
MERLIN: Parameter-Free Discovery of Arbitrary Length

Anomalies in Massive Time Series Archives
Takaaki Nakamura1 Makoto Imamura2 Ryan Mercer3 Eamonn Keogh3

1Mitsubishi Electric Corporation, Japan 2Tokai University, Japan 3University of California Riverside, CA USA

nakamura.takaaki@dy.mitsubishielectric.co.jp imamura@tsc.u-tokai.ac.jp {rmerc002,eamonn}@cs.ucr.edu

Abstract—Time series anomaly detection remains a

perennially important research topic. If anything, it is a task that

has become increasingly important in the burgeoning age of IoT.

While there are hundreds of anomaly detection methods in the

literature, one definition, time series discords, has emerged as a

competitive and popular choice for practitioners. Time series

discords are subsequences of a time series that are maximally far

away from their nearest neighbors. Perhaps the most attractive

feature of discords is their simplicity. Unlike many parameter

laden methods, discords require only a single parameter to be set

by the user: the subsequence length. In this work we argue that

the utility of discords is reduced by sensitivity to this single user

choice. The obvious solution to this problem, computing discords

of all lengths then selecting the best anomalies (under some

measure), seems to be computationally untenable. However, in this

work we introduce MERLIN, an algorithm that can efficiently and

exactly find discords of all lengths in massive time series archives.

We demonstrate the utility of our ideas on a large and diverse set

of experiments and show that MERLIN can discover subtle

anomalies that defy existing algorithms or even careful human

inspection. Moreover, we show how to exploit computational

redundancies to make MERLIN two orders of magnitude faster

than comparable algorithms.

Keywords—Time Series; Anomaly detection; Multi-Scale

I. INTRODUCTION

Time series data is ubiquitous in industrial, medical and
scientific settings. One of the most basic time series analytical
tasks is to simply spot anomalous regions. This may be the end
goal of the analytics, or simply a preprocessing step for a
downstream task. There are at least hundreds of algorithms for
finding anomalies, but which should we use?

Since their introduction, Time Series Discords have emerged
as a competitive approach for discovering anomalies [5]. For
example, a team lead by Vipin Kumar conducted an extensive
empirical comparison concluding that “on 19 different publicly
available data sets, comparing 9 different techniques (time
series discords) is the best overall.” [3]. We attribute much of
this success to the simplicity of the definition. Time series
discords are intuitively defined as the subsequences of a time
series that are maximally far away from their nearest neighbors.
This definition only requires a single user specified parameter,
the subsequence length. With only a single parameter to set1, it
is harder to overfit the anomaly definition, and overfitting seems
to be a major source of false positives for this task [3][16].

1 Note that some algorithms that discover discords may have other parameters,

the discord representation itself requires just a single parameter.

To help the reader appreciate the importance of the
subsequence length in anomaly discovery, let us consider an
excerpt of the Gasoil Plant Heating Loop Data Set [4]. This data
set had a simulated cyber-attack introduced at the time indicated
by the red dashed line shown in Figure 1.

Figure 1: top) An excerpt from Filonov’s Gasoil dataset, a reading

from RT_temp.T [4]. bottom) The discord scores for three lengths,

1,000, 2,000 and 4,000. The higher the score, the more anomalous the

corresponding subsequence is.

We computed the anomaly scores for every subsequence for

three different lengths. For the shortest length of 1,000, it is

unsurprising that we get many spurious anomalies. This system

transitions between discrete temperature states, giving it a

“staircase” effect. If the subsequence length is less than the

length of a step, the z-normalization “blows up” the

subsequence and produces unstable results. At the longer length

of 4,000 the curse of dimensionality is beginning to dominate.

As noted by Beyer et. al. “as dimensionality increases, the

distance to the nearest data point approaches the distance to

the farthest data point” in [2].

However, consider the plot for subsequences of length

2,000 shown in Figure 1. There is a clear peak at the correct

location. Moreover, it is significantly larger than the mean

value of the scores, giving a clear visual signal that this is a true

anomaly. This example shows that there is a “sweet spot” (or

rather, sweet range) for subsequence length when performing

anomaly discovery. In some cases, the analyst may have a first-

principles-model or experience to suggest a good value, but

anomaly/novelty discovery is often exploratory by nature.

Before continuing, we will take the time to reiterate the

utility of discord discovery in the vast space of anomaly

detection techniques [3][4][8][9][11][12][15][16][17][18][20].

In essence, we want to answer the following question: “why

1 100,000

0

20

0

20

0

20

Anomaly injected at this time

Discord scores for length 1,000

Discord scores for length 2,000

Discord scores for length 4,000

RT_temperature.T

make an effort to address the noted weakness of discords,

rather than invent or use a different method?” Figure 2 shows

the discord scores computed for a benchmark dataset that has

been considered in dozens of research efforts [17].

Figure 2: top) Six months of taxi demand in New York City. bottom)

The discord scores for subsequence length of one day. Most of the

discords discovered have an intuitive meaning.

Note that the discords discovered have different causes.

Some are predicable holidays, some are caused by ad-hoc

events, like the hastily organized BLM march, and some are

weather events. One anomaly is simply a bookkeeping error;

setting the clock back by one hour for daylight saving time

made it appear as if the taxi demand doubled just after midnight.

Paper [9] also considers this dataset. While they find some

true positives, they also find many false positives. However,

they tell us that “the parameters for this experiment are w = 30,

k = 6, q = 5, h1 = −3.57, and h2 = −4.28.” Similarly, there are

many research efforts on deep learning anomaly detection. One

recent paper using an LSTM model also considers this taxi

dataset [10]. It does find Xmas, New Year, and the blizzard, but

fails to find Thanksgiving, the BLM march, or the (apparent

even to the human eye) daylight-savings-time anomaly.

These two comparisons highlight the attractiveness of

discords for practitioners. It is hard to imagine that most

practitioners would be able and willing to carefully set the five

parameters of Markov Chain approach [9], or the dozen or so

parameters/choices for a LSTM model [16]. Moreover, even if

they did so, with so many parameters to fit on a small dataset,

avoiding overfitting would be very challenging.

Because the effectiveness of discords is central to our work,

we will take the time to consider just one more motivating

example. A recent paper conducted a “bake-off” with eight

diverse representatives of the state-of-the-art anomaly detection

algorithms (as opposed to simply minor variants of a single

approach) [11]. Figure 3 contrasts the results on one benchmark

(Yahoo) data set with time series discords.

