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Abstract

Shape clustering can significantly facilitate the auto-
matic labeling of objects present in image collections. For
example, it could outline the existing groups of pathologi-
cal cells in a bank of cyto-images; the groups of species on
photographs collected from certain aerials; or the groups
of objects observed on surveillance scenes from an office
building.

Here we demonstrate that a nonlinear projection algo-
rithm such as Isomap can attract together shapes of similar
objects, suggesting the existence of isometry between the
shape space and a low dimensional nonlinear embedding.
Whenever there is a relatively small amount of noise in the
data, the projection forms compact, convex clusters that
can easily be learned by a subsequent partitioning scheme.
We further propose a modification of the Isomap projection
based on the concept of degree-bounded minimum span-
ning trees. The proposed approach is demonstrated to move
apart bridged clusters and to alleviate the effect of noise in
the data.

1. Introduction

The effectiveness of object recognition and content-
based image retrieval systems is highly dependent on the
accurate identification of shapes. Features such as color,
texture, positioning etc., though important, are insufficient
to convey the information that could be obtained through
shape analysis [4, 15, 21, 26]. In this work we propose an
algorithm for clustering of 2D shapes. The method is invari-
ant to basic geometric transformations, e.g. scale, shift, and
most importantly, rotation. It is robust to noise, sparsity in
the data and outliers that may bridge clusters representing
more similar classes.

The shape clustering problem is of practical importance
in many areas where image or video data collections are
used. Labeling objects in such collections usually requires
manually examining huge volumes of data. Consider for

example the field of cytology or the task of video data anal-
ysis. For many medical projects large banks of microscope
cell images need to be processed (Figure 1 top)1. The abil-
ity to cluster different types of cells (normal cells or cells
corresponding to pathologies and diseases) without human
supervision could considerably facilitate the medical analy-
sis. Botanists, on the other hand, are interested in detecting
and documenting the genotypes populating certain aerials
(Figure 1 bottom). In tasks such as automatic surveillance
or content exploration, the detection of different groups of
objects that appear in scene sequences is usually required.
Again, for these applications, an unsupervised shape clus-
tering approach would be extremely beneficial.

Constructing a robust clustering algorithm is not trivial,
as it should consider certain specifics of the shape data and
the intuitively expected outcome. One natural requirement

1The malaria images are part of the Hoslink medical databank:
http://www.hoslink.com/, and the diatoms images are part of the collec-
tion used in the ADIAC project [7]

Figure 1: Cytology images. Top: Plasmodium ovale is one of
the four malaria agents that can affect humans. The infected blood
cells become larger with oval shape. Bottom: Diatoms are aquatic
eukaryote plants, that appear in multiple shapes. Several types of
diatoms can inhabit the same aerial



in shape recognition is to detect similarities invariant to ba-
sic geometric transformations. For example, in Figure 1
top, we would like to distinguish just two classes of cells - a
normal and a pathological one, regardless of the many sizes
and orientations that elements of each class could have.
And while the scale and shift invariance are easily achiev-
able with a suitable representation, the rotational invariance
is much harder to deal with [14]. Important factors, that
should be noted when dealing with rotational invariance,
are how effective and efficient an algorithm is, as well as
what level of control over the admissible rotations it pro-
vides. For example, in cytology analysis, we would like to
consider all possible rotations when identifying the shape
clusters, but in the case of handwritten character recognition
we might need to confine the admissible rotations within the
interval [−15 ◦; 15 ◦]. Otherwise we would detect as simi-
lar shapes that correspond to the digits “6” and “9” or the
letters “b” and “q”.

Another challenge in the shape clustering task is intro-
duced by the high dimensionality of the input space. Accu-
rate shape representations generally require selecting a large
number of features [12]. Additionally, there is significant
amount of noise for many of the features, which is either re-
lated to the complexity of the studied shapes or is accumu-
lated during certain preprocessing steps as image filtering
and edge detection. Therefore, the resulting space is very
high dimensional, with a lot of noise and possibly outliers.
Clustering in such a space is practically meaningless, so a
suitable dimensionality reduction should be applied.

A promising direction towards the outlined problems,
relies in the fact that object data usually resides in some
nonlinear embedding of the original space, that has a rel-
atively low dimensionality [20, 24]. Nonlinear reduction
techniques such as Isomap [24] or Locally Linear Embed-
ding [20] are particulary suitable for projecting such data.
Here we focus on the Isomap algorithm and demonstrate
that it groups well shapes from equivalent classes, using a
very low (two or three) dimensional representation. This
suggests that shapes data are also isometric to some nonlin-
ear embedding of the original space. Furthermore, as the
classes tend to form compact, convex clusters, they are easy
to learn with a subsequent partitioning algorithm, e.g the
classical Expectation-Maximization (EM).

