break 
   EndIf 
EndWhile 
Return item 

 

There are two additional things we need to check. One is if 
the list of aj has not been visited, and the other is if the 
distance between q and aj is smaller than the distance 
between query q and ann, which is the item whose list we 
are currently visiting. 
The first test is performed to avoid an infinite loop which 
makes the algorithm jump back and forth between the 
ranked lists. The second item is because the spirit of 
Orchard's algorithm tells us to attempt to jump to the item 
that is nearer the query than the item being visited. After 
confirmation of the two questions above, we can safely 
jump to the list of aj. Table 10 shows the entire Anyspace 
Orchard's search algorithm. 

Table 10: AnySpace Orchard's Algorithm Search 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

Function nn = AnyspaceOrchards(A, q) 
Build P 
[goto, P'] = BuildAnyspaceOrchards(A, P) 
truncate P' from bottom to fit it into memory 
nn.loc  = random_interger_in_range_of(1,|A|) 
nn.dist = dist(ann.loc, q) 
index = 1 
bestpos = nn.loc 
bestdist = nn.dist 
While P[ann.loc].dist[index] < 2 * nn.dist AND index < |A| 
   item = P[ann.loc].pointer[index] 
   d = dist(aitem, q) 
   If d < nn.dist 
      If d < bestdist 
         bestdist= d 
         bestpos = item 
      EndIf 
      agoto = valid_goto(goto_list, aindex) 
      If list of agoto not visited AND dist(agoto,q) < nn.dist 
         nn.loc = goto 
         nn.dist = dist(agoto, q) 
         If nn.dist < bestdist 
            bestdist = nn.dist 
            bestpos  = nn.loc 
         EndIf 
      Else 
         index = index + 1 
      EndIf 
   Else 
      index = index + 1 
   EndIf 
EndWhile 

First, the algorithm checks the available space and builds 
the truncated sorted Orchard's algorithm table in lines 1 to 
3. One modification is that we add some bookkeeping to 
the item that best matches query, and the corresponding 
distance in lines 7 and 8, lines 13 to 15, and lines 21 to 23. 
The reason is the list of best-match item may have been 
deleted, thus the search does not necessarily end at the 
best-match item. Therefore the information of the best-



match item should be stored at the time we compare the 
item to the query. Another modification is that we find the 
valid item to jump to in line 16, and test if we should jump 
to that item in line 17 as discussed above. Apart from these 
minor changes, the rest of the algorithm is exactly the same 
as in the classical Orchard's algorithm.   

3.5 An Optimization of Anyspace 
Orchard's 
As described above, the mechanism used to create the 
Anyspace Orchard’s algorithm may be quite slow. In some 
sense this is not a big issue, since we expect to perform this 
step offline. Nevertheless, it is reasonable to ask if we can 
speed up this process.   

Note that one cause of its lethargy is the redundant 
calculations spent in finding the valid goto entries. The 
time will increase as the more lists being deleted. Here we 
show a simple one-scan strategy to update the entire goto 
list and avoid this overhead, which is described in Table 
11. The parameter cut means the number of sorted rank 
lists can accommodate in the memory. 

Table 11: Find Entire Valid goto List 
 
1 
2 
3 
4 
5 
6 
7 
8 

Function valid_goto_list = find_gotolist(P', goto_list, cut) 
For i = 1 to cut  
   ai = the item on the ith row of P' 
   valid_goto_list[ai] = ai 
EndFor 
For i = cut+ 1 to n 
   ai = the item on the ith row of P' 
   valid_goto_list[ai] = valid_goto_list[goto_list[ai]] 
EndFor 

We initialize the goto entry of those items which have not 
been truncated to point to themselves in lines 1 and 4. This 
initialization does not affect these items, as they never use 
goto pointers, and makes finding valid goto pointers easier 
for the remaining items. In lines 5 and 8, we consider these 
truncated items from top to bottom. For each item ai we are 
considering, we are sure all the items whose position above 
it in the table already point to a valid item. Suppose ak is 
the item that ai's original goto pointer points to. In that 
case, the option is either making the valid ai's goto pointer 
the same as ak's goto pointer when ak is truncated, or when 
ak is not truncated, the pointer should point to ak. Once the 
valid goto list is built, we can avoid all the redundant goto 
searches.  