The authors of this study noted, “None of the algorithms tested

can correctly identify the first five anomalies,... AdVec

generates seven false positives...” In contrast to these eight

approaches, the discord approach performs perfectly on this

task, assuming only that its one parameter is a reasonable value.

The goal of this research effort is to remove the need to set even

that sole parameter. We call our proposed algorithm MERLIN2.

MERLIN can efficiently and exactly discover discords of every

possible length, then either report all of them, or just the top-K-

discords under an arbitrary user defined scoring metric.

2 This name is a play on the fact that the first paper on time series discords was

titled “Approximations to Magic” [5]. Merlin was the magician of the

Arthurian legend. In addition, Mitsubishi Electric Corporation’s subsidiary

Figure 3: top) A screen capture from [11] showing the performance

of eight state-of-the-art anomaly detectors on one of the Yahoo

benchmarks [8]. bottom) Time series discords (here, of length 8) have

a perfect score on this problem, with only the mildest of assumptions.

 The rest of this paper is organized as follows. In Section II

we introduce background material and related work. Section III

introduces our proposed algorithm, before we offer an

extensive empirical evaluation in Section IV. We conclude with

a discussion of our findings in Section V.

II. BACKGROUND AND RELATED WORK

In this section, we introduce all the necessary definitions and
notations, including a review of an existing algorithm for
discord discovery that we will use as a starting point for our
research. We will also consider related work to put our ideas in
context [7].

A. Definitions

We begin by defining the data type of interest Time Series:

Definition 1: A time series T = t1, t2, …, tn is a sequence of n

real values.

Our distance measures quantify the distance between two

time series based on local subsections called subsequences:

Definition 2: A subsequence 𝐓𝑖,𝐿 is a contiguous subset of

values with length L starting from position 𝑖 in time series T;

the subsequence 𝐓𝑖,𝐿 is in form 𝐓𝑖,𝐿= ti, ti+1,…, ti+L-1, where

(1 ≤ 𝑖 ≤ 𝑛 – 𝐿 + 1) and L is a user-defined subsequence

length with value in range of 3 ≤ 𝐿 ≤ |𝐓|.

Here we allow L to be as short as three, although that value

is pathologically short for almost any domains.

Many time series analytical algorithms need to compare

subsequences using some distance measure Dist; here we use

the z-normalized Euclidean distance. As pointed out by the

original authors of the discord definition, we must be careful to

exclude certain trivial matches from any meaningful definitions

of subsequence similarity by defining non-self matches.

Definition 3: Non-Self Match: Given a time series T

containing a subsequence C of length L beginning at position

p and a matching subsequence M beginning at q, we say that

in the USA is called MERL (Mitsubishi Electric Research Laboratory,

Boston).

July 1st (2014) Jan 31st (2015)

New York Taxi Demand

Discord score

1 1680
0

1

2

3

Note to reader. The green text is from the

Däubener paper.

Fig. 2. Yahoo time series A4: 8, with 13

labeled true anomalies (red dots). None of

the algorithms tested can correctly identify

the first five anomalies, while the next 8 are

correctly identified by gaussian processes,

and 7 by four other methods. AdVec

generates seven false positives.

Yahoo A4 : 8

Ground Truth

Discord Score

M is a non-self match to C at distance of Dist(M,C) if | p – q|

≥ L.

We can now use this definition of non-self matches to define

time series discords:

Definition 4: Time Series Discord: Given a time series T, the

subsequence D of length L beginning at position i is said to

be the discord of T if D has the largest distance to its nearest

non-self match. That is, ∀ subsequences C of T, non-self

match MD of D, and non-self match MC of C, min(Dist(D,

MD)) > min(Dist(C, MC).

The starting location of the discord is recorded in index and

its distance to its nearest neighbor is record in distance. All

previous efforts to find discords considered only a single length,

however we plan to consider all lengths in a given range, thus

producing an array of discords indexed by the length i,

discordi =[indexi, distancei].

For simplicity, we define only the top-1 discord, the

generalization to top-K is trivial [7]. Having defined discords,

we will next review an algorithm to discover them.

B. A Review of the SOTA Discord Discovery Algorithm

Our proposed algorithm makes repeated use of the discord

discovery algorithm introduced in [7]. The algorithm was

unnamed in that work, so for clarity we will call it DRAG,

which is both a truncated version of the inventor’s name, and a

backronym that stands for Discord Range Aware Gathering.

For any user-given length, the algorithm requires a single

input parameter r. This value should ideally be set such that it a

little less than the discord distance, that is, the distance between

the discord and its nearest neighbor. Of course, that distance is

unknown at this point, so the user must provide an estimate. If

this estimate is accurate, just a little less than the eventually

discovered true discord value, then DRAG has a time and space

complexity of just O(nL). If the estimate is much too small, the

algorithm will give the correct result, but have a time and space

complexity of O(n2). In either case, we call any invocation of

DRAG that used an r value less than the eventually returned

discord distance a success.

 In contrast, if the estimate for r is too large, the algorithm will

return null, a situation we denote as a failure. Of course, the

situation can be remedied, but requires the user to reduce the r

value and try again. This sensitivity to r parameter was largely

glossed over in the original paper [7], but as we will show in

Section III it is a significant limitation of DRAG. However, as

we will later explain, we have solved this issue for MERLIN.

We refer the reader to [7] for a detailed explanation of the

DRAG algorithm, but for completeness we will give a brief

overview. The DRAG algorithm is a two-phase algorithm, with

each phase being a pass across the time series.

• Phase I: As shown in Table 1 the algorithm initializes a set

C, of candidate discords by placing the first subsequence in

C. The algorithm then “slides” along the time series

examining each subsequence. If the subsequence currently

under consideration is greater than r from any item in the

set, then it may be the discord, so it is added to the set.

However, if any items in the set C are less than r from the

subsequence under consideration, we know that they could

not be discords, thus they are admissibly pruned from the

set. At the end of Phase I, the set C is guaranteed to contain

the true discord, possibly with some additional false

positives.

Table 1: Phase I, Candidate Selection Algorithm

Input: T: Time series

 L: Subsequence length

 r: Range of discords

Output: C: Candidate set of discords

1

2

3

4

5

6

7

8

9

10

11

12

13

14

C = {} // Start with empty set

For I = １ to |T| - L + 1 // Scan all subsequences
 iscandidate = true

 For j in C

 If I and j are NOT trivial matches

 If dist(Ti,L, Tj,L) < r

 C = C \ j

 iscandidate = false // We can prune this

 If iscandidate

 C = C ∪ {i} // Add to candidate set

If NOT isemptyset()

 return C // Implicitly return success

Else

 return failure // Explicitly return failure

Note that the algorithm can end in failure (line 14). Or, we

can regard this situation as successfully finding no discord

greater that the threshold of r. If the user wants the find the

discord regardless of its eventual distance, she must run the

algorithm again with a smaller value for r. We will have

more to say about this issue in Section III.a.