However, if different regions have different densities, or
if there is considerable amount of noise, Isomap fails to re-
construct correctly the exact structure of the embedding. In
sparse regions the embedding becomes disconnected, while
in dense regions ”short circuits” are formed between other-
wise geodetically distant parts of the embedded surface [3].
As a result, some clusters representing elements from the
same class are separated, while clusters representing differ-
ent classes are often merged.

To project the shape data in cases of noise, bridged

or partially overlapping clusters, we introduce the idea
of degree-bounded Isomap. The algorithm constructs a
degree-bounded minimum spanning tree to approximate the
underlying embedding. It is demonstrated to move further
apart clusters corresponding to more similar classes and to
decrease the effect of noise in the data.

The contributions of the paper can be summarized as:

1. The problem of clustering rotationally invariant shapes
is studied and a robust approach for its solution is pro-
posed.

2. An isometry between the shape space and a nonlinear
low dimensional embedding is demonstrated, suggest-
ing that nonlinear reduction algorithms should be pre-
ferred in learning from shape data for different tasks.

3. The question of Isomap’s topological stability is re-
vised and a method is proposed that avoids the prob-
lem of having multiple disconnected components in
the projection or forming short circuits between geode-
tically distant regions of the embedding.

The rest of this paper is organized as follows. In Sec-
tion 2 we briefly review the shape recognition and man-
ifold learning literature. Section 3 describes the selected
representation and introduces the rotationally invariant met-
ric, used for evaluating the shapes similarity. The proposed
manifold clustering approach is described in Section 4. Sec-
tion 5 provides an evaluation of the approach on several
publicly available datasets. Section 6 concludes the discus-
sion and outlines some directions for future research.

2. Related Work

A key factor in the efficiency of shape recognition sys-
tems is the selected shape representation. If the representa-
tion is not robust to noise, is ambiguous, or does not adapt
to geometric transformations, then the clustering quality
will be naturally poor. Here we briefly outline the possi-
ble shape representation techniques and point out some of
their strengths and drawbacks. For more detailed informa-
tion on the topic, we refer the reader to extensive surveys
such as [8, 25, 30].

As outlined by Zhang et al. [30], the representation
methods could roughly be divided into contour and region
based. Region based methods extract features from the two
dimensional image information, e.g. geometric moments,
enclosed area or shape covering convex hulls. Some of the
region based methods are computationally intensive and of-
ten require tracing the contour as well, so that better accu-
racy could be achieved. Others, such as the moment invari-
ants, are not so robust to distortions and might be ambigu-
ous if the shapes have more complex boundaries.



Figure 2: Global contour representation. The distance from the
centroid of the shape to the contour points is measured and plotted
as a time series.

Contour based representations construct a feature vec-
tor using only the points from the shape boundary. To ob-
tain better efficiency, certain contour methods extract a very
limited number of features that are either rotation invari-
ant [17], or allow a corresponding alignment [5]. Both of
the approaches, while suitable for particular settings, do not
have good discriminative ability in the presence of noise
and distortions [12, 30, 31]. For example, the alignment
approach (also called landmarking) often uses the two prin-
ciple axes of a shape to determine the features. This how-
ever is prone to ambiguities, as shapes from different classes
may turn out to have similar axes [12].

In this work we adopt a global contour representation,
in which the entire contour is converted to a 1D time series
(see Figure 2, also Section 3). The representation is shift in-
variant, and by resampling all time series to the same length,
or by using a warping metric to compare them, one could
achieve invariance with respect to scale too. To obtain ro-
tation invariance with this representation, all circular shifts
for the time series need to be considered [1, 2], which ren-
ders a computationally intensive method. A potential way
to deal with the problem is to consider the spectral informa-
tion of the extracted time series by applying a Fourier trans-
formation [10, 13, 27]. Charalampidis [10] and Klassen et
al. [13] further utilize the transformation in partitioning and
hierarchical shape clustering schemes. They demonstrate
accuracy in performance, for cases when all rotations need
to be considered. As we pointed out, however, we would
like the approach to give us control over which rotations are
admissible and which should be excluded.

Another drawback of a more complex representation, as
the global contour one, is that many of the features might
be irrelevant or noisy. To decrease the detrimental effect of
such features, a suitable dimensionality reduction should be
applied. Manifold approaches have been demonstrated to
be particularly suitable for projecting image extracted data
[6, 20, 22, 24]. In their clustering approach Srivastava et
al. [23], also observe the manifold structure of the shape
data. The authors implicitly assume a 2D structure for the

embedding and build a Markov model to partition the re-
constructed 2D surface. Instead, we allow for a nonlinear
reduction algorithm to automatically detect the best dimen-
sionality for projecting the space. In particular, we focus on
the Isomap [24] algorithm and demonstrate that clustering
on the Isomap projection significantly outperforms cluster-
ing on the linearly projected data.