Another optimization is to narrow down the pruning 
criteria. We discovered an extra inequality we can exploit 
using the distance between the query and the best-so-far 
item. As in Figure 4.A, suppose aj is the best-so-far item 
while its rank list has been truncated, and ai is a valid item 
which aj's goto pointer points to. As shown in Figure 4.B, 
we only need to compute the actual distance between q and 
any ak∈  A only if the following inequality holds:  dist(ai, 
ak) < 2 × dist(aj, query) + dist(ai, aj). Recall that, as shown 
in Section 2, ak can be pruned if  

 ),(2),( queryadistaadist jkj ×≥   (3.1) 
However, dist(aj, ak) is not available because P[aj] was 
truncated. There is an additional inequality between the 
three items where we can have the lower bound of the 
value of dist(aj, ak): 
 ),(),(),( jikikj aadistaadistaadist −≥  (3.2) 
Combining (3.1) and (3.2), if we have  
 ),(2),(),( queryadistaadistaadist jjiki ×≥−  (3.3) 
item ak can be admissibly pruned. In our implementation, 
we can simply replace line 8 of  Table 10 with the line 
below, which is  
8new While P[ann.loc].dist[index] < 2nn.dist AND index < |A| AND 

dist(ai, ak) < 2dist(aj, query) + dist(ai, aj) 

In general, on most datasets, this optimization improves 
indexing efficiency by 10% to 30%, so we use it in all 
experiments that follow.  

 
Figure 4: Assume aj is the current nearest neighbor 
of query q, and that P[aj] was deleted and replaced 
with the goto entry ai, (A) A newly arrived query q 
must be answered. (B) An admissible pruning rule is 
to exclude items whose distance to ai is greater than 
or equal to dist(ai, aj) + 2 × dist(q, aj). In this 
example, everything outside the large gray circle can 
be pruned  

4. EXPERIMENTS 
We begin by stating our experimental philosophy. In order 
to ensure easy replication of our work we have placed all 
data and code at a publicly available website [18]. 
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Recall that our algorithm for constructing truncated 
Orchard's algorithm has a parameter n. One objective of 
our experiments is to see how sensitive our algorithm is to 
the choice of this parameter. A further objective is test the 
utility of our evaluate_addition function. It might be that 
any function would work well in this context. As a simple 
baseline comparison we compare against a function that 
randomly orders the lists for truncation. To understand the 
algorithm's efficiency we measure the average number of 
distance calculations needed to answer a one nearest 
neighbor query. In this, and all subsequent experiments we 
normalize the range to be between zero and one when 
creating figures, so a perfect algorithm would have a value 
near zero, and a sequential scan would have a value of one. 

We begin with a simple experiment on a synthetic dataset. 
We created a dataset of 5,000 random items from a 2D 
Gaussian distribution. We created a further 50,000 test 
examples. We begin by testing the indexing efficiency of 
the full Orchard's algorithm (i.e with zero truncation) with 
the test set, and then we truncate a single item and test 
again. We repeat the process until there is only a single list 
available to the algorithm, Figure 5 shows the experiment 
on the synthetic data.  

 
Figure 5: The indexing efficiency vs. level of 
truncation for a synthetic dataset 

The results appear very promising (compare to the 
idealized case in Figure 3). First, it is clear that the choice 
of parameter n has very little impact on the results. Note 
that we can truncate 80% of the data without making a 
significant difference to the efficiency. Thereafter, the 
efficiency does degrade, but gracefully. Further notice that 
in contrast to our algorithm, the random approach has 
linear relationship between size and efficiency. This tells us 
our evaluate_addition function is finding redundancies in 
the data to exploit. 

We next consider a problem of indexing data from a road 
sensor. This sensor data was collected for the Glendale on-
amp at the 5-North freeway in Los Angeles. The 
observations were taken over 25 weeks, at 5 minute count 
aggregates. As the location is close to the Dodgers stadium, 
it has bursty behavior on days in which a game is played. 
There are a total of 47497 observations, we randomly 

choose 1,000 to build our index, and used the rest for 
testing. Figure 6 shows the results. 

 
Figure 6: The indexing efficiency vs. level of 
truncation for the Dodgers dataset 

As before, the performance of our algorithm is exactly we 
would like to see in an idealized anyspace algorithm, and 
once again, and our algorithms performance is almost 
invariant to the choice of parameter n.  

Having shown that truncated Orchard's algorithm passes 
some simple sanity checks, in the next section we consider 
detailed case studies of problems we can solve using our 
algorithm.  

5. EXPERIMENTAL CASE STUDIES 
We conclude the experimental section with two detailed 
case studies of uses for our algorithms. 

5.1 Insect Monitoring  
ISCA Technologies is a Southern California based 
company that produces devices to monitor and control 
insect populations in order to mitigate harm to agricultural 
and human health. They have produced a “smart-trap” 
device that can be mass produced, and left unattended in 
the field for long periods to monitor a particular insect of 
interest.  

