

Matrix Profile XVIII: Time Series Mining in the Face of Fast
Moving Streams using a Learned Approximate Matrix Profile

Zachary Zimmerman, Nader Shakibay Senobari, Gareth Funning, Evangelos Papalexakis, Samet Oymak, Philip Brisk, and Eamonn Keogh
University of California, Riverside

{zzimm001, nshak006, gareth}@ucr.edu, oymak@ece.ucr.edu, {epapalex, philip, eamonn}@cs.ucr.edu

Abstract—In recent years, the Matrix Profile has emerged as a
promising approach to allow data mining on large time series
archives. By efficiently computing all of the “essential” distance
information between subsequences in a time series, the Matrix
Profile makes many analytic problems, including classification
and anomaly detection, easy or even trivial. However, for many
tasks, in addition to archives of data, we may face never-ending
streams of newly arriving data. While there is an algorithm to
maintain a Matrix Profile in the face of newly arriving data, it is
limited to streams arriving on the order of one Hz and with small
archives of historical data. However, in domains as diverse as
seismology, neuroscience and entomology, we may encounter
datasets that stream at rates that are orders of magnitude faster.
In this work we introduce LAMP, a model that predicts, in
constant time, the Matrix Profile value that would have been
assigned to an incoming subsequence. This allows us to exploit the
utility of the Matrix Profile in settings that would otherwise be
untenable. While learning LAMP models is computationally
expensive, this stage is done offline with an arbitrary
computational paradigm. The models can then be deployed on
resource-constrained devices including wearable sensors. We
demonstrate the utility of LAMP with experiments on diverse and
challenging datasets with billions of datapoints on a simple
desktop machine. We achieve more than 10000x speedup over
exact methods on the same data.

Keywords—Time Series, Streaming Data, Matrix Profile

I. INTRODUCTION
As time series data becomes ever more pervasive in personal,

industrial and scientific settings, there has been an explosion of
interest in creating algorithms to analyze such data. The Matrix
Profile (MP) has emerged as a promising tool to support many
such time series data mining tasks [29][31][32]. The MP is
simply a data structure that contains the nearest neighbor
distance for every subsequence in a time series. It has two
unexpected properties: it can be computed very efficiently, and,
given just the MP, most time series analytic tasks are easy or
even trivial to solve. In particular, it has been shown that we
can use the MP for classification, motif discovery [29][23],
anomaly detection [31], evolving pattern (chain [32])
discovery, summarization and segmentation [29][31].

Moreover, the MP can be computed incrementally, meaning
that we can create streaming versions of the algorithms noted
above. STOMPI is the current state of the art algorithm for
maintaining the matrix profile on streaming data. However,
STOMPI has a problem: the time required to update the MP
slowly grows as a function of how much data we have seen.

1 Assuming an off-the shelf desktop machine. Full details of this
calculation are deferred to [13] to enhance the flow of the text.

Suppose we start monitoring a new 5 Hz process at midnight on
Sunday. Initially, we can use STOMPI to maintain the MP, and
have plenty of cycles to spare. However, by Wednesday at
10:25 AM, when we have seen just over one million datapoints
and we can no longer maintain the MP fast enough1, the next
datapoint will arrive before STOMPI is finished updating the
matrix profile for the last datapoint.

 We can push back this time horizon with faster machines,
but the reprieve is temporary. At some point, the growing
computational demands will outstrip our resources. To make
this concrete let us preview two real-world applications of our
system that we will later revisit in our experiments. In Fig. 1.top
we show a classification problem for telemetry for insects. The
recording apparatus produces a snippet that we must classify in
to one of several classes. We have just 1/100th of a second to do
this, before the next snippet arrives.

Fig. 1: Two time series subsequences (shown in red) that need to be quickly
processed. top) An example of data from an insect EPG (Electrical Penetration
Graph) apparatus. bottom) An example of a trace from a seismograph.

In Fig. 1.bottom we show a snippet from a seismograph. Here
the sampling rate (after some inline processing) is slower, with
new snippets arriving every 1/20th of a second. However, to
answer the question posed, we need to compare this data with
four years of data, or 2.53 ×109 datapoints.

The problem is exacerbated by the fact that we would like to
deploy MP-based algorithms on embedded devices with very
little computational power. This would potentially allow
analytics to be done “at the edge” [18], reducing the network
and power overhead of transmitting data.

In this work, we propose to solve this problem by introducing
a Learned Approximate Matrix Profile (LAMP), which enables
constant time approximation of the MP value given a newly
arriving time series subsequence. With this approximate value,
we can do most of the analytics based on the MP, including
anomaly detection and classification.

4,213,300 4,214,200

7,661 8,161 8,661

Is this behavior Xylem-Ingestion, Phloem-Ingestion or Phloem-Salivation?