3. Measuring Shape Similarity

Formally, a shape representation technique transforms
the shape space S into the vector space V through a par-
ticular mapping function φ:

φ(si) = vi ∈ V,∀si ∈ S

where φ constructs an ordered set of n descriptive features:
vi = (vi,1, vi,2, . . . , vi,n) [30]. The size n of the vectors
depends on how many distinct features are necessary for
the technique to describe the shapes in S. As we pointed
out, many existing techniques target lower dimensionality
in V in order to obtain better computational efficiency. The
downside, however, is poor discriminative ability observed
in multiple domains.

In the current work we adopt a global contour based rep-
resentation, where every dimension vi,j corresponds to a
point on the shape contour as illustrated in Figure 2. More
precisely, here φ is the function that maps every contour
point si,j to the distance between this point and the shape’s
mass center. This representation is known as centroid-based
approach and has been introduced by Chang et al. [9].
The space V now consists of all time series extracted from
shapes with the above mapping. The time series are fur-
ther standardized to have mean zero and standard deviation
one. The dimensionality of V is usually rather high, but we
will demonstrate that a suitable nonlinear reduction in that
space can preserve accurately the pairwise element similar-
ities. It is interesting to note that, if several highly descrip-
tive features do exist for a particular dataset, which is what
landmarking relies upon, they will most likely be identi-
fied during the nonlinear reduction process automatically.
If however such features are not present or are ambiguous,
because of the shapes’ complexity or the presence of noise,
the nonlinear reduction can still determine a suitable set of
representative features on which to project V .

3.1 Rotationally Invariant Distance Mea-
sure

It is easy to see that due to the centroid-based repre-
sentation, the selected mapping φ is shift invariant. Stan-
dardization alone, however, is insufficient to achieve scale
invariance. Different object sizes or different image res-
olutions are likely to result in shape contours of variable



Figure 3: MDS projection of the diatoms dataset (Section 5.1). Left: the Euclidean distance fails to capture the similarities in the presence
of rotations. Right: Using the rotationally invariant measure rd, elements of the same class are grouped together.

lengths too. Scale invariance could be achieved on the rep-
resentation level by augmenting φ with a simple resampling
step, during which all extracted time series are resized to
the same length n. Another approach is to use a warping
distance measure that will find the best alignment between
the series and thus compensate for the different lengths. Us-
ing a warping distance, however, has been demonstrated to
introduce little improvement over the basic resampling step
followed by an Euclidean distance estimate [12].

A more difficult challenge is presented by rotation in-
variance. Even with the resapmling step, φ is still unable
to capture any possible similarities if rotations are present.
As an example, consider Figure 3 left, which demonstrates
the Multidimensional Scaling (MDS) projection for the di-
atoms dataset (see Section 5.1). Given a matrix of pair-
wise distances, MDS tries to compute the coordinates for
the data that approximate best the information in the matrix.
Once the coordinates are identified, the algorithm performs
an eigen decomposition of the data, and projects it along the
dimensions determined by the top few eigenvectors.

Here, the distances provided to MDS are the Euclidean
distances between the resampled time series. The three di-
mensional projection was selected as the most accurate for
the dataset. All elements have been uniformly randomly ro-
tated, which leads to the spherical form of the projection
(or circular if 2D projection was to be selected). The larger
the angle of rotation, the further the examples from a single
class are projected. At the same time, elements from dif-
ferent classes that should appear distant, are placed close to
each other. As expected, the resulting clustering is essen-
tially meaningless.

To approach the problem, it is important to notice that

all rotations of a shape si can be approximated by a suitably
selected circular shift vr

i (also called time series rotation)
of the original vector vi, where a circular shift is defined as:

vr
i = (vi,r+1, vi,r+2, . . . , vn, vi,1 . . . , vi,r), r ∈ [0..n− 1]

Detecting the clusters invariantly to shape rotations requires
measuring the pairwise shape distances with respect to all
possible rotations. In the vector space V this is equivalent
to computing the minimum distance between all possible
circular shifts of the two representative vectors:

rd(vi, vj) = min
0≤r≤n−1

d(vr
i , vj) (1)

In the following discussion the distance d(vi, vr
j) is set to be

the Euclidean distance between the corresponding vectors.
By computing the minimum only over subintervals [p, q] ⊂
[0, n−1], we can further restrict the admissible rotations. In
this way, for example, we can avoid grouping together the
shape representations of the handwritten digits “6” and “9”.

Using the newly introduced rotationally invariant dis-
tance, we apply again MDS to project the four class diatom
dataset. The result is depicted in Figure 3 right. Unlike the
non-rotated distance case, now the elements from the same
class are grouped together. This demonstrates that a mean-
ingful approach towards rotationally invariant shape clus-
tering should consider the rd distance, rather than a simple
application of the distance d. Yet, there is large overlap be-
tween some of the projected classes, which will deteriorate
the accuracy of an arbitrary clustering scheme. In Section 4
we show that a nonlinear dimensionality reduction can mit-
igate this effect by separating better the projected clusters.
But firstly, we look into a property of the distance measure



rd that will later be used in reconstructing the embedding,
on which the non-linear projection operates.

