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Abstract—Time series anomaly detection remains a 

perennially important research topic. If anything, it is a task that 

has become increasingly important in the burgeoning age of IoT. 

While there are hundreds of anomaly detection methods in the 

literature, one definition, time series discords, has emerged as a 

competitive and popular choice for practitioners. Time series 

discords are subsequences of a time series that are maximally far 

away from their nearest neighbors. Perhaps the most attractive 

feature of discords is their simplicity. Unlike many parameter 

laden methods, discords require only a single parameter to be set 

by the user: the subsequence length. In this work we argue that 

the utility of discords is reduced by sensitivity to this single user 

choice.  The obvious solution to this problem, computing discords 

of all lengths then selecting the best anomalies (under some 

measure), seems to be computationally untenable. However, in this 

work we introduce MERLIN, an algorithm that can efficiently and 

exactly find discords of all lengths in massive time series archives. 

We demonstrate the utility of our ideas on a large and diverse set 

of experiments and show that MERLIN can discover subtle 

anomalies that defy existing algorithms or even careful human 

inspection. Moreover, we show how to exploit computational 

redundancies to make MERLIN two orders of magnitude faster 

than comparable algorithms.  
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I. INTRODUCTION 

Time series data is ubiquitous in industrial, medical and 
scientific settings. One of the most basic time series analytical 
tasks is to simply spot anomalous regions. This may be the end 
goal of the analytics, or simply a preprocessing step for a 
downstream task. There are at least hundreds of algorithms for 
finding anomalies, but which should we use? 

Since their introduction, Time Series Discords have emerged 
as a competitive approach for discovering anomalies [5]. For 
example, a team lead by Vipin Kumar conducted an extensive 
empirical comparison concluding that “on 19 different publicly 
available data sets, comparing 9 different techniques (time 
series discords) is the best overall.” [3]. We attribute much of 
this success to the simplicity of the definition. Time series 
discords are intuitively defined as the subsequences of a time 
series that are maximally far away from their nearest neighbors. 
This definition only requires a single user specified parameter, 
the subsequence length. With only a single parameter to set1, it 
is harder to overfit the anomaly definition, and overfitting seems 
to be a major source of false positives for this task [3][16].  

 
1 Note that some algorithms that discover discords may have other parameters, 

the discord representation itself requires just a single parameter. 

To help the reader appreciate the importance of the 
subsequence length in anomaly discovery, let us consider an 
excerpt of the Gasoil Plant Heating Loop Data Set [4]. This data 
set had a simulated cyber-attack introduced at the time indicated 
by the red dashed line shown in Figure 1. 

 

Figure 1: top) An excerpt from Filonov’s Gasoil dataset, a reading 

from RT_temp.T [4].  bottom) The discord scores for three lengths, 

1,000, 2,000 and 4,000. The higher the score, the more anomalous the 

corresponding subsequence is.  

We computed the anomaly scores for every subsequence for 

three different lengths. For the shortest length of 1,000, it is 

unsurprising that we get many spurious anomalies. This system 

transitions between discrete temperature states, giving it a 

“staircase” effect. If the subsequence length is less than the 

length of a step, the z-normalization “blows up” the 

subsequence and produces unstable results. At the longer length 

of 4,000 the curse of dimensionality is beginning to dominate. 

As noted by Beyer et. al. “as dimensionality increases, the 

distance to the nearest data point approaches the distance to 

the farthest data point” in [2]. 

However, consider the plot for subsequences of length 

2,000 shown in Figure 1. There is a clear peak at the correct 

location. Moreover, it is significantly larger than the mean 

value of the scores, giving a clear visual signal that this is a true 

anomaly. This example shows that there is a “sweet spot” (or 

rather, sweet range) for subsequence length when performing 

anomaly discovery. In some cases, the analyst may have a first-

principles-model or experience to suggest a good value, but 

anomaly/novelty discovery is often exploratory by nature.  

Before continuing, we will take the time to reiterate the 

utility of discord discovery in the vast space of anomaly 

detection techniques [3][4][8][9][11][12][15][16][17][18][20]. 

In essence, we want to answer the following question: “why 
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make an effort to address the noted weakness of discords, 

rather than invent or use a different method?” Figure 2 shows 

the discord scores computed for a benchmark dataset that has 

been considered in dozens of research efforts [17].  

 
Figure 2: top) Six months of taxi demand in New York City. bottom) 

The discord scores for subsequence length of one day.  Most of the 

discords discovered have an intuitive meaning.  

Note that the discords discovered have different causes. 

Some are predicable holidays, some are caused by ad-hoc 

events, like the hastily organized BLM march, and some are 

weather events. One anomaly is simply a bookkeeping error; 

setting the clock back by one hour for daylight saving time 

made it appear as if the taxi demand doubled just after midnight. 

Paper [9] also considers this dataset. While they find some 

true positives, they also find many false positives. However, 

they tell us that “the parameters for this experiment are w = 30, 

k = 6, q = 5, h1 = −3.57, and h2 = −4.28.” Similarly, there are 

many research efforts on deep learning anomaly detection. One 

recent paper using an LSTM model also considers this taxi 

dataset [10]. It does find Xmas, New Year, and the blizzard, but 

fails to find Thanksgiving, the BLM march, or the (apparent 

even to the human eye) daylight-savings-time anomaly. 

These two comparisons highlight the attractiveness of 

discords for practitioners. It is hard to imagine that most 

practitioners would be able and willing to carefully set the five 

parameters of Markov Chain approach [9], or the dozen or so 

parameters/choices for a LSTM model [16]. Moreover, even if 

they did so, with so many parameters to fit on a small dataset, 

avoiding overfitting would be very challenging.  