Has this seismic event previously happened anytime in the last 4 years?

The rest of this paper is organized as follows. In Section II
we introduce background material and review related work.
This allows us to introduce our algorithm in Section III. Section
IV offers an extensive empirical evaluation of our ideas, before
we offer conclusions and directions for future work in Section
V.

II. RELATED WORK AND BACKGROUND
In this section, we first introduce all necessary definitions

before considering related work.

A. Definitions
We begin by defining the data type of interest, time series:

Definition 1: A time series T is a sequence of real-valued
numbers ti: T = t1, t2, ..., tn where n is the length of T:

For most time series data mining tasks, we are interested not
in global, but local properties of a time series. A local region of
a time series is called a subsequence:

Definition 2: A subsequence Ti,m of a time series T is a
continuous subset of the values from T of length m starting
from position i. Formally, Ti,m = ti, ti+1,…, ti+m-1, where 1 ≤ i ≤
n-m+1.

Given a query subsequence Ti,m and a time series T, we can
compute the correlation between Ti,m and all the subsequences
in T. We call this a correlation profile:

Definition 3: A correlation profile Ci corresponding to query
Ti,m and time series T is a vector of the Pearson correlations
between a given query subsequence Ti,m and each subsequence
in time series T. Formally, Ci = [ci,1, ci,2,…, ci,n-m+1], where ci,j
(1 ≤ j ≤ n-m+1) is the Pearson correlation between Ti,m and Tj,m.

Note that prior work [29][31][32] has defined the matrix
profile in terms of the Euclidean distance between z-normalized
subsequences. However, in this work, we define the matrix
profile in terms of the Pearson correlation. This is because it
creates results limited to the intuitive range of [-1, 1]. For
example, seismologists may prefer to filter out weakly matching
sequences for some analytic task, perhaps by setting a correlation
threshold to say 0.8 [23]. Working with correlation allows them
to reuse such a threshold on multiple datasets, without having to
worry about the sampling rate of the length of the subsequences.
In contrast, for Euclidean distance, any threshold discovered
would have to be recalibrated for new sampling rates or
subsequence lengths.

 It is important to recognize that using correlation does not
change the information contained in the matrix profile, as the
Pearson correlation can be converted to z-normalized Euclidean
distance in constant time [16]. Moreover, the ranking of all the
top-K nearest neighbors to a time series is identical under
Pearson correlation and between z-normalized Euclidean
distance.

Once we obtain Ci, we can extract the nearest neighbor of Ti,m
in T. Note that if the query Ti,m is a subsequence of T, the ith
location of correlation profile Ci is 1 (i.e., ci,i = 1) and close to 1
just to the left and right of i. This is called a trivial match in the
literature. We avoid such matches by ignoring an “exclusion”
zone of length m/4 before and after i, the location of the query. In

practice, we simply set ci,j (i-m/4 ≤ j ≤ i+m/4) to negative infinity,
and the nearest neighbor of Ti,m can thus be found by evaluating
max(Ci).

We wish to find the nearest neighbor of every subsequence in
T. This nearest neighbor information is stored in two “meta time
series”, the matrix profile and the matrix profile index:

Definition 4: A matrix profile P of time series T is a vector of
the Pearson correlation between every subsequence of T and its
nearest neighbor in T. Formally, P = [max(C1), max(C2),…,
max(Cn-m+1)], where Ci (1 ≤ i ≤ n-m+1) is the correlation
profile Ci corresponding to query Ti,m and time series T.

The ith element in the matrix profile P tells us the Pearson
correlation from subsequence Ti,m to its nearest neighbor in time
series T. However, it does not tell us the location of that nearest
neighbor; this is stored in the companion matrix profile index:

Definition 5: A matrix profile index I of time series T is a vector
of integers: I=[I1, I2, … In-m+1], where Ii=j if ci,j = max(Ci).

Fig. 2 shows the relationship between correlation matrix,
correlation profile (Definition 3) and matrix profile (Definition
4). Each element of the correlation matrix ci,j is the correlation
between Ti,m and Tj,m (1 ≤ i, j ≤ n-m+1) of time series T.

Fig. 2: The relationship between the correlation matrix, correlation profile and
matrix profile. A correlation profile is a column (also a row) of the correlation
matrix. The matrix profile stores the maximum (off diagonal) value of each
column of the correlation matrix; the location of the maximum value within
each column is stored in the companion matrix profile index.

 Fig. 3 shows a visual example of a correlation profile and a
matrix profile created from the same time series T.