3.2 Metric Properties of rd

An important property to be used in the proposed clus-
tering approach is that, provided the distance d defines a
metric over the vector space, the rotational distance rd de-
fines a pseudo-metric2 over V too.

The symmetry of rd follows directly from the fact that
the distance d is symmetric. To show that rd satisfies the
triangle inequality, without loss of generality, let us assume
that the circular shift r = p0 gives the minimum distance
between vectors vi and vj , i.e. rd(vi, vj) = d(vp0

i , vj).
Similarly, let rd(vk, vj) = d(vp1

k , vj), and rd(vi, vk) =
d(vp2

i , vk). The following holds:

rd(vi, vj) + rd(vk, vj) = d(vp0
i , vj) + d(vp1

k , vj)
≥ d(vp0

i , vp1
k ) ≥ d(vp2

i , vk)
= rd(vi, vk)

The first inequality above is true, because d is assumed to
be metric, so it satisfies the triangle inequality. The second
inequality follows from the fact that d(vp2

i , vk) is the dis-
tance between the optimal alignment of the two vectors vi

and vk, while (vp0
i , vp1

k ) also corresponds to some possible
alignment of the same vectors.

4. Manifold Clustering of Shapes

We have already demonstrated that, when applied to the
matrix of rotationally invariant distances, MDS provides
a natural choice for a simple reduction of the time series
space. Often, however, the data lies on a low dimensional
nonlinear embedding (also called manifold), which linear
projections cannot identify. The distances measured on the
surface of the embedding are called geodesic distances. It
may turn out that points that have large geodesic distance,
and therefore should be treated as dissimilar, are very close
in Euclidean sense. Linear projections operate in the Eu-
clidean space and are inadequate to reconstruct the struc-
ture, implied by the geodesic distances. As a result, MDS
might move apart otherwise similar (with respect to the
manifold) elements or bring closer elements that come from
different classes (again with respect to the manifold). This
effect is the reason for the poor separability between the
clusters demonstrated in Figure 3 right.

Vision data are often shown to reside on such nonlinear
embedding [20, 24]. We demonstrate that shapes data also
lie on an embedded space that could be reconstructed with

2Pseudo-metrics satisfy the triangle inequality and are symmetric.
They do not guarantee, however, the positivity property, i.e. d(vi, vj) = 0
iff vi = vj

a suitable nonlinear dimensionality reduction technique. In
particular, we study the performance of Isomap. After dis-
cussing briefly the specifics of the algorithm, we propose
a modification for the cases when data are noisy, or when
multiple bridging elements between different clusters dete-
riorate the stability of Isomap’s projection.

4.1. Dimensionality Reduction With
Isomap

To improve the chances for a subsequent clustering algo-
rithm to detect any existing clusters, we need to preserve the
compactness achieved by the MDS algorithm. For the ele-
ments of distinct clusters, however, the distances should be
augmented and the clusters should be moved further apart.
We obtain the effect by applying the Isomap projection al-
gorithm.

For clarity of discussion a summary of the Isomap’s
steps, utilizing the rotationally invariant distance, is pro-
vided below:

1. Build the distance matrix Mm,m for the data as fol-
lows: For all elements vi, i ∈ [1..m], if vj is among
the k-nearest neighbors to vi, set M(i, j) = rd(vi, vj).
Otherwise set M(i, j) = inf .

2. In the graph defined by M , solve the all pairs shortest
path problem (e.g. by applying Floyd-Warshall’s algo-
rithm). For all elements vi, i ∈ [1..m] set M(i, j) =
shortest path(vi, vj)

3. Run MDS on M obtained from the previous step.

The first step constructs a k-neighborhood graph as an
approximation of the manifold surface and assigns small
distances to pairs of elements that are very close on that
surface. This is later preserved by the MDS reduction (step
3) in the projected space too. On the contrary, elements
from different classes are less likely to be part of each oth-
ers neighborhoods, and thus will be moved apart in the pro-
jection. The second step approximates the actual geodesic
distances on the surface of the manifold with the shortest
paths in the k-neighborhood graph. The 3D projection of
the diatom dataset using Isomap is presented in Figure 4.
A neighborhood of size k = 16, optimal for the projection
(see Section 5.1), has been used. As seen from the figure,
the clusters now are moved further apart, which supports
the previous conjecture of an existing isometry between the
shape space and a lower dimensional nonlinear embedding.