Because the effectiveness of discords is central to our work, 

we will take the time to consider just one more motivating 

example. A recent paper conducted a “bake-off” with eight 

diverse representatives of the state-of-the-art anomaly detection 

algorithms (as opposed to simply minor variants of a single 

approach) [11]. Figure 3 contrasts the results on one benchmark 

(Yahoo) data set with time series discords. 

The authors of this study noted, “None of the algorithms tested 

can correctly identify the first five anomalies,... AdVec 

generates seven false positives...” In contrast to these eight 

approaches, the discord approach performs perfectly on this 

task, assuming only that its one parameter is a reasonable value. 

The goal of this research effort is to remove the need to set even 

that sole parameter. We call our proposed algorithm MERLIN2. 

MERLIN can efficiently and exactly discover discords of every 

possible length, then either report all of them, or just the top-K-

discords under an arbitrary user defined scoring metric. 

 

 
2 This name is a play on the fact that the first paper on time series discords was 

titled “Approximations to Magic” [5].  Merlin was the magician of the 

Arthurian legend. In addition, Mitsubishi Electric Corporation’s subsidiary 

 
Figure 3: top) A screen capture from [11] showing the performance 

of eight state-of-the-art anomaly detectors on one of the Yahoo 

benchmarks [8]. bottom) Time series discords (here, of length 8) have 

a perfect score on this problem, with only the mildest of assumptions.  

    The rest of this paper is organized as follows. In Section II 

we introduce background material and related work. Section III 

introduces our proposed algorithm, before we offer an 

extensive empirical evaluation in Section IV. We conclude with 

a discussion of our findings in Section V. 

II. BACKGROUND AND RELATED WORK 

In this section, we introduce all the necessary definitions and 
notations, including a review of an existing algorithm for 
discord discovery that we will use as a starting point for our 
research.  We will also consider related work to put our ideas in 
context [7].  

A. Definitions 

We begin by defining the data type of interest Time Series: 

Definition 1: A time series T = t1, t2, …, tn is a sequence of n 

real values.  

Our distance measures quantify the distance between two 

time series based on local subsections called subsequences: 

Definition 2: A subsequence 𝐓𝑖,𝐿  is a contiguous subset of 

values with length L starting from position 𝑖 in time series T; 

the subsequence 𝐓𝑖,𝐿  is in form 𝐓𝑖,𝐿= ti, ti+1,…, ti+L-1, where 

(1 ≤  𝑖 ≤  𝑛 –  𝐿 +  1)   and L is a user-defined subsequence 

length with value in range of 3 ≤ 𝐿 ≤ |𝐓|. 

Here we allow L to be as short as three, although that value 

is pathologically short for almost any domains.  

Many time series analytical algorithms need to compare 

subsequences using some distance measure Dist; here we use 

the z-normalized Euclidean distance. As pointed out by the 

original authors of the discord definition, we must be careful to 

exclude certain trivial matches from any meaningful definitions 

of subsequence similarity by defining non-self matches.  

Definition 3: Non-Self Match: Given a time series T 

containing a subsequence C of length L beginning at position 

p and a matching subsequence M beginning at q, we say that 

in the USA is called MERL (Mitsubishi Electric Research Laboratory, 

Boston). 
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M is a non-self match to C at distance of Dist(M,C) if | p – q| 

≥ L. 

We can now use this definition of non-self matches to define 

time series discords: 

Definition 4: Time Series Discord: Given a time series T, the 

subsequence D of length L beginning at position i is said to 

be the discord of T if D has the largest distance to its nearest 

non-self match. That is, ∀ subsequences C of T, non-self 

match MD of D, and non-self match MC of C, min(Dist(D, 

MD)) > min(Dist(C, MC). 

The starting location of the discord is recorded in index and 

its distance to its nearest neighbor is record in distance. All 

previous efforts to find discords considered only a single length, 

however we plan to consider all lengths in a given range, thus 

producing an array of discords indexed by the length i, 

discordi =[indexi, distancei]. 

For simplicity, we define only the top-1 discord, the 

generalization to top-K is trivial [7]. Having defined discords, 

we will next review an algorithm to discover them.  

B. A Review of the SOTA Discord Discovery Algorithm 

Our proposed algorithm makes repeated use of the discord 

discovery algorithm introduced in [7]. The algorithm was 

unnamed in that work, so for clarity we will call it DRAG, 

which is both a truncated version of the inventor’s name, and a 

backronym that stands for Discord Range Aware Gathering. 

For any user-given length, the algorithm requires a single 

input parameter r. This value should ideally be set such that it a 

little less than the discord distance, that is, the distance between 

the discord and its nearest neighbor. Of course, that distance is 

unknown at this point, so the user must provide an estimate. If 

this estimate is accurate, just a little less than the eventually 

discovered true discord value, then DRAG has a time and space 

complexity of just O(nL). If the estimate is much too small, the 

algorithm will give the correct result, but have a time and space 

complexity of O(n2). In either case, we call any invocation of 

DRAG that used an r value less than the eventually returned 

discord distance a success. 

 In contrast, if the estimate for r is too large, the algorithm will 

return null, a situation we denote as a failure. Of course, the 

situation can be remedied, but requires the user to reduce the r 

value and try again. This sensitivity to r parameter was largely 

glossed over in the original paper [7], but as we will show in 

Section III it is a significant limitation of DRAG. However, as 

we will later explain, we have solved this issue for MERLIN.  

We refer the reader to [7] for a detailed explanation of the 

DRAG algorithm, but for completeness we will give a brief 

overview. The DRAG algorithm is a two-phase algorithm, with 

each phase being a pass across the time series. 

• Phase I: As shown in Table 1 the algorithm initializes a set 

C, of candidate discords by placing the first subsequence in 

C. The algorithm then “slides” along the time series 

examining each subsequence. If the subsequence currently 

under consideration is greater than r from any item in the 

set, then it may be the discord, so it is added to the set. 