After Phase I has built a set of candidate discords, we are
now ready to run Phase II to refine them.

• Phase II: As shown in Table 2, we again slide along the

time series, this time refining the candidates to remove the

false positives. We simply consider each subsequence’s

distance to every member of our set, doing a best-so-far

search for each candidate’s nearest neighbor. The algorithm

returns a sorted list of all discords with a distance greater

than r (there is guaranteed to be at least one). The largest

such score is our top-1 discord.

Table 2: Phase II, Discords Refinement Algorithm

Input: C: Candidate set of discord

 T: Time series

 L: Subsequence length

 r: Range of discords

Output: D: Set of discords (index, distance)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

D = {} // Start with empty set

For i = 1 to |T| - L + 1 // Scan all subsequences

 isdiscord = true

 For j in C // Scan all candidates

 If i and j are NOT trivial matches

 d = dist(Ti,L, Tj,L)

 If d < r

 C = C \ j

 isdiscord = false // Eliminate candidate

 else

 dj = min(dj, d)

 If isdiscord

 D = D ∪ {(j, L, dj)} // Add to the set of true..
 return D // ..discord and return

Given this (brief) review of the algorithm, it is easy to see why

its performance depends so critically on the user’s choice of r.

A pessimistically small value for r will mean that in Phase I

most subsequences will be added to the candidate set, exploding

the time and space complexity to the O(n2) case. However, if r

is chosen well, the size of this set remains very small relative to

n. For example, in [7] they show that even with a million

subsequences, for a good value of r, the size of C does not

exceed 50 candidates, making the algorithm effectively O(nL).

C. Related Work

In the previous section we claimed DRAG is the state-of-the-

art in discord discovery (we are not (yet) claiming state-of-the-

art in anomaly detection). The reader may be surprised to find

that we did not list the more recent Matrix Profile (MP)

algorithms as state-of-the-art [6]. The MP algorithms

(STOMP/SCRIMP etc.) surely are state-of-the-art for motif

discovery, and as a side-effect of motif discovery, they happen

to also compute discords. However, the MP algorithms are all

O(n2). It is impressive that their time complexity is independent

of L, as almost all algorithms in this space scale poorly with L.

Nevertheless, for our purposes these algorithms compute much

more information than is needed, and are thus much slower than

we can achieve for the limited task-at-hand.

There are also algorithms that discover discords by

discretizing the time series, typically using SAX, and hashing

the symbolic words that correspond to subsequences [5][18].

The basic idea being that a lack of collision for a word is

evidence that the word might be unique, hence correspond to a

discord. After the candidates have been identified this way, an

algorithm similar to Phase II in Table 2 can be used to refine

them. These algorithms can be competitive with DRAG, but

only if three parameters for SAX are very carefully set [18].

The more general area of anomaly detection is increasingly

difficult to review. In particular there has been a recent

explosion of papers on deep learning for anomaly detection

[4][9][10][11][16][17][20]. This is a diverse group of research

efforts; the one thing that they have in common from our point

of view is that they all require many critical parameters to be

set3. For example, Paper [9] explicitly lists five parameters (and

perhaps has a few more in the background), the LSTM network

in [16] requires eight parameters. Clearly deep learning has had

an enormous impact in image processing, NLP etc. However,

as we hinted at in Figure 2 and Figure 3, and as we will later

empirically show, it is not obvious that deep learning out

performs simpler and more direct shape based methods.

III. THE MERLIN ALGORITHM

We begin by illustrating some novel observations about the

sensitivity of DRAG to the r parameter.

A. Exploitible Obervations about DRAG

Consider the small synthetic dataset shown in Figure 4: it is

simply a slightly noisy sine wave with an obvious “anomaly”

embedded in it starting at location 1,000.

3 Note, we distinguish between parameters that merely effect the speed

or memory footprint, vs. parameters that can change the anomalies

discovered. It is the latter we call “critical”.

Figure 4: A slightly noisy sine wave with an anomaly embedded at

location 1,000.

What would be an appropriate value of r here given that we

wish to discover discords of length 512? Even with significant

experience with the DRAG algorithm, it is not immediately

obvious to us. To gain some intuition, in Figure 5, we

considered every possible value of r from 1 to 40, in increments

of 0.25, measuring both how long DRAG takes, and whether it

ended in success or failure.

Figure 5: The time taken for DRAG given values for r that range from

1.0 to 40.0. For any value greater than 10.27 the algorithm reports

failure and must be restarted with a lower value.

After the fact, we know that the true discord value is 10.27.

The reader will appreciate that this value, or rather, this value

minus a tiny epsilon, is the optimal setting of r [7].

Suppose that we had guessed r = 10.25, then DRAG would

have taken 1.48 seconds to find the discord. However, had we

guessed a value that was just 2.5% less, DRAG would have

taken 9.7 times longer. Has we guessed r = 1.0 (a perfectly

reasonable value on visually similar data), DRAG would have

taken 98.9 times longer.

In the other direction, had we guessed any greater than 1%

more, DRAG would have failed. The time it takes to complete

a failed run is about 1/6 the time of our successful run when r =

was set to the 10.25 guess. So, while failure is cheaper, it is not

free. This eliminates certain obvious algorithms to find a good

value for r. For example, we could have tried every integer from

40 downwards until success, but that would have cost 29 time-

for-failures plus one time-for-success with r = 10, which is

about 39.2 seconds, or about 26 times worse than our “lucky”

guess of r =10.25.

 Note that a failure lets us know that our guess for r was too

high, but otherwise does not appear to contain exploitable

information as to a better value for r.

One might imagine that there is some simple heuristic for

setting r. If there is, it has eluded us (and, to the best of our

knowledge, the rest of the community that uses this algorithm

[3]). Even on datasets that are superficially similar to each

0 1000 2000 3000

Algorithm fails

Algorithm succeeds

0 5 10 15 20 25 30 35 40
0

150

s
e
c
o
n
d
s

Actual discord value is10.27
(Can only be discovered after running DRAG)

Value of r

other, say two examples of ten minutes of healthy teenage

female electrocardiograms, the best value for r can differ by at

least two orders of magnitude.