The system under consideration here is primarily designed 
to track Aedes aegypti (yellow fever mosquito), a mosquito 
that can spread the dengue fever, yellow fever viruses, and 
a host of other diseases. In particular, the system needs to 
classify the sex of the insects and keep a running total of 
how many of each sex are encountered1. In order to only 
capture Aedes aegypti, the trap can be designed specifically 
for them. For example, carbon dioxide can be used as an 
attractant (this eliminates most non-mosquito insects). The 
trap can be placed at a certain height which eliminates low 
flying insects, and the entrance can be made small enough 
to prevent larger insects from entering. Nevertheless, as we 
shall see, non Aedes aegypti insects can occasionally enter 
the traps. 

                                                                 
1 Recall that only female mosquitoes suck blood from humans and other 

animals. 
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While we have attempted classification of the insects with 
Bayesian Classifiers, SVMs and decision trees, our current 
best results come from using 1-Nearest Neighbor 
classification with a 4-dimensional feature vector extracted 
from the audio signal. A further advantage of using 1NN is 
that it allows us to come up with a simple definition of 
outlier. We empirically noted that on average both males 
and females tend to be a distance of m to their nearest 
neighbors. This number has a relatively small standard 
deviation. We therefore have defined an outlier as a data 
sample that is more than m + 4 standard deviations from its 
nearest neighbor. Figure 7 shows a visual intuition of this. 

 
Figure 7: The distribution of distances to nearest 
neighbor for 1,000 insects in our training set. We 
consider exemplars whose distance to their nearest 
neighbor is more than the mean plus 4 standard 
deviations to be suspicious and worthy of follow-up 
investigation   

There are two obvious sources of outliers; non-insect 
sounds from outside the trap—including helicopters and 
farming equipment—and non-Aedes aegypti insects that 
enter the trap. Knowing the true identity of the outliers can 
be very useful. In the former case, it may be possible to 
change the traps location to reduce the number of outlier 
events caused by the sound of farm machinery. In the latter 
case, it may be useful know which unexpected insects we 
have caught. For example, we may have been subject to an 
unexpected invasion, as in the famous invasion of Glassy-
winged Sharpshooters (Homalodisca coagulata) which 
almost devastated the wine industry in Temecula southern 
California’s Temecula Valley 1997 [1]. However, the low 
power/low memory requirements of the traps prohibit 
recording the entire audio stream. Our solution therefore is 
to use an auto-cannibalistic algorithm which allows 
efficient indexing to support the one-nearest neighbor 
classification, and to record a one second snippet of outlier 
sounds. Each snippet requires the auto-cannibalistic to 
delete 3 lists from its table. 

A classifier was built using 1,000 lab reared insects, with 
500 of each sex. The training error suggests that we can 
achieve over 99% accuracy, however we have yet to 
confirm this by hand annotation of insects captured in the 
field. In Figure 8 we see a plot showing the indexing 
efficiency for various levels of truncation.   

 
Figure 8: Indexing efficiency vs. space on the insect 
monitoring problem 

Note that the application lends itself well to any anyspace 
framework. Even when we have deleted 25% of the data 
we can barely detected any change in the indexing 
efficiency.  

 
Figure 9: top) The cumulative number of Euclidean 
distance calculations performed vs. the number of 
sound events processed. bottom) The size of auto-
cannibalistic algorithm  vs. the number of sound 
events processed 

Having demonstrated the concept in the lab, we deployed 
an auto-cannibalistic algorithm in the field. As a baseline 
comparison we compared to hard-coded truncated 
Orchard's algorithms where just 5%, 1% and a single list 
remains. Figure 9 shows the results.  

The figure shows that the more memory an indexing 
algorithm has, the more efficiently it can process incoming 
data. The auto-cannibalistic algorithm starts out with a full 
Orchard's algorithm in memory and is consequently much 
more effective than its smaller rivals. Over time, outliers 
are encountered and must be stored, so the amount of 
memory available to auto-cannibalistic algorithm 
decreases, causing it to become less efficient. However it is 
difficult to detect this for the first 50,000 or so events. As 
the power required is almost perfectly correlated with the 
cumulative number of Euclidean distance calculations, 
which in turn is simply the area under the curves, the auto-
cannibalistic algorithm requires less than one tenth the 
energy of the 5% Orchard's algorithms, and is able to 
handle 4.99% more outlier events before its memory fills 
up. 
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5.2 Robotic Sensors 
In this section we consider the utility of auto-cannibalistic 
algorithms in a robotic domain. Note that unlike the insect 
example in the previous section, this is not a mature fielded 
product, it is simply a demonstration on a toy problem. In 
particular, we are not claiming that the approach below for 
finding unexpected tactical sensations is the best possible 
approach; it is merely an interesting test bed for a 
demonstration of our ideas. 