An important aspect to note is that the goodness of
the geodesic distance approximation depends on the right
choice of the neighborhood size k. Selecting k larger may



Figure 4: Isomap projection of the diatoms dataset. Clusters are
better separated suggesting isometry between the shape space and
a nonlinear embedding.

result in ”short circuits” between distant elements, with re-
spect to the manifold, similarly to the case when only Mul-
tidimensional Scaling is applied. In fact, in the asymptotic
case when k → m, Isomap is reduced simply to the MDS
algorithm. On the other hand, selecting k too small may
infer multiple disconnected components when building the
neighborhood graph. In those cases MDS cannot recon-
struct correctly the coordinates of the points. This results
in a poor projection and thus in low clustering quality. And
finally, depending on the sampling process, it may turn out
that there is no one single k that is uniformly best across the
whole dataset. For some samples a neighborhood of two
elements may be most suitable, while for others, ten neigh-
bors should be preferred. This dependence of the projection
quality upon parameter k is referred to as topological insta-
bility of the Isomap algorithm. The impact, in the case of
the shape clustering problem, can be observed in Figure 4,
where the clusters of Stauroneis and Flagilaria diatoms are
still not separated well, so that a clustering algorithm could
discriminate them properly.

4.2 Stability Of The Isomap Projection

Balasubramanian et al. [3] argue that increasing the
amount of noise in the data or having a comparatively sparse
sample can cause multiple short circuits when Isomap tries
to evaluate the correct geodesic distances. Softening the ef-
fect by selecting smaller neighborhood size k proves to be
a poor solution, as in this case the constructed graph is split
into multiple disconnected components. All distances be-
tween examples of two disconnected components are set by
the algorithm to infinity and thus MDS cannot approximate
correctly the coordinates for the elements. As a result, the

MDS projection deteriorates significantly.
The solution Tenenbaum suggests [3] is to optimize a

tradeoff function between the percentage of elements omit-
ted from the largest connected component and the variance
in the distances, as computed on the manifold surface and in
the Euclidean projection. Using large number of neighbors
will decrease the percentage of omitted elements, but will
also lead to improper evaluation of the right dimensionality.
Decreasing k will lead to smaller variance, but will increase
the percentage of not accounted elements. The globally op-
timal value of k, with respect to those two criteria, should
be selected for the projection.

If, however, regions with different densities exist in the
sample, the problem still persists. In denser regions the
compromise globally optimal k might again lead to short
circuits, while sparse regions will result in disconnected
components. Wu et al. [28] suggest a different approach,
in which the smallest distance edge between the discon-
nected components is identified and is added to the k-
neighborhood graph. The authors demonstrate that the
method is suitable for identifying multiple classes in data,
where different classes reside in relatively distant regions on
the manifold surface and even on different embeddings. The
scheme is generalized by Yang [29], who argues that single
edges between disconnected components do not reconstruct
smoothly the surface of the manifold. He proposes building
an l-connected graph in which for any possible split of the
vertices into two groups there exist at least l edges connect-
ing those groups.

Note that all of the above cases still lack flexibility in
choosing the right neighborhood size k for individual graph
nodes. Ideally we would like a method that defines stronger
connectivity in dense regions of the data, but will loosen
the requirement for the number of neighbors in sparser re-
gions. Next we suggest one such approach based on degree-
k-bounded minimum spanning trees.

4.3 Degree-bounded Isomap

The degree-k-bounded minimum spanning tree (k-MST)
is an approximation of the MST of a connected graph, in
which every vertex is allowed to have degree at most k [18].
The problem has emerged in the context of network mod-
eling, where a network with minimum flow is needed but
there is a limit imposed on the capacity of flow that can go
through each node.

In the case of Isomap dimensionality reduction, we
would like to approximate the k-neighborhood graph with a
structure that will ensure connectivity between all vertices.
For that purpose, a MST could be constructed. In a MST,
however, the local information is not guaranteed to be pre-
served correctly. Many nodes can be of degree one, while
few nodes (especially if residing in dense regions of the



data) may end up with some very high degree (e.g. form-
ing stars). The k-MST avoids such undesired effects by re-
stricting the degree of every vertex to be at most k. This
also allows for the spanning tree to preserve better the lo-
cality around each node approximating the behavior of the
k-neighborhood graph. In summary, the k-MST implicitly
targets both of the problems outlined in the previous sec-
tion, i.e. no disconnected components could be produced
and there is no globally fixed neighborhood size k for all
vertices.

Unfortunately, building the MST structure is a hard prob-
lem. In the case of k = 2, finding the k-MST is equivalent
to the traveling salesman problem, which means that it is
NP-complete. It has been demonstrated that constructing
3- and 4-MST is also NP-complete [18]. This may render
the manifold representation with a k-MST impractical, yet
we are going to approach the problem by making use of the
metric properties derived earlier for the rotational distance
rd.

Ravi et al. [19] prove that when the distance between
the edges of a graph satisfies the triangle inequality, there
exists a polynomial time algorithm for building an arbitrary
k-MST with total cost at most twice the cost of the MST.
We provide an outline of the algorithm below.