In summary, choosing a good value for r is critical for

DRAG to be efficient, but it is a very difficult parameter to set.

However, for our task-at-hand, there is a ray of hope. The best

value for r, for discords of length L, is likely to be very similar

to the best value for r, for discords of length L-1. To see this,

we measured the correlation between the optimal r for discords

with lengths differing by one, for all L from 16 to 512 for the

example shown in Figure 4. The correlation was 0.998.

It is important to ward off a possible misunderstanding,

suggested by this very high correlation; these differences are

typically very small, but they are not necessarily all positive.

Because we are working with z-normalized Euclidean distance,

when we make the discord length longer, the discord score can

increase, decrease or stay the same. The blue line shown in

Figure 6 illustrates this fact.

Figure 6: (blue line) The discord score, which is also the optimal

setting for r, for the dataset shown in Figure 4. The inset shows a zoom-

in of the region from 64 to 100. Here we can more clearly see the blue

line is accompanied by a red line, which attempts to predict it, using

only the five previous values.

As Figure 6 makes clear, the obvious idea of using the last

discordi distance to set the value for r when attempting to

discover discordi+1 is a bad idea. In this example, it would result

in 45.4% of the runs ending in failure. Thus, we want the value

of r to be a “little less” that discord distance. The meaning of

“little less” here depends on the data and on the lengths

currently considered, so we propose to learn it by looking at the

variance of the last few (say five) discord values.

Thus, we have an informal algorithm to set the value of r.

Compute the discords working from the minimum to the

maximum length. At each stage, compute the mean , and

standard deviation , of the last five discord distances, and for

the next invocation of DRAG, use r =  – 2. If DRAG reports

failure, repeatedly subtract another  from the current value of

r until it reports success.

Using this simple prediction algorithm on the dataset shown

in Figure 4, we would have zero failures. Moreover, on average,

the value predicted would be 99.03% of the optimal value for r.

This idea leaves just one thing unspecified. How do we set

r for the first five discord lengths? We do have an upper bound

as to the largest possible discord distance for time series of

length L, it is simply the largest possible distance between any

pair of subsequences of length L, which is 2√𝐿. So, for the first

length of discord we attempt to discover, we can set r = 2√𝐿,

and keep halving it until we get a success. In general, 2√𝐿 is a

very weak bound, and likely to produce many failures. So, we

do not want to do this for the next four items. Here instead, we

can use the previous discord distance, minus an epsilon, say

1%. In the very unlikely event that this was too conservative

and resulted in a failure, we can keep subtracting an additional

1% until we get a success.

Table 3 formalizes this algorithm.

Table 3: The MERLIN Algorithm

Input: T: Time series

 MinL: Subsequence length lower bound

 MaxL: Subsequence length upper bound

Output: D: Set of discords (index, length, distance)
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

r = 2  sqrt(MinL) // Set r to its largest possible value

distanceminL = -inf // Allow entry into loop

While distanceminL < 0 // Find first discord

 [indexminL , distanceminL]= DRAG(T, MinL,r)

 r = r  ½ // If loop repeats, make r smaller

End

For i = MinL + 1 to MinL + 4 // Find next 4 discords

 distancei = -inf // Allow entry into loop

 While distancei < 0 // Decrease r till success

 r = 0.99  distancei-1

 [indexi, distancei]= DRAG(T,i,r)

 r = r  0.99 // If loop repeats, make r a little smaller

 End

End

For i = MinL + 5 to MaxL // Find all remaining discords

 M = mean(distancei-1 to i-5) // Use local info about..

 S = STD(distancei-1 to i-5) // ..the mean and STD..

 r = M – (2S) // ..to predict good value for r

 [indexi, distancei]= DRAG(T,i,r)

 While distancei < 0 // looks like our r was too high..

 [indexi, distancei]= DRAG(T,i,r) //..so lets reduce..

 r = r – S // ..it until success

 End

End

The algorithm has an apparently arbitrary choice. Why

work from the minimum to the maximum length, rather than the

other way around? Recall that is it only for the first invocation

of DRAG that we are completely uncertain about a good value

for r, and we may have multiple failure runs and/or invoke

DRAG with too small of a value for r, making it run slow. It is

much faster to do this single unoptimized run on the shorter

subsequence lengths.

B. Defeating MERLIN

There are two circumstances where MERLIN can

dramatically fail. Fortunately, there are trivial fixes.

If there is a constant region longer than MinL, then our

attempt to z-normalize before computing the Euclidean

distance will divide by zero. However, it is trivial to monitor

for and report or ignore such regions. Depending on user

choice, such regions may warrant flagging as an anomaly or

0

2

4

6

8

10

12

14

0 100 200 300 400 500

Optimal value of r for discords of this length

Mean of the five blue values to the left

Mean of the five blue values to the left,

minus two standard deviations of the five

blue values to the left

Length of Discords

not. For example, in hospital settings the data is replete with

constant regions, due to disconnection artifacts during bed

transfers etc. In contrast, a constant region in an insertable

cardiac monitor (pacemaker) is almost certainly battery failure

or heart-failure, in either case warranting an alarm.

Another way MERLIN could fail is if the anomaly happens

twice, and essentially looks the same both times. This has been

called the “twin freak” problem. This can be solved by

changing the first nearest neighbor (Definition 4) to the kth

nearest neighbor. However, in practice this rarely seems to be

an issue. For example a paper that wanted to show an anomaly

detection method that was invariant to “twin freaks” had to

resort to copying and pasting data to contrive the situation [20].

In this work we use only the simple first nearest neighbor.

IV. EXPERIMENTAL EVALUATION

We begin by stating our experimental philosophy. We have
designed all experiments such that they are easily reproducible.
To this end, we have built a webpage that contains all datasets,
code and random number seeds used in this work, together with
spreadsheets which contain the raw numbers [23]. This
philosophy extends to all the examples in the previous section.

A. Metrics of Success and the Unsuitability of Benchmarks

There are now a handful of benchmark datasets in the
literature. We have already considered (a subset) of them in
Figure 1, Figure 2, Figure 3 and Figure 10, and we will consider
more below. However, we believe that the reader should be
somewhat skeptical of research efforts that report only summary
statistics on these datasets. There are at least two reasons for
such skepticism.

• Consider the NYC Taxi example which is part of the NAB
benchmark [17]. This dataset is labeled as having five
anomalies, but as Figure 2 shows, this dataset has at least
twice that number of anomalies. For example, the
benchmark does not list the daylight-saving time anomaly,
which is arguably the most visually jarring anomaly in the
dataset. Any algorithm that does find this anomaly will be
penalized as having produced a false positive. In [23] we
show more examples of mislabeled benchmark data.