The Sony AIBO, shown in Figure 10, is a small quadruped 
robot that comes equipped with a tri-axial accelerometer. 
This accelerometer measures data at a rate of 125 Hz. 

 
Figure 10: clockwise from top right. A Sony Aibo 
robot. An on-board sensor can measure acceleration 
at 125 Hz. The accelerometer data projected into 
two dimensions  

By examining the sensor traces, we can (perhaps 
imperfectly) learn about the surface the robot is walking 
on. For example, in Figure 10 we show a two dimensional 
mapping of the Z-axis time series for both normal 
unobstructed walking and walking when one leg is 
obstructed. While the overlap of the two distributions in 
this figure suggests a high error rate, in three dimensions 
the separation is better, and we can achieve about 96% 
accuracy. Naturally it is useful to distinguish between these 
two situations, as the robot can attempt to free itself or 
change direction. In addition to merely classifying current 
state, it may be useful to detect unusual states and 
photograph them for later analysis. As the AIBO has only 4 
megabytes of flash memory on board, memory must be 
used sparingly. A single compressed image with its 
416x320 pixel camera requires about 100k of space. 

 

 
Figure 11: The distribution of distances to nearest 
neighbor for 700 tactile events in our training set. 
We consider exemplars whose distance to their 
nearest neighbor is more that the mean plus 5 
standard deviations to be suspicious, and worthy the 
memory required to take a photograph 

We use the same basic framework as in the previous 
section here. We took 700 training instances and use them 
to build a 1-nearest neighbor classifier indexed by the 
truncated Orchard's algorithm. Every time an outlier is 
detected, and an image must be stored, we must delete an 
average of 18 lists from our index to make room for it. 
Figure 12 shows the result of the experiment.  As before, 
we compare to hard-coded truncated Orchard's algorithms 
where just 5%, 1% and a single list remains. 

 
Figure 12: top) The cumulative number of Euclidean 
distance calculations performed vs. the number of 
tactile events processed. bottom) The size of auto-
cannibalistic algorithm  vs. the number of tactile 
events processed 

As with the insect example, the truncated Orchard's 
algorithm requires only a fraction of the energy of the 
fixed-size indices, and is able to process data until just a 
single list remains available after dealing with event 1,522. 

6. DISCUSSION 
We have introduced a novel indexing method especially for 
sensor data mining. In this section, we discuss the related 
work and provide future extensions. 

6.1 Related Work 
Indexing is important for similarity search because it will 
reduce a large amount of searching time since it can 
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eliminate expensive distance calculations. The problem of 
indexing under metric distance has been studied intensively 
in the last decade and many efficient algorithms have been 
proposed.  There are basically two alternative categories:  
• Embedding method: for the objects in the data set of 

N dimensions, it created a k-dimension feature vector 
to represent each object. The distance calculated in the 
k-dimension feature space provides a lower bound of 
the actual distance between the objects. If k is 
considerably smaller than N, and the lower bound is 
reasonably tight, it can prune a lot of objects with 
much less distance calculation effort. Examples of this 
method are in [8], [16]. 

• Distance-based method: typical distance-based 
method is based on partition. All or some distance 
between the objects in the data set are precomputed.  
When a query comes in, we can estimate the majority 
of distances between the objects and query based on a 
small fraction of the actual distance we have computed 
between the objects and the query, and thus prune a lot 
of non-qualified objects. The vantage-point tree 
method [19] is an example in this category. 

The method we proposed in this paper falls into the second 
category. The obvious drawback of method in the second 
category is that the index data structure is fixed, which 
means, the indexing has a rigid memory requirement. 
However, under the scenario where main memory is 
bottleneck, e.g. in the sensor or robot, the algorithms with 
fixed memory requirement may fail.  

6.2 Conclusion 
In this paper, our major contribution is that:  

• We have shown the Orchard's algorithm may be 
rescued from its relative obscurity by considering it as 
an anyspace algorithm and leveraging off of its unique 
properties to produce efficient sensor mining 
algorithms.  

• We have further shown what we believe is the first 
example of an auto-cannibalistic algorithm.  

Future work includes a large scale deployment and testing 
of the insect sensors, and a more general exploration of the 
notation of auto-cannibalism for other applications. 
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