Fig. 3: top) A correlation profile Ci created from Ti,m shows the correlation
between Ti,m and all the subsequences in T. The values in the dark zone are
ignored to avoid trivial matches. bottom) The matrix profile P is the element-
wise maximum of all the correlation profiles (Ci is one of them). Note that the
two highest values in P are at the location of the 1st motif in T. (Figure adapted
from [33], used with permission).

Note that as presented above, the matrix profile can be
considered a self-join [29]: for every subsequence in a time
series T, it records information about its (non-trivial-match)
nearest neighbor in the same time series T. However, we can
trivially generalize it to be an AB-join [29]: for every
subsequence in a time series A, it records information about its
nearest neighbor in time series B. Note that A and B can be of
different lengths, and that in general, AB-join ≠ BA-join.

We are now able to introduce the definitions immediately
relevant to the problem at hand. First, we consider the output of
the STOMPI algorithm [29], which is the exact matrix profile
for all data seen up to the current time in a streaming setting.
This will serve as our ground truth or oracle.

Definition 6: An Oracle Matrix Profile (OMP) of a stream S is
the matrix profile of the entire stream; it encodes the nearest
neighbor for all subsequences in the history of the stream, where
the nearest neighbor can be any observed subsequence of S.

Given a new set of k consecutive subsequences observed
from S: the OMP can be updated via STOMPI in time O((S+k)k),
which is the time it takes to compute the AB-join between S and
k and the self-join of k. For data with a very low sample rate, it
might be enough to simply maintain the OMP. However, in many
cases this is untenable because the cost of maintaining the OMP
grows as more data is observed. Therefore, we assume we have
a representative subset of S that we can use as a proxy.

Definition 7: A Representative Matrix Profile (RMP) of a
stream S is the matrix profile of the entire stream, where the
nearest neighbor can only occur in some representative subset
R consisting of observed subsequences of S. Formally, RMP is
the AB-join between S and R where RMP encodes the nearest
neighbor of each subsequence of S in R. Note that an exclusion
zone must be applied to each subsequence in R when
comparing to its ‘original copy’ in S.

We can update the RMP in time O(Rk) which is the time it
takes to compute the AB-join between R and k. Note that the time
complexity per update no longer depends on the entire history of
the stream. For some applications this might be enough.
However, for applications with a high sample rate, large R, or on
systems with low computational power, this will still likely be
above our compute budget and we will need something better.

Definition 8: A Learned Approximate Matrix Profile (LAMP)
of a stream S is the output of a learned model that compresses
R into a fixed-size compressed representation. It approximates
the RMP of S.

 Using this definition, we can now perform updates in O(k),
no longer depending on the size of the representative dataset.

B. Motivation and Formal Problem Statement
Assume we have a continuously arriving stream of time

series from a sensor. We may wish to take the most recent
subsequence of length m and compare it with an archive of
previously collected data. There are multiple reasons why we
may wish to do this, including:

• Classification: We may have partitioned our archive of
previously collected data into labeled subsets, for
example {wild-type | mutant} [5] or

{ingestion | probing | salivation} [28]. In
this case we have an implicit nearest neighbor classifier.

• Anomaly Detection: In some domains, we can expect
that all newly arriving subsequences should be close to a
pattern we have already observed. A pattern that is not
(formally a “time series discord” [2]) may signal the
discovery of an anomaly.

• Segmentation: In [10] it was shown that a very
competitive time series sematic segmentation algorithm
can be built on top of the Matrix Profile.

A more formal problem statement is:
Problem Statement: Given a streaming time series and
representative subset of data from that stream, subject to the
constraint that data must be analyzed at the time of arrival,
approximate the matrix profile values associated with this
newly arriving data, such that they closely approximate the
matrix profile values that would be produced by existing
exact methods.

C. Dismissing Apparent Solutions
Before introducing LAMP, here we will take the time to

dismiss some apparent solutions to the task at hand.

• Indexing: Would it be possible to just index the data,
and perform a nearest neighbor search for each arriving
subsequence? Recall that the seismology example shown in
Fig. 1.bottom would require us to index 2.53 ×109 datapoints.
The fastest query times for datasets approaching this size are
three to four orders of magnitude slower than our required
processing rate [8]. Moreover, virtually every indexing
techniques takes a variable and unpredictable amount of time to
answer queries. Thus, even if we had a much slower arrival rate
where the index could keep up on average, and we had a highly
optimized index running in main memory, it is always possible
that we could see multiple slow-to-process subsequences in a
row, and therefore run out of time.