However, if any items in the set C are less than r from the 

subsequence under consideration, we know that they could 

not be discords, thus they are admissibly pruned from the 

set. At the end of Phase I, the set C is guaranteed to contain 

the true discord, possibly with some additional false 

positives. 

Table 1: Phase I, Candidate Selection Algorithm 

Input: T:  Time series 

  L:  Subsequence length 

  r:  Range of discords 

Output: C: Candidate set of discords 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

C = {}                     // Start with empty set 

For I = １ to |T| - L + 1  // Scan all subsequences 
    iscandidate = true 

    For j in C 

        If I and j are NOT trivial matches 

            If dist(Ti,L, Tj,L) < r 

                C = C \ j 

                iscandidate = false // We can prune this 

    If iscandidate 

        C = C ∪ {i}       // Add to candidate set 

If NOT isemptyset() 

       return C           // Implicitly return success 

Else 

       return failure     // Explicitly return failure 

Note that the algorithm can end in failure (line 14). Or, we 

can regard this situation as successfully finding no discord 

greater that the threshold of r. If the user wants the find the 

discord regardless of its eventual distance, she must run the 

algorithm again with a smaller value for r. We will have 

more to say about this issue in Section III.a. 

After Phase I has built a set of candidate discords, we are 
now ready to run Phase II to refine them.  

• Phase II: As shown in Table 2, we again slide along the 

time series, this time refining the candidates to remove the 

false positives. We simply consider each subsequence’s 

distance to every member of our set, doing a best-so-far 

search for each candidate’s nearest neighbor. The algorithm 

returns a sorted list of all discords with a distance greater 

than r (there is guaranteed to be at least one). The largest 

such score is our top-1 discord. 

Table 2: Phase II, Discords Refinement Algorithm 

Input: C:  Candidate set of discord 

 T:  Time series 

  L:  Subsequence length 

  r:  Range of discords 

Output: D: Set of discords (index, distance) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

D = {}                          // Start with empty set 

For i = 1 to |T| - L + 1        // Scan all subsequences 

    isdiscord = true 

    For j in C                  // Scan all candidates 

        If i and j are NOT trivial matches 

            d = dist(Ti,L, Tj,L) 

            If d < r 

                C = C \ j 

                isdiscord = false // Eliminate candidate 

            else 

                dj = min(dj, d) 

    If isdiscord 

        D = D ∪ {(j, L, dj)}  // Add to the set of true..  
 return D                      // ..discord and return 

Given this (brief) review of the algorithm, it is easy to see why 

its performance depends so critically on the user’s choice of r. 

A pessimistically small value for r will mean that in Phase I 



most subsequences will be added to the candidate set, exploding 

the time and space complexity to the O(n2) case. However, if r 

is chosen well, the size of this set remains very small relative to 

n. For example, in [7] they show that even with a million 

subsequences, for a good value of r, the size of C does not 

exceed 50 candidates, making the algorithm effectively O(nL). 

C. Related Work 

In the previous section we claimed DRAG is the state-of-the-

art in discord discovery (we are not (yet) claiming state-of-the-

art in anomaly detection). The reader may be surprised to find 

that we did not list the more recent Matrix Profile (MP) 

algorithms as state-of-the-art [6]. The MP algorithms 

(STOMP/SCRIMP etc.) surely are state-of-the-art for motif 

discovery, and as a side-effect of motif discovery, they happen 

to also compute discords. However, the MP algorithms are all 

O(n2). It is impressive that their time complexity is independent 

of L, as almost all algorithms in this space scale poorly with L. 

Nevertheless, for our purposes these algorithms compute much 

more information than is needed, and are thus much slower than 

we can achieve for the limited task-at-hand.  

There are also algorithms that discover discords by 

discretizing the time series, typically using SAX, and hashing 

the symbolic words that correspond to subsequences [5][18]. 

The basic idea being that a lack of collision for a word is 

evidence that the word might  be unique, hence correspond to a 

discord. After the candidates have been identified this way, an 

algorithm similar to Phase II in Table 2 can be used to refine 

them. These algorithms can be competitive with DRAG, but 

only if three parameters for SAX are very carefully set [18]. 

The more general area of anomaly detection is increasingly 

difficult to review. In particular there has been a recent 

explosion of papers on deep learning for anomaly detection  

[4][9][10][11][16][17][20]. This is a diverse group of research 

efforts; the one thing that they have in common from our point 

of view is that they all require many critical parameters to be 

set3. For example, Paper [9] explicitly lists five parameters (and 

perhaps has a few more in the background), the LSTM network 

in [16] requires eight parameters. Clearly deep learning has had 

an enormous impact in image processing, NLP etc. However, 

as we hinted at in Figure 2 and Figure 3, and as we will later 

empirically show, it is not obvious that deep learning out 

performs simpler and more direct shape based methods.  

III. THE MERLIN  ALGORITHM 

We begin by illustrating some novel observations about the 

sensitivity of DRAG to the r parameter. 

A. Exploitible Obervations about DRAG 

Consider the small synthetic dataset shown in Figure 4: it is 

simply a slightly noisy sine wave with an obvious “anomaly” 

embedded in it starting at location 1,000.  

 
3 Note, we distinguish between parameters that merely effect the speed 

or memory footprint, vs. parameters that can change the anomalies 

discovered. It is the latter we call “critical”. 

 
Figure 4: A slightly noisy sine wave with an anomaly embedded at 

location 1,000.  

What would be an appropriate value of r here given that we 

wish to discover discords of length 512? Even with significant 

experience with the DRAG algorithm, it is not immediately 

obvious to us. To gain some intuition, in Figure 5, we 

considered every possible value of r from 1 to 40, in increments 

of 0.25, measuring both how long DRAG takes, and whether it 

ended in success or failure.  

 
Figure 5: The time taken for DRAG given values for r that range from 

1.0 to 40.0. For any value greater than 10.27 the algorithm reports 

failure and must be restarted with a lower value.  