• A large fraction of the benchmark datasets contain anomalies
that are so obvious that they are trivial to detect. For
example, consider Figure 7, which show examples from the
Mars Science Laboratory [16], NAB [17] and Yahoo
benchmarks. It is hard to imagine any reasonable algorithm
failing to find such anomalies. Even if the benchmark data
also includes some challenging anomalies, counting success
on these trivial problems can artificially inflate metrics of
success such as ROI curves, giving the illusion of progress.
See Appendix A for more information and examples.

For the reasons above, we think that a direct visual summary
of the output of a proposed anomaly detection algorithm on
diverse datasets can offer the reader the most forceful summary
of the algorithm’s strengths and weaknesses (although we must
be careful to avoid attempting “proof-by-anecdote”). For that
reason, we have chosen to show fifteen diverse examples below.

It is important to note that our discussion some issues with
the benchmark datasets should in no way be interpreted as
criticism. These groups have spent tremendous time and effort
to make a resource available to the entire community and should
rightly be commended. It is simply that we must be aware of the
limitations of metrics reported on them without visual context.

Figure 7: Examples from the three main anomaly benchmark datasets

that we regard as too simple to be informative for algorithm

comparison. top) From the NASA benchmark [16]. center) From the

NAB benchmark [17]. bottom) From the Yahoo Benchmark.

As such, we have endeavored to have many such examples
in this work. In particular, before performing conventional
experiments to compare MERLIN to the state-of-the-art, we
begin with some case studies that give the reader an appreciation
of the kind of subtle anomalies that MERLIN can discover.

B. Discovery of Ultra Subtle Anomalies

Virtually all anomaly detection benchmarks in the literature
contain anomalies that also yield to casual visual inspection. Of
course, this does not mean that algorithms that can detect such
anomalies are of no utility. Human inspection, especially at
scale, is expensive. Nevertheless, it is interesting to ask if we can
detect very subtle anomalies, that would defy human inspection.
However, this seems to beg the question, how can we know if a
time series contains such ultra-subtle anomalies?

We propose the follow experiment to allow us to obtain
ground-truth subtle anomalies. Consider Figure 8, which shows
the electrocardiogram (ECG) of a 51-year old male, with an
obvious anomaly at about the half-way point. The anomaly is so
obvious that surely any algorithm could discover it.

Figure 8: An ECG signal with an obvious anomaly (a PVC).

However, suppose we consider only the Central Venous
Pressure (CVP) data, which was recorded in parallel. The ECG
is an electrical signal, whereas the CVP is a mechanical signal,
the blood pressure in the venae cavae. Moreover, because the
CVP reflects the amount of blood returning to the heart, the
elasticity of the blood vessels tends to dampen out any
irregularities in the heartbeat. As Figure 9 shows, the PVC
anomaly is not visually apparent in the CVP, yet MERLIN
clearly indicates at the correct location.

8000

64

512

1

Mars Science Laboratory: P-3 Ground Truth Anomaly

NAB: art_increase_spike_density

4000

100

200
1

Ground Truth Anomaly

1400

20

32

1

Yahoo T1Benchmark: Real 67 Ground Truth Anomaly

0 400032 seconds, recorded at 125 Hz

Electrocardiogram of a 51-year-old male Premature Ventricular Contraction (PVC)

Figure 9: A CVP signal recorded in parallel with the ECG shown in

Figure 8 does not show visual evidence of an obvious anomaly caused

by the PVC, yet MERLIN clearly indicates its presence.

Note that our inability to see the anomaly in Figure 9 shows
should not be attributed to the small size of the figure (the reader
is invited to see a larger reproduction here [23]) or our lack of
medical experience. Dr. Greg Mason with almost forty years of
experience viewing such data, could not detect this anomaly.

To see that this was not pure luck, let us consider a dataset
from a totally different domain with a similarly subtle anomaly.
In Figure 10 we show a snippet of data from the Mars Science
Laboratory (MSL) rover, Curiosity [16].

Figure 10: A signal from the Mars Curiosity rover was annotated as

having an anomaly from 2550 to 2585 (pink bar) [16]. While the cause

of the anomaly is unclear, MERLIN has no difficulty finding it.

In the paper that introduced this dataset, the authors
introduced a LSTM network that could also find this anomaly
[16]. However, to do so, they required training data, and the
careful setting of eight parameters. In contrast, MERLIN finds
this subtle anomaly with no training data, and only the weakest
of hints as to the anomaly lengths (MinL and MaxL) to consider.

C. Anomalies at Different Scales.
In this section we anecdotally demonstrate the utility of

being able to discover multiscale anomalies. We simply wish to
show that anomalies that differ by at least an order of magnitude
can exist even in quotidian datasets.

We begin by revisiting the NYC Taxi demand dataset shown
in Figure 2. In Figure 11 we show a subset of the data, with just
the top-1 motif of every length from 5 hours to four days.

Figure 11: As subset of the Taxi demand dataset shown in Figure 2,

shown with all discords the range of 5 to 96 hours.

While the daylight-saving anomaly directly effects only two
hours, the shape of these two hours is only usual in the context
of the few hours that surround them. Similarly, while
Thanksgiving is somewhat unusual in its lower passenger
volume and lack of a rush hour peak of people leaving the city
after work, a somewhat similar pattern to this also happens on
the weekends. However, in the context of being surrounded by
normal days, Thanksgiving is unusual. The discords of up to
four days long discovered by MERLIN in Figure 11 reflect this.

We also considered a similar but much longer dataset of
passenger volume at the Taipei Xinjian District Office metro
station. We searched from ten hours to ten days. Over this
enormous range of scales, only seven distinct anomalies are

discovered, Figure 12.bottom shows four of them. Note that
some of the anomalies have natural causes (weather events), and
some are cultural artifacts such as Chinese New Year.

Before leaving this section, we considered some final
examples in this vein. As hinted at in Figure 13.top, the city of
Melbourne has released almost a decade’s worth of pedestrian
traffic volume from various sites in the city [13].

Figure 12: top) Passenger volume at a Taipei metro station. Four of

the anomalies discovered are shown in context.

While there is good spatial coverage, the temporal resolution
is very low at just one datapoint per hour. Because of this, like
most of the many research groups that explored this data
resource, we originally only searched for anomalies of length
days or weeks [15]. However, as Figure 13, hints at, using
MERLIN to free ourselves from assumptions about possible
anomaly duration allowed us to find unexpectedly short
anomalies.