1. Build the MST for the data described by the distance
matrix Mm,m (e.g. we use Prim’s algorithm). Select a
root node r for the tree.

2. Starting from r do recursively for all non-leaf nodes
v: Assume that (v, v1), (v, v2), . . . , (v, vd), are the
edges in increasing weight from v to its children. If
degree(v) > k, replace the edges (v, v2), (v, v3),
. . . , (v, vd−k+2) with the edges (v1, v2), (v1, v2), . . . ,
(vd−k+1, vd−k+2)

Step 2 above removes from v as many edges to child
nodes as necessary to keep its degree exactly k. The pro-
cedure is repeated recursively for all child nodes too, pro-
ducing a degree-k-bounded tree. The fact that the cost
of the edges is at most two times that of the MST fol-
lows from the ordering of the edges and the validity of the
triangle inequality. For example, we have rd(v1, v2) ≤
rd(v, v1) + rd(v, v2) ≤ 2rd(v, v2), which implies that the
cost of every added edge is at most twice the cost of the
deleted one.

We will term the Isomap algorithm in which the k-
neighborhood graph is replaced with a degree-bounded
MST as b-Isomap (from bounded Isomap). The b-Isomap
projection of the diatoms dataset is presented in Figure 5.
In this example k has been set to 4.

The figure shows that the Stauroneis and Flagilaria
classes are moved further apart as desired; the classes have
less overlapping and just a few bridging elements between

Figure 5: b-Isomap projection of the diatoms dataset. Sparser
regions are loosely connected, which leads to better separability
of bridged clusters such as the Stauroneis and Flagilaria ones

the clusters. The clusters are elongated, revealing that most
of the elements from a certain class are represented by de-
gree 2 nodes in the k-MST. One negative effect of the pro-
jection is that the clusters are not convex as in the case of
the Isomap projection. Instead, there might be several elon-
gated branches rooted as a subtree, representing elements
from the same class. When multiple such branches exist,
there is a higher chance that some of them will be assigned
to different clusters degrading the quality of the clustering.

4.4. Shape Clustering Algorithm

We summarize the proposed clustering of rotationally
invariant shapes in an end-to-end algorithm (see Algo-
rithm 1). The algorithm builds on top of the introduced
rotationally invariant distance metric rd, and uses a non-
linear projection to discover the inherent dimensionality of
the shape data at hand.

The clustering scheme can be used as both unsupervised
or semi-supervised. In the presented evaluation we use a
semi-supervised approach in which the cluster quality is
checked upon the apriory known true labels of the elements.
In an unsupervised procedure the mean square error with re-
spect to the cluster centers could be tested instead.

As seen later from the experimental evaluation, which al-
ternative to be used (Isomap or b-Isomap) depends on what
prior information for the data we have. If there is no prior
information, the Isomap approach should be preferred as the
more consistent of the two (see Section 5). It should also be
preferred when the existing classes of shapes are known to
be relatively distinct and with small amount of noise. If
the existing classes are believed to be comparatively similar
(i.e. with large amount of overlap or bridging elements), or



Algorithm 1 Manifold Shape Clustering
procedure [D Labels] = ShapeClustering(D, C)
in: D: dataset of converted to time series shapes;

C: number of clusters
out: D Labels: cluster labels

Projection Step:
1: k = Refine k(D, C); /*num.neighbors or degree*/
2: Alternative1: D′ = Isomap(D, k); /*projected data*/
3: Alternative2: D′ = b-Isomap(D, k); /*projected data*/

Clustering Step:
4: IC = Refine Seeds(D′, C); /*initial seeds*/
5: D Labels = Cluster EM(D′, IC, C);

there is large amount of noise in the data, then the b-Isomap
projection should be applied. The projection parameter k,
neighborhood size in the case of Isomap and maximum de-
gree in the case of b-Isomap, can be selected using cross-
validation (the approach used in our experiments) with sub-
samples of the data, or by applying the tradeoff optimization
criterion discussed by Tenenbaum [3]. We decided to select
a partitioning clustering algorithm, and EM in particular,
as the clusters defined by Isomap and often by b-Isomap
are convex and comparatively compact. The k-means al-
gorithm in this setting is likely to fail due to the elongated
structure of the clusters, while a k-medoid approach will
have lower efficiency. The initial centers for the EM algo-
rithm are selected as the best random seeds out of 10 runs
again on subsamples of the data. An alternative approach is
discussed by Fayyad et al. [11], which draws a set of very
small subsamples and evaluates the centers that maximize
the likelihood of the data based on those subsamples.

5. Experimental Evaluation

We test the performance of the two manifold approaches
and the MDS projection on three publicly available datasets
- diatoms, marine creatures and arrowheads. The datasets
are selected to have different characteristics in terms of
noise, sparsity in the data and similarity between the avail-
able classes. The actual labels of the samples are known
and are used in measuring the accuracy of clustering.