After the fact, we know that the true discord value is 10.27. 

The reader will appreciate that this value, or rather, this value 

minus a tiny epsilon, is the optimal setting of r [7].  

Suppose that we had guessed r = 10.25, then DRAG would 

have taken 1.48 seconds to find the discord. However, had we 

guessed a value that was just 2.5% less, DRAG would have 

taken 9.7 times longer. Has we guessed r = 1.0 (a perfectly 

reasonable value on visually similar data), DRAG would have 

taken 98.9 times longer.  

In the other direction, had we guessed any greater than 1% 

more, DRAG would have failed. The time it takes to complete 

a failed run is about 1/6 the time of our successful run when r = 

was set to the 10.25 guess. So, while failure is cheaper, it is not 

free. This eliminates certain obvious algorithms to find a good 

value for r. For example, we could have tried every integer from 

40 downwards until success, but that would have cost 29 time-

for-failures plus one time-for-success with r = 10, which is 

about 39.2 seconds, or about 26 times worse than our “lucky” 

guess of r =10.25. 

 Note that a failure lets us know that our guess for r was too 

high, but otherwise does not appear to contain exploitable 

information as to a better value for r.  

One might imagine that there is some simple heuristic for 

setting r. If there is, it has eluded us (and, to the best of our 

knowledge, the rest of the community that uses this algorithm 

[3]). Even on datasets that are superficially similar to each 
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other, say two examples of ten minutes of healthy teenage 

female electrocardiograms, the best value for r can differ by at 

least two orders of magnitude.  

In summary, choosing a good value for r is critical for 

DRAG to be efficient, but it is a very difficult parameter to set. 

However, for our task-at-hand, there is a ray of hope. The best 

value for r, for discords of length L, is likely to be very similar 

to the best value for r, for discords of length L-1. To see this, 

we measured the correlation between the optimal r for discords 

with lengths differing by one, for all L from 16 to 512 for the 

example shown in Figure 4. The correlation was 0.998.  

It is important to ward off a possible misunderstanding, 

suggested by this very high correlation; these differences are 

typically very small, but they are not necessarily all positive. 

Because we are working with z-normalized Euclidean distance, 

when we make the discord length longer, the discord score can 

increase, decrease or stay the same. The blue line shown in 

Figure 6 illustrates this fact.   

 
Figure 6: (blue line) The discord score, which is also the optimal 

setting for r, for the dataset shown in Figure 4. The inset shows a zoom-

in of the region from 64 to 100. Here we can more clearly see the blue 

line is accompanied by a red line, which attempts to predict it, using 

only the five previous values. 

As Figure 6 makes clear,  the obvious idea of using the last 

discordi distance to set the value for r when attempting to 

discover discordi+1 is a bad idea. In this example, it would result 

in 45.4% of the runs ending in failure. Thus, we want the value 

of r to be a “little less” that discord distance. The meaning of 

“little less” here depends on the data and on the lengths 

currently considered, so we propose to learn it by looking at the 

variance of the last few (say five) discord values.   

Thus, we have an informal algorithm to set the value of r.  

Compute the discords working from the minimum to the 

maximum length. At each stage, compute the mean , and 

standard deviation , of the last five discord distances, and for 

the next invocation of  DRAG, use  r =  – 2. If DRAG reports 

failure, repeatedly subtract another  from the current value of 

r until it reports success. 

Using this simple prediction algorithm on the dataset shown 

in Figure 4, we would have zero failures. Moreover, on average, 

the value predicted would be 99.03% of the optimal value for r.  

This idea leaves just one thing unspecified. How do we set 

r for the first five discord lengths? We do have an upper bound 

as to the largest possible discord distance for time series of 

length L, it is simply the largest possible distance between any 

pair of subsequences of length L, which is 2√𝐿. So, for the first 

length of discord we attempt to discover, we can set r = 2√𝐿, 

and keep halving it until we get a success. In general, 2√𝐿 is a 

very weak bound, and likely to produce many failures. So, we 

do not want to do this for the next four items. Here instead, we 

can use the previous discord distance, minus an epsilon, say 

1%. In the very unlikely event that this was too conservative 

and resulted in a failure, we can keep subtracting an additional 

1% until we get a success.  

Table 3 formalizes this algorithm.  

Table 3: The MERLIN Algorithm 

Input: T:  Time series 

  MinL:  Subsequence length lower bound 

  MaxL:  Subsequence length upper bound 

Output: D: Set of discords (index, length, distance) 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

r = 2  sqrt(MinL)    // Set r to its largest possible value 

distanceminL = -inf    // Allow entry into loop 

While distanceminL < 0 // Find first discord 

  [indexminL , distanceminL]= DRAG(T, MinL,r) 

  r = r  ½         // If loop repeats, make r smaller    

End 

For i = MinL + 1 to MinL + 4 // Find next 4 discords 

   distancei = -inf           // Allow entry into loop 

    While distancei < 0       // Decrease r till success 

     r = 0.99  distancei-1 

     [indexi, distancei]= DRAG(T,i,r) 

     r = r  0.99 // If loop repeats, make r a little smaller    

    End 

End 

For i = MinL + 5 to MaxL   // Find all remaining discords 

  M = mean(distancei-1 to i-5) // Use local info about.. 

  S =  STD(distancei-1 to i-5) // ..the mean and STD.. 

  r = M – (2S)           // ..to predict good value for r  

  [indexi, distancei]= DRAG(T,i,r) 

  While distancei < 0     // looks like our r was too high..   

     [indexi, distancei]= DRAG(T,i,r) //..so lets reduce.. 

     r = r – S                       // ..it until success 

   End 

End 

The algorithm has an apparently arbitrary choice. Why 

work from the minimum to the maximum length, rather than the 

other way around? Recall that is it only for the first invocation 

of DRAG that we are completely uncertain about a good value 

for r, and we may have multiple failure runs and/or invoke 

DRAG with too small of a value for r, making it run slow. It is 

much faster to do this single unoptimized run on the shorter 

subsequence lengths.  