Figure 13: bottom) A month of pedestrian traffic volume on Bourke

Street Mall in Melbourne. top) the shortest anomaly discovered is

semantically meaningful, it corresponds to a flash-mob dance

performance (video at [14]) that restricted traffic for about ten minutes.

Given this ability to find motifs at all scales, we begin to find
unexpected anomalies everywhere. Three years after the flash-
mob happened, we discovered another short and subtle anomaly
on the same street. With a little investigation we realized it
corresponded to a car attack in which an individual deliberately
drove at pedestrians, killing six and injuring twenty seven [21].

Figure 14: Two months of pedestrian traffic volume on Bourke Street

Mall in Melbourne. The anomaly for Xmas is to be expected, but what

caused the short anomaly on Jan-20-2017?

D. Scalability

To demonstrate the scalability of our algorithm, we compare
it to the Matrix Profile algorithm SCRIMP [6]. In a sense, this is
unfair to SCRIMP, which discovers not only the discords, but

0 400032 seconds, recorded at 125 Hz

CVP of a 51-year-old male PVC happens here (based on out-of-band data)

32

128

1 1000 2000 3000 4000

64

512

Mars Curiosity Rover T1 (4001:8612) Anomaly

Dec 15th 2014

5 hours

Four

days
Oct 1st 2014

Thanksgiving Daylight Saving TimeNYC Taxi Demand

top-2 Dec 30, 2016

top-3 Feb 5, 2016

Chinese New Year's Eve

top-4 July 7, 2016

top-1 Sep 27, 2016

Typhoon Megi Republic Day/New Year's Day

Typhoon Nepartak

Dec,2015 Mar,2017

6

48

h
o
u

rs

Queen’s B-day Flash-MobUnusually busy Friday <Unknown cause>

June 5th 2013 July 3rd

11am

5

72

h
o
u
rs

Dec 11th 2016 Feb 18th 2017Jan 20th 2017Dec 25th 2016

Xmas Melbourne car attack

also motifs. Nevertheless, it is a very scalable algorithm because
it is implemented in a way that makes it constant in the length of
the subsequences. We used the latest version of the code
available from the author’s website [6], disabling the GUI
interface, which required significant time overhead.

We also wish to test the effectiveness of our method to set
the value of r for MERLIN by sharing information across
different values of L. To do this, we implemented the method for
setting r suggested in [7], which we rerun for every value of L.
This algorithm is denoted as DRAG-multilength, or DRAGML.
Note that DRAGML differs from MERLIN only in how r is set.

The time needed for SCRIMP is independent of the data.
However, the time needed for the two other algorithms depends
on the data. The best case would be a dataset like the one shown
in Figure 7.top, a mostly repetitive time series with a dramatic
discord that is very far from its nearest neighbor. To avoid such
bias, we will use the worst-case dataset from MERLIN, random
walk. For such data, the top-1 discord is only slightly further
away from its nearest neighbor than any randomly chosen
subsequence, meaning that the candidate set built in Table 1
grows relatively large even if given a good value for r.

Note that STOMPs performance is independent of the
structure of the data, but the other algorithm’s performance does
(weakly) depend on the it, we averaged over ten runs. Figure 15
shows the results of datasets ranging for 212 to 216.

Figure 15: The scalability of MERLIN, DRAG and STOMP in the

face of increasingly large datasets.

For short time series, all algorithms perform similarly, but as
the time series grow longer, SCRIMPs quadratically complexity
begins to show. While MERLINs first run (for L = MinL) is no
faster that DRAG, its subsequent runs are greatly accelerated by
the predicted value of r, and the amortized cost is about 21 times
faster by the time we consider time series of length 216. To put
these numbers in context, 216, datapoints is about 18 minutes of
data recorded at 60 Hz. Suppose we suspected that there were
anomalies of length 1 second in our data, but we wanted to
bracket our search with every value for 30 to 90 datapoints. This
would take MERLIN just 7.1 minutes, faster than “real-time”.

E. First look at the Yahoo! Webscope Benchmarks

In recent years, the Yahoo Webscope anomaly datasets have
emerged as the de-facto benchmark for anomaly and
changepoint detection. This diverse archive consists of 367 time
series, of various lengths in four different classes A1/A2/A3/A4

with class counts 67/100/100/100. While class A1 has real data
from computational services, classes A2, A3, and A4 contain
synthetic anomaly data with increasing complexity. We
previously showed examples from this benchmark in Figure 3
and Figure 7.bottom.

Before presenting summary statistics on the entire archive,
we will take the time to consider one example in detail. Because
most of these datasets have multiple anomalies, this is an ideal
opportunity to show the output of the top-K discords. In Figure
16.top we show an example with seven anomalies.

Figure 16: top) An example of one the synthetic datasets from the

Yahoo archive with seven anomalies, whose location is marked by the

red binary vector. center) The result of running MERLIN to discover

the Top-7 anomalies. bottom) The result of running MERLIN to

discover just the top-1 anomalies.

We know that examples in this subset have point anomalies,
so a smaller value of MaxL would be appropriate. However, we
“stress test” our algorithm by considering unreasonably long
discords up to length 100. In Figure 16.center shows that had we
consider only 5 to 64, we would have obtained perfect results. It
is only when we consider MaxL for an unrealistic value of
greater than 65, that we obtain a single false positive, and then
only for the 7th discord. Another way to consider how effective
MERLIN is here is to see how many of the seven anomalies we
can detect if we only consider the single top-1 discord. As Figure
16.bottom shows we would still detect six out of seven true
positives, and have no false negatives.

F. Large Scale Resutls on the Yahoo! Webscope Benchmarks

To evaluate on all Yahoo 367 datasets [8], we need to define
some criteria for correct anomaly detection. Below we explain
our reasoning behind our choice for metric of success.

Note that a complete anomaly detection system must have
two parts, (I) A prediction of the most likely location(s) to
contain anomalie(s), and (II) an evaluation mechanism (often
simply thresholding) to determine if those locations warrant
been flagged as anomalies. In this work, we have mostly avoided
a discussion of the second part, as it is moot unless we can
robustly point to candidate anomalies. Also note that in many
real-world applications, the second part is not needed. For
example, an analyst might query: “Show me the top-five most
unusual events in the oil plant in 2018”. Likewise, thresholds
can often be learned with simple human-in-the-loop algorithms.
In brief, the user can simply examine a sorted list of all candidate
anomalies. The discord distance of the first one she rejects as
“not an anomaly”, can be used as the threshold for future
datasets from the same domain. Thus, we argue that the first task
is the most critical, and most worthy of evaluation.