The following evaluation procedure has been applied for
all methods. A 10 times random sampling is used with 80%
random subsamples from the original dataset. For each sub-
sample, after the data is projected with the corresponding
method, an EM clustering is performed. As EM relies on
the correct initial center selection, it is repeated 10 times,
each time with randomly selected centers. The accuracy
from the best of the 10 clusterings is reported as accuracy
of the method for this subsample.

5.1. Diatoms Dataset

Diatoms are eukaryote plants that live in aquatic envi-
ronment. The dataset we use is collected as part of the
ADIAC project [7]3. It contains approximately 360 images
of diatoms from four classes - Eunotia, Stauroneis, Gom-
phonema, Flagilaria (see Figure 6). All time series for the
dataset are resampled to a length of 345 points.

Figure 6: Diatoms dataset: original images - top, extracted
shapes - middle, and time series representation - bottom. The four
classes are relatively distinct with small similarities between some
Stauroneis and Flagilaria diatoms.

To determine the number of dimensions that should be
used in the projection, we measure the residual variance for
any of the reduction methods as suggested by Tenenbaum
et al. [24] (see Figure 7).

Figure 7: Detecting the intrinsic dimensionality of the data ac-
cording to the three projections. The ”elbow” of the curve points
to the optimal number of dimensions to be used.

The ”elbow” of the curve indicates the dimension be-
yond which adding new dimensions does not increase sig-
nificantly the variance in the data, and thus no improvement

3The dataset can be downloaded from the DIADIST project web page:
http://rbg-web2.rbge.org.uk/DIADIST/



in the projection can be expected. In the case of Isomap
and b-Isomap, the variance also depends on the number of
neighbors or the bounding degree parameter, still the struc-
ture of the curves remains similar for other values of the
parameter too. The other datasets tested in the evaluation
produced residual variance curves that differ in the speed
with which they decay, but overall the best dimensions re-
main the same. Therefore, for all the datasets we tested the
clustering accuracy, considering the 2D and 3D projections
obtained by the three methods. The fact that two or three di-
mensions are descriptive for the data is not surprising, given
the chosen representation. The time series usually have sev-
eral extreme points, corresponding to those contour points
that are closest/furthest from the shape centroid. It is the
extreme points (global or in some case local extrema) that
are usually detected as the most discriminative dimensions
for the data.

Table 1: Clustering accuracy for the four class diatoms
data.

Proj. Dime- Parameter Average Std
Method nsions k Accuracy (%) (%)
MDS 3 N/A 62.3 5.2

Isomap 3 16 86.2 3.0
b-Isomap 3 4 83.0 3.6

Table 1 summarizes the details for the best accuracy ob-
tained on the four class diatom dataset. Both nonlinear pro-
jections outperformed MDS with more than 20%. The best
performance was obtained with the Isomap algorithm using
three dimensional projection. The best number of neighbors
for Isomap is relatively high (16), which implies that there
is little noise and overlapping between the clusters (except
for the Stauroneis and Flagilaria classes). The b-Isomap re-
duction performed slightly worse on average, and was also
less consistent across the subsamples, which is represented
by the larger variance in the accuracy (3.6%, column 5). An
illustration of why b-Isomap’s projection was outperformed
is presented for the two dimensional projection in Figure 8.

The figure compares the true labels (left graphs) with the
labels as identified by the EM algorithm (right graphs). The
elipses drawn around each cluster have radii equal to twice
the standard deviation along the corresponding dimension.
Some of the Stauroneis and Gomphonema “branches” in the
b-Isomap projection are incorrectly identified by EM to be
part of the distribution for the Flagilaria class. The effect
is not that strong for the Isomap projection because of the
convex shape of the clusters.

We also compared the clustering accuracy between the
two most overlapping classes, in which we additionally
added to the time series Gaussian noise with mean zero and
standard deviation 0.1.

The two dimensional projection in this case and the EM

Figure 8: Clustering obtained from the 2D projections of Isomap
(top) and b-Isomap (bottom). On the left are the true labels for the
data, and on the right - the labels as computed by the EM algo-
rithm. Note that the best projection is three dimensional, here two
dimensions are shown for illustration only.

clustering are shown in Figure 9. The clusters produced by
b-Isomap now have higher density, compared to the Isomap
clusters, and are easier to detect with the EM algorithm.
The sparsity in the Isomap clusters results from the multi-

Figure 9: Clustering obtained from the 2D projections of Isomap
(top) and b-Isomap (bottom) of the Stauroneis and Flagilaria
classes only. On the left are the true labels for the data, and on
the right - the labels as computed by the EM algorithm.



ple short circuits between the two similar classes. The clus-
tering obtained with b-Isomap is almost perfect when three
dimensional projection is used Table 2. Isomap performs
better in three dimensions too (the best 2D accuracy for the
algorithm is 89%), but still it is dominated by b-Isomap’s
performance.