B. Defeating MERLIN 

There are two circumstances where MERLIN can 

dramatically fail. Fortunately, there are trivial fixes.  

If there is a constant region longer than MinL, then our 

attempt to z-normalize before computing the Euclidean 

distance will divide by zero. However, it is trivial to monitor 

for and report or ignore such regions. Depending on user 

choice, such regions may warrant flagging as an anomaly or 
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not. For example, in hospital settings the data is replete with 

constant regions, due to disconnection artifacts during bed 

transfers etc. In contrast, a constant region in an insertable 

cardiac monitor (pacemaker) is almost certainly battery failure 

or heart-failure, in either case warranting an alarm. 

Another way MERLIN could fail is if the anomaly happens 

twice, and essentially looks the same both times. This has been 

called the “twin freak” problem. This can be solved by 

changing the first nearest neighbor (Definition 4) to the kth 

nearest neighbor. However, in practice this rarely seems to be 

an issue. For example a paper that wanted to show an anomaly 

detection method that was invariant to “twin freaks” had to 

resort to copying and pasting data to contrive the situation [20]. 

In this work we use only the simple first nearest neighbor. 

IV. EXPERIMENTAL EVALUATION 

We begin by stating our experimental philosophy. We have 
designed all experiments such that they are easily reproducible. 
To this end, we have built a webpage that contains all datasets, 
code and random number seeds used in this work, together with 
spreadsheets which contain the raw numbers [23]. This 
philosophy extends to all the examples in the previous section.  

A. Metrics of Success and the Unsuitability of Benchmarks 

There are now a handful of benchmark datasets in the 
literature. We have already considered (a subset) of them in 
Figure 1, Figure 2, Figure 3 and Figure 10, and we will consider 
more below. However, we believe that the reader should be 
somewhat skeptical of research efforts that report only summary 
statistics on these datasets. There are at least two reasons for 
such skepticism. 

• Consider the NYC Taxi example which is part of the NAB 
benchmark [17]. This dataset is labeled as having five 
anomalies, but as Figure 2 shows, this dataset has at least 
twice that number of anomalies. For example, the 
benchmark does not list the daylight-saving time anomaly, 
which is arguably the most visually jarring anomaly in the 
dataset. Any algorithm that does find this anomaly will be 
penalized as having produced a false positive. In [23] we 
show more examples of mislabeled benchmark data. 

• A large fraction of the benchmark datasets contain anomalies 
that are so obvious that they are trivial to detect. For 
example, consider Figure 7, which show examples from the 
Mars Science Laboratory [16], NAB [17] and Yahoo 
benchmarks. It is hard to imagine any reasonable algorithm 
failing to find such anomalies. Even if the benchmark data 
also includes some challenging anomalies, counting success 
on these trivial problems can artificially inflate metrics of 
success such as ROI curves, giving the illusion of progress.  
See Appendix A for more information and examples.  

For the reasons above, we think that a direct visual summary 
of the output of a proposed anomaly detection algorithm on 
diverse datasets can offer the reader the most forceful summary 
of the algorithm’s strengths and weaknesses (although we must 
be careful to avoid attempting “proof-by-anecdote”).  For that 
reason, we have chosen to show fifteen diverse examples below. 

It is important to note that our discussion some issues with 
the benchmark datasets should in no way be interpreted as 
criticism. These groups have spent tremendous time and effort 
to make a resource available to the entire community and should 
rightly be commended. It is simply that we must be aware of the 
limitations of metrics reported on them without visual context. 

 

Figure 7: Examples from the three main anomaly benchmark datasets 

that we regard as too simple to be informative for algorithm 

comparison. top) From the NASA benchmark [16]. center) From the 

NAB benchmark [17]. bottom) From the Yahoo Benchmark. 

As such, we have endeavored to have many such examples 
in this work. In particular, before performing conventional 
experiments to compare MERLIN to the state-of-the-art, we 
begin with some case studies that give the reader an appreciation 
of the kind of subtle anomalies that MERLIN can discover.  

B. Discovery of Ultra Subtle Anomalies 

Virtually all anomaly detection benchmarks in the literature 
contain anomalies that also yield to casual visual inspection. Of 
course, this does not mean that algorithms that can detect such 
anomalies are of no utility. Human inspection, especially at 
scale, is expensive. Nevertheless, it is interesting to ask if we can 
detect very subtle anomalies, that would defy human inspection. 
However, this seems to beg the question, how can we know if a 
time series contains such ultra-subtle anomalies?  

We propose the follow experiment to allow us to obtain 
ground-truth subtle anomalies. Consider Figure 8, which shows 
the electrocardiogram (ECG) of a 51-year old male, with an 
obvious anomaly at about the half-way point. The anomaly is so 
obvious that surely any algorithm could discover it.  

 
Figure 8: An ECG signal with an obvious anomaly (a PVC).  

However, suppose we consider only the Central Venous 
Pressure (CVP) data, which was recorded in parallel. The ECG 
is an electrical signal, whereas the CVP is a mechanical signal, 
the blood pressure in the venae cavae. Moreover, because the 
CVP reflects the amount of blood returning to the heart, the 
elasticity of the blood vessels tends to dampen out any 
irregularities in the heartbeat. As Figure 9 shows, the PVC 
anomaly is not visually apparent in the CVP, yet MERLIN 
clearly indicates at the correct location.  
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Figure 9: A CVP signal recorded in parallel with the ECG shown in 

Figure 8 does not show visual evidence of an obvious anomaly caused 

by the PVC, yet MERLIN clearly indicates its presence.  