212 213 214 215 216

0

100

200

300

MERLIN

M
e
a
n
 s

e
c
o
n
d
s
 p

e
r

le
n
g
th

 L

Size of time series T

5

1600

100

1

1600

100

1

Key: Top 1, 2, 3, 4, 5, 6, 7

Key: Top 1

Yahoo: A4BenchmarkTS100

False Negative

False

Positive

Ground

Truth

5

Some of the Yahoo datasets have an issue that confounds
evaluation. In the example shown in Figure 16, the anomalies
are all well-spaced apart, however in the example shown in
Figure 3 the anomalies are just two datapoints apart. It is hard to
imagine critiquing an algorithm that called these two events a
single anomaly. More generally, we must also consider the
precision of the algorithm’s prediction of location. If an anomaly
is located at say location 600, we should surely reward an
algorithm that predicts 599 or 602. Thus, for simplicity, we

reward any prediction that is no further off than  1% of T from
the stated location. This does not significantly increase the
default rate while allowing us to bypass the issues above.

Given these considerations, we proposed the following
metric of successes, which we believe to be fair, transparent and
reproducible. Each algorithm is tasked with locating the one
location it thinks most likely to be anomalous (We removed the
handful of examples that have no claimed anomaly). If that

location is within  1% of T from a ground truth anomaly, we
count that prediction as a success.

We compare to the LSTM method introduced in [16], which
is one of the most highly cited deep learning for anomaly
detection papers in recent years. We used the authors own
implementation, carefully tuning it as advised in [16]. We allow
the LSTM to “cheat” by training on a subset of the test data.

For MERLIN, we set MinL = 3 (this is the minimum possible
value) and the MaxL = 20, and recorded the median location of
the 18 predictions as the algorithm’s single prediction. This is a
sub-optimal policy for us if there are two or more anomalies of
around that length, but makes the evaluation simple.

Under this metric MERLIN had a recall of 80.0% and the
LSTM had a recall of 58.3%. While this result is strongly in our
favor, because of the data quality issues discussed above, we do
not weight it as heavily as the visual evidence presented in the
many visual examples shown in this work.

G. Results on the NASA Benchmarks

The NASA dataset [16] has garnered significant attention in
recent years, but as Figure 7.top hints at, some of the tasks are
trivial. In fact, that understates the case. Many of the anomalies
consist of changes of variance/range by up to three orders of
magnitude (examples A1, B1, D12, E7, P4, T3 etc.), and can
trivially be detected by algorithms dating back to the 1950s [19]
(see Appendix A for a concrete example of this).

In addition, for some the examples, the labeled anomaly
region comprises up to half the data (examples A7, D2, M1, M2
etc.), meaning that a random choice would have a better than
even chance of being a true positive. To bypass this issue, we
scanned all the datasets for examples that were not obviously
solvable by the human eye in under five seconds. Excluding
near redundant examples, only three datasets passed that test, the
results of running MERLIN on them is shown in Figure 17.
Apart from a small region of a presumptive false positive in
Figure 17.center, we achieve perfect results. (We say
“presumptive” because this dataset also has a handful of labeling
omission errors, we point them out at [23]). Note that the bottom
examples both had two anomalies, which we found with just the
single top-1 discord of various lengths.

Figure 17: The results of running MERLIN on three diverse and most

difficult examples from the NASA benchmark [16]. top) The single

anomaly in A-4 is easily discovered. center) The two anomalies in C-

2 are discovered, but there may be a short region where we report a

false positive. bottom) The two correctly detected anomalies are so

subtle that we show annotated zoom-ins to explain them.

H. Results on the Gasoil Benchmarks

Like the NASA dataset, we regard the Gasoil benchmark [4]
as being too easy to be interesting. Note that we are only making
this claim with regard to anomaly detection, it may be useful for
causality detection etc. In Figure 18 we show the results of
running MERLIN on two of the more challenging examples.

Figure 18: The results of running MERLIN on two diverse difficult

examples from the Gasoil benchmark [16]. top) The single anomaly in

TempT is easily discovered, but there may be a small region where we

report a false positive. bottom) The single anomaly in RT_level is

easily discovered.

V. CONCLUSIONS AND DISCUSSION

Ahmed and Mahmood created an influential taxonomy of
anomalies into point anomalies, contextual anomalies and
collective anomalies [22]. While we refer the reader to the
original paper for the exact definitions, a review of this work
shows that MERLIN was able to discovery examples of each
type. For example, Figure 16 shows point anomalies that Yahoo
embedded into a dataset. The Queen’s Birthday example in
Figure 13 is a classic example of a contextual anomaly. The
shape of the day is smooth, missing the shaper features caused
by typical weekday rush-hour commuting. Such days are not
intrinsically rare, they happen on most weekends, but one only
sees three such days in a row in the context of a three-day
weekend. Finally, the anomalies shown in the Gasoil dataset in
Figure 18, are classic collective anomalies. This observation is
suggestive of the generality of MERLIN.

8000

50

500

1

6500 66002400 2500 2600

Ground Truth AnomalyGround Truth AnomalyMars Science Laboratory: T-1

Steep

Rate of

increase

Unique

“blip”

1600

32

128

Ground Truth AnomalyGround Truth Anomaly
Mars Science Laboratory: C-2

Presumptive False Positive

1

8000

100

200

1

Mars Science Laboratory: A-4 Ground Truth Anomaly

LevcorrTempfaultseed199vars23.C_temperatureT

LevcorrTempfaultseed199vars23.RT_level

200000

1600

3200

1

200000

1600

3200

1

Ground Truth Anomaly

Ground Truth Anomaly

Presumptive False Positive

More generally, we have shown that time series discords, a
simple, decades-old anomaly detection definition is surprisingly
viable in many domains. In particular, it is at least competitive
with the more complex deep learning methods, which require
both training data and a plethora of parameters to be tuned.

Some researchers in the community had noted the utility of
discords, but waived off from using them, noting “discords are
limited (because) a fixed length must be specified in advance,
making it a clearly suboptimal approach for applications
dealing with climate data events of varying length” [12]. Our
introduction of MERLIN removes this last barrier to adoption.