Table 2: Clustering accuracy for the two class diatom data.
Proj. Dime- Parameter Average Std

Method nsions k Accuracy (%) (%)
MDS 3 N/A 90.2 1.3

Isomap 3 5 92.7 1.3
b-Isomap 3 3 98.3 0.9

The example demonstrates that significant improvement
over Isomap can be achieved with the b-Isomap approach
in the case of noise and when there is no strong distinction
between the existing classes.

5.2. Marine Creatures Dataset

We used the prototype database of marine creatures dis-
cussed by Mokhtarian et al. [16]4. The images for four
classes of different types of fish were selected, with each
class containing 50 examples (Figure 10).

Figure 10: Marine creatures dataset: fish shapes - top, and their
time series representation - bottom.

The time series extracted from the shape contours are
again resampled to 345 time points (see Figure 10, bottom).
For this dataset there is significant amount of within-class
variability too. The contour of the shapes has more com-
plex structure than that of the diatoms, which is reflected in
the representation too. The time series contain more noise
and there is no strong visual distinction between some ele-
ments from different classes. For example, Class1 appears
visually similar to Class4, while some elements of Class2

4The dataset can be downloaded from the SQUID project web page:
http://www.ee.surrey.ac.uk/Research/VSSP/imagedb/

are similar to elements of Class3. This similarity is a pre-
requisite for the formation of bridging elements between
the projected clusters. In this sense, the dataset is similar
to the two class diatom case. As expected, in this setting
the b-Isomap projection is better than the one obtained with
Isomap (Figure 11).

Figure 11: Marine creatures dataset: Isomap projection (left)
compared to b-Isomap projection (right).

On average, clustering with b-Isomap is 2%-3% more
accurate than clustering on the Isomap projection (Table 3).
Again, the EM algorithm, applied on any of the nonlinear
projections, significantly outperforms the clustering on the
MDS projection. Yet, it is worth noting the larger variance
of the nonlinear projections and especially of Isomap across
the ten subsamples. This is partially due to the smaller
number of examples (approximately 40 examples from each
class are present in the subsamples), and partially to the
larger amount of noise in the data.

Table 3: Clustering accuracy for the Marine creatures
dataset.

Proj. Dime- Parameter Average Std
Method nsions k Accuracy (%) (%)
MDS 2 N/A 61.0 3.0

Isomap 3 4 77.6 11.8
b-Isomap 3 4 80.0 7.8

5.3. Arrowheads Dataset

The dataset contains 600 images of randomly rotated ar-
rowheads from a museum collection. The arrowheads are



representative of 6 distinct classes (Figure 12), with each
class of 100 elements5. All time series have been resam-
pled to 250 time points.

Figure 12: Arrowheads dataset: representative examples of the
six classes and the corresponding time series representation.

The purpose of this evaluation was to test the behavior
of the projections and the clustering algorithm when there
is larger number of classes. Figure 13 demonstrates the 2D
and 3D projections of Isomap and b-Isomap for the data.

Figure 13: Arrowheads dataset: Isomap projection (left) com-
pared to b-Isomap projection (right)

The performance of the three projections is summarized
in Table 4. As the classes are distinct, and there is enough
data from each class in the subsamples, Isomap reconstructs
well the embedded structure and projects the classes in well
defined sufficiently distant clusters. The two dimensional

5The dataset can be obtained upon request to dyankov@cs.ucr.edu

b-Isomap projection with bounding parameter k = 6 per-
formed similarly well (85.1% accuracy). This is a result
of the convexity of the clusters for this dataset. For most
classes the degree-bounded spanning tree forms single long
branches, which allows for all examples to be subsequently
identified as coming from the same cluster. The b-Isomap
clustering was also more consistent for the dataset, with
twice smaller deviation as compared to Isomap. Both ap-
proaches again significantly outperformed the linear Multi-
dimensional Scaling.

Table 4: Clustering accuracy for the arrowheads dataset.
Proj. Dime- Parameter Average Std

Method nsions k Accuracy (%) (%)
MDS 3 N/A 75.6 5.7

Isomap 3 14 85.2 6.2
b-Isomap 2 6 85.1 3.1

6. Conclusions

We presented a method for clustering shape data invari-
antly of basic geometric transformations as shifting, scaling
and most importantly rotation. The work demonstrated that
an Isomap projection built on top of a rotationally invariant
distance metric can detect correctly the intrinsic nonlinear
embedding in which the shape examples reside. We have
further introduced a modification of the Isomap algorithm,
based on the concept of degree-bounded minimum span-
ning trees, that decreases the effect of bridging elements
and noise in the data.

Our current efforts are targeted towards a hybrid solu-
tion that automatically combines the better features of both
Isomap and b-Isomap. As we envision the approach, it
should reconstruct the embedding by adaptively adjusting to
the local densities in the data and at the same time preserve
the compactness and convexity of the existing clusters.
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