Note that our inability to see the anomaly in Figure 9 shows  
should not be attributed to the small size of the figure (the reader 
is invited to see a larger reproduction here [23]) or our lack of 
medical experience. Dr. Greg Mason with almost forty years of 
experience viewing such data, could not detect this anomaly. 

To see that this was not pure luck, let us consider a dataset 
from a totally different domain with a similarly subtle anomaly. 
In Figure 10 we show a snippet of data from the Mars Science 
Laboratory (MSL) rover, Curiosity [16]. 

 
Figure 10: A signal from the Mars Curiosity rover was annotated as 

having an anomaly from 2550 to 2585 (pink bar) [16]. While the cause 

of the anomaly is unclear, MERLIN has no difficulty finding it. 

In the paper that introduced this dataset, the authors 
introduced a LSTM network that could also find this anomaly 
[16]. However, to do so, they required training data, and the 
careful setting of eight parameters. In contrast, MERLIN finds 
this subtle anomaly with no training data, and only the weakest 
of hints as to the anomaly lengths (MinL and MaxL) to consider. 

C. Anomalies at Different Scales.  
In this section we anecdotally demonstrate the utility of 

being able to discover multiscale anomalies. We simply wish to 
show that anomalies that differ by at least an order of magnitude 
can exist even in quotidian datasets. 

We begin by revisiting the NYC Taxi demand dataset shown 
in Figure 2. In Figure 11 we show a subset of the data, with just 
the top-1 motif of every length from 5 hours to four days.    

 

Figure 11: As subset of the Taxi demand dataset shown in Figure 2, 

shown with all discords the range of 5 to 96 hours. 

While the daylight-saving anomaly directly effects only two 
hours, the shape of these two hours is only usual in the context 
of the few hours that surround them. Similarly, while 
Thanksgiving is somewhat unusual in its lower passenger 
volume and lack of a rush hour peak of people leaving the city 
after work, a somewhat similar pattern to this also happens on 
the weekends. However, in the context of being surrounded by 
normal days, Thanksgiving is unusual. The discords of up to 
four days long discovered by MERLIN in Figure 11 reflect this. 

We also considered a similar but much longer dataset of 
passenger volume at the Taipei Xinjian District Office metro 
station. We searched from ten hours to ten days. Over this 
enormous range of scales, only seven distinct anomalies are 

discovered, Figure 12.bottom shows four of them. Note that 
some of the anomalies have natural causes (weather events), and 
some are cultural artifacts such as Chinese New Year. 

Before leaving this section, we considered some final 
examples in this vein.  As hinted at in Figure 13.top, the city of 
Melbourne has released almost a decade’s worth of pedestrian 
traffic volume from various sites in the city [13]. 

 

Figure 12: top) Passenger volume at a Taipei metro station. Four of 

the anomalies discovered are shown in context.  

While there is good spatial coverage, the temporal resolution 
is very low at just one datapoint per hour. Because of this, like 
most of the many research groups that explored this data 
resource, we originally  only searched for anomalies of length 
days or weeks [15]. However, as Figure 13, hints at, using 
MERLIN to free ourselves from assumptions about possible 
anomaly duration allowed us to find unexpectedly short 
anomalies.  

 

Figure 13: bottom) A month of pedestrian traffic volume on Bourke 

Street Mall in Melbourne. top) the shortest anomaly discovered is 

semantically meaningful, it corresponds to a flash-mob dance 

performance (video at [14]) that restricted traffic for about ten minutes. 

Given this ability to find motifs at all scales, we begin to find 
unexpected anomalies everywhere. Three years after the flash-
mob happened, we discovered another short and subtle anomaly 
on the same street. With a little investigation we realized it 
corresponded to a car attack in which an individual deliberately 
drove at pedestrians, killing six and injuring twenty seven [21]. 

 

Figure 14: Two months of pedestrian traffic volume on Bourke Street 

Mall in Melbourne. The anomaly for Xmas is to be expected, but what 

caused the short anomaly on Jan-20-2017?  

D. Scalability 

To demonstrate the scalability of our algorithm, we compare 
it to the Matrix Profile algorithm SCRIMP [6]. In a sense, this is 
unfair to SCRIMP, which discovers not only the discords, but 
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also motifs. Nevertheless, it is a very scalable algorithm because 
it is implemented in a way that makes it constant in the length of 
the subsequences. We used the latest version of the code 
available from the author’s website [6], disabling the GUI 
interface, which required significant time overhead. 

We also wish to test the effectiveness of our method to set 
the value of r for MERLIN by sharing information across 
different values of L. To do this, we implemented the method for 
setting r suggested in [7], which we rerun for every value of L. 
This algorithm is denoted as DRAG-multilength, or DRAGML. 
Note that DRAGML differs from MERLIN only in how r is set.  

The time needed for SCRIMP is independent of the data. 
However, the time needed for the two other algorithms depends 
on the data. The best case would be a dataset like the one shown 
in Figure 7.top, a mostly repetitive time series with a dramatic 
discord that is very far from its nearest neighbor. To avoid such 
bias, we will use the worst-case dataset from MERLIN, random 
walk. For such data, the top-1 discord is only slightly further 
away from its nearest neighbor than any randomly chosen 
subsequence, meaning that the candidate set built in Table 1 
grows relatively large even if given a good value for r. 

Note that STOMPs performance is independent of the 
structure of the data, but the other algorithm’s performance does 
(weakly) depend on the it, we averaged over ten runs. Figure 15 
shows the results of datasets ranging for 212 to 216. 

 

Figure 15: The scalability of MERLIN, DRAG and STOMP in the 

face of increasingly large datasets. 