Finally, we would like to end with a note for the anomaly
detection research community. In recent years there has been an
explosion of deep learning work on anomaly detection,
including works that introduced or evaluated the four
benchmarks we consider in this work [11][16][17]. However,
we feel that there is currently little evidence presented that the
complexity of these approaches is warranted. Recall that for the
most part we can reproduce or improve upon these results,
without even looking at the training data, and using a method
that is, by any reasonable standard, an order of magnitude
simpler4. Please note that we do not doubt the utility of deep
learning in general, or the ingenuity of these papers. However,
we believe that the community needs to:

• Expand the list of strawmen it compares to. Perhaps half the
benchmark problems can be solved by algorithms created in
the 1950s [19] (See Appendix A). Simple ideas should be
compared to, if the community is to justify complexity.

• Consider more challenging benchmarks.

• Directly visualize algorithm predictions on many examples,
to give the reader a better appreciation of strengths and
weaknesses of the proposed approach. Internally, we did this
for over a dozen methods (not shown due to space
limitations), and found it incredibly useful to understand
when methods work, and when they fail.

There are several directions for future work, the most
pressing of which are generalizing MERLIN to handle multi-
dimensional data, and to handle streaming data. In addition, note
that all the results shown in this work complexity ignored the
training data. We plan to exploit such data, if only to learn values
for MinL and MaxL.

REFERENCES

[1] A. Bagnall et al., “The great time series classification bake off: a review
and experimental evaluation of recent algorithmic advances,” Data Min.
Knowl. Discov., 31(3), 2017, pp. 606-660.

[2] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When Is Nearest
Neighbor Meaningful?” ICDT, 1999, pp. 217-235.

[3] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Comput. Surv. 41(3), 2009.

[4] P. Filonov, A. Lavrentyev, and A. Vorontsov, “Multivariate industrial
time series with cyber-attack simulation: Fault detection using an lstm-
based predictive data model,” arXiv preprint arXiv:1612.06676, 2016.

[5] J. Lin, E. Keogh, A. Fu, H. Van Herle, “Approximations to Magic:
Finding Unusual Medical Time Series,” CBMS, 2005, pp. 329-334.

4 An order of magnitude simpler in terms of number of parameters to set, of the

number of lines of code written etc.

[6] C.C.M. Yeh et al., “Matrix Profile I: All Pairs Similarity Joins for Time
Series: A Unifying View that Includes Motifs, Discords and Shapelets,”
Proc’ of 16th IEEE ICDM, 2016, pp. 1317-22.

[7] D. Yankov, E. Keogh, and U. Rebbapragada, “Disk Aware Discord
Discovery: Finding Unusual Time Series in Terabyte Sized Datasets,”
ICDM, 2007, pp. 381-390.

[8] N. Laptev and S. Amizadeh, “S5 - A Labeled Anomaly Detection Dataset,
version 1.0(16M).” 2015. Distributed by Yahoo Research.
https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70

[9] I. Vasheghani-Farahani, et. al. “Time Series Anomaly Detection from a
Markov Chain Perspective,” ICMLA, 2019, pp. 1000-1007.

[10] V. Zhang, “A Tour of AI Technologies in Time Series Prediction,” 2019.

[11] S. Däubener, et. al, “Large Anomaly Detection in Univariate Time Series:
An Empirical Comparison of Machine Learning Algorithms,” 19th
Industrial Conference on Data Mining ICDM 2019, 2019.

[12] B. Barz, Y. G. Garcia, E. Rodner and J. Denzler, "Maximally divergent
intervals for extreme weather event detection," OCEANS 2017 -
Aberdeen, Aberdeen, 2017, pp. 1-9.

[13] "City of Melbourne - Pedestrian Foot Traffic."
www.pedestrian.melbourne.vic.gov.au/ (accessed May 22, 2020).

[14] Mitzi McRae, Melbourne Djembe - Bourke St Mall Flash Mob - 29th June
2013. (Jul. 20, 2013). Accessed: May 22, 2020. [Online Video].
Available: www.youtube.com/watch?v=gLzDFjiRQE8

[15] M. Doan, et.al (2015), Profiling pedestrian distribution and anomaly
detection in a dynamic environment. CIKM 2015, pp 1827-30

[16] K. Hundman, et al. Detecting Spacecraft Anomalies Using LSTMs and
Nonparametric Dynamic Thresholding. KDD 2018: 387-395

[17] Ahmad, S., Lavin, A., Purdy, S., & Agha, Z. (2017). Unsupervised real-
time anomaly detection for streaming data. Neurocomputing. 2017.

[18] E. Keogh, J. Lin, A. W. Fu: HOT SAX: Efficiently Finding the Most
Unusual Time Series Subsequence. ICDM 2005: 226-233

[19] Page, E. S. (1957). "On problems in which a change in a parameter occurs
at an unknown point". Biometrika. 44 (1/2): 248–252.

[20] Y. Bu, L. Chen, A. W. Fu, Dawei Liu: Efficient anomaly monitoring over
moving object trajectory streams. KDD 2009: 159-168

[21] https://en.wikipedia.org/wiki/January_2017_Melbourne_car_attack

[22] M. Ahmed, A. Mahmood: Network Traffic Pattern Analysis Using
Improved Information Theoretic Co-clustering Based Collective
Anomaly Detection. SecureComm (2) 2014: 204-219

[23] MERLIN Webpage: https://sites.google.com/view/merlin-find-anomalies

APPENDIX A: Some Benchmark Datasets are Trivial

In the main text we noted that some fraction of the benchmark
data yield to simple algorithms from the 1950s [19]. Here we
demonstrate that claim. This is important because it confounds
any comparison of algorithms. For example, suppose we find
that Olympic powerlifter Long Qingquan can lift 1, 2, 3 and 300
kg, and that the current author can lift 1, 2 and 3 kg. It would be
foolish to conclude that because they agree on ¾ of the lifting
tasks, that they are almost equally strong.

A further simplified version of the sixty-three year old algorithm
in [19] is:
flag = zeros(size(T)); %% Code can be run in Matlab

for i = 4 : length(T)-4

 if std(T(i+1:i+4)) - std(T(i-3:i)) > 1, flag(i) = 1;, end;

end;

In Figure 19 we show the results of running this code on two
benchmark datasets that yield to such simple algorithms.

Figure 19: Two (of many) examples of benchmark datasets that

yield to the trivial hard-coded algorithm shown above. top) From

NASA [16]. bottom) From Yahoo [8].

0 1500

Yahoo: Real 67, Ground truth labels

0 9000

Mars Science Lab: A-1, Ground truth labels

Trivial

algorithm

prediction(s)

Trivial

algorithm

prediction(s)