For short time series, all algorithms perform similarly, but as 
the time series grow longer, SCRIMPs quadratically complexity 
begins to show. While MERLINs first run (for  L = MinL) is no 
faster that DRAG, its subsequent runs are greatly accelerated by 
the predicted value of r, and the amortized cost is about 21 times 
faster by the time we consider time series of length 216. To put 
these numbers in context, 216, datapoints is about 18 minutes of 
data recorded at 60 Hz. Suppose we suspected that there were 
anomalies of length 1 second in our data, but we wanted to 
bracket our search with every value for 30 to 90 datapoints. This 
would take MERLIN just 7.1 minutes, faster than “real-time”. 

E. First look at the Yahoo! Webscope Benchmarks 

In recent years, the Yahoo Webscope anomaly datasets have 
emerged as the de-facto benchmark for anomaly and 
changepoint detection. This diverse archive consists of 367 time 
series, of various lengths in four different classes A1/A2/A3/A4 

with class counts 67/100/100/100. While class A1 has real data 
from computational services, classes A2, A3, and A4 contain 
synthetic anomaly data with increasing complexity. We 
previously showed examples from this benchmark in Figure 3 
and Figure 7.bottom. 

Before presenting summary statistics on the entire archive, 
we will take the time to consider one example in detail. Because 
most of these datasets have multiple anomalies, this is an ideal 
opportunity to show the output of the top-K discords. In Figure 
16.top we show an example with seven anomalies. 

 

Figure 16: top) An example of one the synthetic datasets from the 

Yahoo archive with seven anomalies, whose location is marked by the 

red binary vector. center) The result of running MERLIN to discover 

the Top-7 anomalies. bottom) The result of running MERLIN to 

discover just the top-1 anomalies. 

We know that examples in this subset have point anomalies, 
so a smaller value of MaxL would be appropriate. However, we 
“stress test” our algorithm by considering unreasonably long 
discords up to length 100. In Figure 16.center shows that had we 
consider only 5 to 64, we would have obtained perfect results. It 
is only when we consider MaxL for an unrealistic value of 
greater than 65, that we obtain a single false positive, and then 
only for the 7th discord. Another way to consider how effective 
MERLIN is here is to see how many of the seven anomalies we 
can detect if we only consider the single top-1 discord. As Figure 
16.bottom shows we would still detect six out of seven true 
positives, and have no false negatives.  

F. Large Scale Resutls on the Yahoo! Webscope Benchmarks 

To evaluate on all Yahoo 367 datasets [8], we need to define 
some criteria for correct anomaly detection. Below we explain 
our reasoning behind our choice for metric of success. 

Note that a complete anomaly detection system must have 
two parts, (I) A prediction of the most likely location(s) to 
contain anomalie(s), and (II) an evaluation mechanism (often 
simply thresholding) to determine if those locations warrant 
been flagged as anomalies. In this work, we have mostly avoided 
a discussion of the second part, as it is moot unless we can 
robustly point to candidate anomalies. Also note that in many 
real-world applications, the second part is not needed. For 
example, an analyst might query: “Show me the top-five most 
unusual events in the oil plant in 2018”. Likewise, thresholds 
can often be learned with simple human-in-the-loop algorithms. 
In brief, the user can simply examine a sorted list of all candidate 
anomalies. The discord distance of the first one she rejects as 
“not an anomaly”, can be used as the threshold for future 
datasets from the same domain. Thus, we argue that the first task 
is the most critical, and most worthy of evaluation.  
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Some of the Yahoo datasets have an issue that confounds 
evaluation. In the example shown in Figure 16, the anomalies 
are all well-spaced apart, however in the example shown in 
Figure 3 the anomalies are just two datapoints apart. It is hard to 
imagine critiquing an algorithm that called these two events a 
single anomaly. More generally, we must also consider the 
precision of the algorithm’s prediction of location. If an anomaly 
is located at say location 600, we should surely reward an 
algorithm that predicts 599 or 602. Thus, for simplicity, we 

reward any prediction that is no further off than  1% of T from 
the stated location. This does not significantly increase the 
default rate while allowing us to bypass the issues above. 

Given these considerations, we proposed the following 
metric of successes, which we believe to be fair, transparent and 
reproducible. Each algorithm is tasked with locating the one 
location it thinks most likely to be anomalous (We removed the 
handful of examples that have no claimed anomaly). If that 

location is within   1% of T from a ground truth anomaly, we 
count that prediction as a success.  

We compare to the LSTM method introduced in [16], which 
is one of the most highly cited deep learning for anomaly 
detection papers in recent years. We used the authors own 
implementation, carefully tuning it as advised in [16]. We allow 
the LSTM to “cheat” by training on a subset of the test data.  

For MERLIN, we set MinL = 3 (this is the minimum possible 
value) and the MaxL = 20, and recorded the median location of 
the 18 predictions as the algorithm’s single prediction. This is a 
sub-optimal policy for us if there are two or more anomalies of 
around that length, but makes the evaluation simple. 

Under this metric MERLIN had a recall of 80.0% and the 
LSTM had a recall of 58.3%. While this result is strongly in our 
favor, because of the data quality issues discussed above, we do 
not weight it as heavily as the visual evidence presented in the 
many visual examples shown in this work. 

G. Results on the NASA Benchmarks 

The NASA dataset [16] has garnered significant attention in 
recent years, but as Figure 7.top hints at, some of the tasks are 
trivial. In fact, that understates the case. Many of the anomalies 
consist of changes of variance/range by up to three orders of 
magnitude (examples A1, B1, D12, E7, P4, T3 etc.), and can 
trivially be detected by algorithms dating back to the 1950s [19] 
(see Appendix A for a concrete example of this).  

In addition, for some the examples, the labeled anomaly 
region comprises up to half the data (examples A7, D2, M1, M2 
etc.), meaning that a random choice would have a better than 
even chance of being a true positive. To bypass this issue, we 
scanned all the datasets for examples that were not obviously 
solvable by the human eye in under five seconds.  Excluding 
near redundant examples, only three datasets passed that test, the 
results of running MERLIN on them is shown in Figure 17. 
Apart from a small region of a presumptive false positive in 
Figure 17.center, we achieve perfect results. (We say 
“presumptive” because this dataset also has a handful of labeling 
omission errors, we point them out at [23]). Note that the bottom 
examples both had two anomalies, which we found with just the 
single top-1 discord of various lengths.  

 

 

Figure 17: The results of running MERLIN on three diverse and most 

difficult examples from the NASA benchmark [16]. top) The single 

anomaly in A-4 is easily discovered. center) The two anomalies in C-

2 are discovered, but there may be a short region where we report a 

false positive. bottom) The two correctly detected anomalies are so 

subtle that we show annotated zoom-ins to explain them. 

H. Results on the Gasoil Benchmarks 

Like the NASA dataset, we regard the Gasoil benchmark  [4] 
as being too easy to be interesting. Note that we are only making 
this claim with regard to anomaly detection, it may be useful for 
causality detection etc. In Figure 18 we show the results of 
running MERLIN on two of the more challenging examples. 

 

Figure 18: The results of running MERLIN on two diverse difficult 

examples from the Gasoil benchmark [16]. top) The single anomaly in 

TempT is easily discovered, but there may be a small region where we 

report a false positive. bottom) The single anomaly in RT_level is 

easily discovered. 

V. CONCLUSIONS AND DISCUSSION 

Ahmed and Mahmood created an influential taxonomy of 
anomalies into point anomalies, contextual anomalies and 
collective anomalies [22].  While we refer the reader to the 
original paper for the exact definitions, a review of this work 
shows that MERLIN was able to discovery examples of each 
type.  For example, Figure 16 shows point anomalies that Yahoo 
embedded into a dataset. The Queen’s Birthday example in 
Figure 13 is a classic example of a contextual anomaly. The 
shape of the day is smooth, missing the shaper features caused 
by typical weekday rush-hour commuting. Such days are not 
intrinsically rare, they happen on most weekends, but one only 
sees three such days in a row in the context of a three-day 
weekend. Finally, the anomalies shown in the Gasoil dataset in 
Figure 18, are classic collective anomalies. This observation is 
suggestive of the generality of MERLIN. 

8000

50

500

1

6500 66002400 2500 2600

Ground Truth AnomalyGround Truth AnomalyMars Science Laboratory: T-1

Steep

Rate of

increase

Unique 

“blip”

1600

32

128

Ground Truth AnomalyGround Truth Anomaly
Mars Science Laboratory: C-2

Presumptive False Positive

1

8000

100

200

1

Mars Science Laboratory: A-4 Ground Truth Anomaly

LevcorrTempfaultseed199vars23.C_temperatureT

LevcorrTempfaultseed199vars23.RT_level

200000

1600

3200

1

200000

1600

3200

1

Ground Truth Anomaly

Ground Truth Anomaly

Presumptive False Positive



More generally, we have shown that time series discords, a 
simple, decades-old anomaly detection definition is surprisingly 
viable in many domains. In particular, it is at least competitive 
with the more complex deep learning methods, which require 
both training data and a plethora of parameters to be tuned. 

Some researchers in the community had noted the utility of 
discords, but waived off from using them, noting “discords are 
limited (because) a fixed length must be specified in advance, 
making it a clearly suboptimal approach for applications 
dealing with climate data events of varying length” [12]. Our 
introduction of MERLIN removes this last barrier to adoption. 

Finally, we would like to end with a note for the anomaly 
detection research community. In recent years there has been an 
explosion of deep learning work on anomaly detection, 
including works that introduced or evaluated the four 
benchmarks we consider in this work [11][16][17]. However, 
we feel that there is currently little evidence presented that the 
complexity of these approaches is warranted. Recall that for the 
most part we can reproduce or improve upon these results, 
without even looking at the training data, and using a method 
that is, by any reasonable standard, an order of magnitude 
simpler4.  Please note that we do not doubt the utility of deep 
learning in general, or the ingenuity of these papers. However, 
we believe that the community needs to: 

• Expand the list of strawmen it compares to. Perhaps half the 
benchmark problems can be solved by algorithms created in 
the 1950s [19] (See Appendix A). Simple ideas should be 
compared to, if the community is to justify complexity.    

• Consider more challenging benchmarks.  

• Directly visualize algorithm predictions on many examples, 
to give the reader a better appreciation of strengths and 
weaknesses of the proposed approach. Internally, we did this 
for over a dozen methods (not shown due to space 
limitations), and found it incredibly useful to understand 
when methods work, and when they fail. 

There are several directions for future work, the most 
pressing of which are generalizing MERLIN to handle multi-
dimensional data, and to handle streaming data. In addition, note 
that all the results shown in this work complexity ignored the 
training data. We plan to exploit such data, if only to learn values 
for MinL and MaxL. 
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APPENDIX A: Some Benchmark Datasets are Trivial 

In the main text we noted that some fraction of the benchmark 
data yield to simple algorithms from the 1950s [19]. Here we 
demonstrate that claim. This is important because it confounds 
any comparison of algorithms. For example, suppose we find 
that Olympic powerlifter Long Qingquan can lift 1, 2, 3 and 300 
kg, and that the current author can lift 1, 2 and 3 kg. It would be 
foolish to conclude that because they agree on ¾ of the lifting 
tasks, that they are almost equally strong.  

A further simplified version of the sixty-three year old algorithm 
in [19] is: 
flag = zeros(size(T));        %% Code can be run in Matlab 

for i = 4 : length(T)-4 

 if std(T(i+1:i+4)) - std(T(i-3:i)) > 1,  flag(i) = 1;, end;     

end; 

In Figure 19 we show the results of running this code on two 
benchmark datasets that yield to such simple algorithms.   



 
Figure 19: Two (of many) examples of benchmark datasets that 

yield to the trivial hard-coded algorithm shown above. top) From 

NASA [16]. bottom) From Yahoo [8]. 
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