• Dictionary Building/Numerosity Reduction: Could
we not just build a compact “dictionary” of events and brute
force search it in the time allowed? There are many papers that
suggest something like this, and it is good idea in limited
circumstances. For example, it seems to be possible to
explicitly build a full dictionary of heartbeats; several papers
have explicitly suggested this “We model heartbeats by
dictionaries..”[6]. However, heartbeats are a relatively easy
case, as there are algorithms that can robustly extract individual
phase-aligned beats. In contrast, we are interested in datasets
where this is not possible in general, because the target behavior
is highly polymorphic, and only weakly labeled. Consider Fig.
4, which shows some examples of a single behavior from an
insect. We know it reflects a single behavior because an
entomologist labeled the entire five-minute session with the
label Xylem-Ingestion. However, it not clear that we
could build a dictionary to summarize this class, either with an
algorithm or using significant human labor.

Fig. 4: Six random examples of insect Xylem-Ingestion behavior, from a
single insect, taken from a five-minute window.

As the reader will come to appreciate, in a sense LAMP is
implicitly both indexing and dictionary building. The intuition
behind LAMP can be summarized as: If a data object is
conserved in the training data (dictionary building) then make
sure it is represented in the LAMP model (index). However,
unlike indexing, LAMP can return an answer in strictly
bounded constant time, and unlike dictionary building, LAMP
does not need carefully curated data.

D. Related Work
Our proposed system touches on many aspects of data

mining, time series analysis, classification, streaming data and
deep learning. However, we believe that there is no direct
competitor to LAMP. Our work extends and exploits the Matrix
Profile, which has recently gained significant attention because
of its generality and simplicity [29][31][32][8]. While there
exists a technique to incrementally update the Matrix Profile
[29], it is limited to settings where the update rate is relatively
slow, on the order of ~1 Hz. As the original authors point out
[29], there are many domains where this is more than sufficient.
However, domains in medicine, seismology and life sciences
(i.e. entomology) can produce data at least two orders of
magnitude faster than this.

While one instance of LAMP uses a deep neural network, it
is important for us to note that we are not claiming any
contribution to deep learning. We simply assume that the
current state-of-the-art can be plugged into our framework.

III. METHOD
In order to avoid ever-growing computational cost as more

data is observed, we will assume that we have some
representative time series, R, observed from the stream. For
example, the insect data we empirically consider in Section IV
is collected each day, seven days a week in ten to sixteen-hour
sessions. We can take a single day of this data, and use it as our
R, for all sessions recorded on subsequent days.

 Given R, we can generate the RMP (Definition 7) for the
stream. The RMP is illustrated in Fig. 5. If our comparison data
is truly representative of the stream, then this RMP will very
closely resemble the oracle OMP (Definition 6).

Fig. 5: Illustration of comparisons to compute the ab-join MP with a
representative dataset (Linear in the length of R)

If R is small and our sample rate is low enough, say, under
one million datapoints, with a sample rate of 1 Hz, then we are
done. We can approximate the matrix profile values of new
subsequences in time O(||R||). However, if the representative
dataset is large, or we are working with low power hardware,
then the computational complexity would likely still be above
our compute budget for typical streaming rates.

Thus, in order to truly have a useful method in the general
case, we need an algorithm that does not depend on the full size
of the representative dataset. To this end, we implement LAMP
(Definition 8), which models the representative dataset in a
compressed, fixed-memory-size model, which requires a fixed
time budget to process each arriving datapoint. Fig. 6 illustrates
this idea.

Fig. 6: Illustration of approximation of the matrix profile using a model
learned from a representative dataset

There are many learned models we can choose to
summarize the training data; we choose to highlight two of
these in this work.

A. Top K Diverse Motifs

TABLE 1 explains our method for extracting the Top-k
diverse motifs from a training dataset. In line 2 we compute its
exact MP using GPU-STOMP [31], then in line 3-4 we sort the
MP to generate a list of the top motifs. Then in lines 6-11 we
create a model which contains a set of diverse motifs such that
no pair is closer to each other than the diversity threshold.

There are other methods for selecting a diverse set of k
motifs. For example, prior work investigated the k-
diversification problem for time series [9]. We leave such
considerations for future work.

There are several advantages to using the Diverse Motifs
model as the subroutine for LAMP. It is highly interpretable;
every subsequence in the model (everything that the model
“knows”) can be directly visualized. Additionally, adding
examples to the model is as simple as appending to a list.

Moreover, because the motifs are sorted by their utility, we
can use the Diverse Motifs model as an anyspace model. An
anyspace model is the analogue of an anytime algorithm [29],
but with memory as the limiting factor. For example, suppose
we create a 10,000 motif model to use in an insect monitoring
task in a lab (See Fig. 12). However, later the entomologist has
the idea to run experiments in the field with a small memory

1 1201 120

Incoming Data Stream (S)
Representative

Dataset (R)

Representative Matrix Profile (RMP) of S

Find Nearest Neighbor of
subsequences of S in R

Now

limited device such as a raspberry pi, which only has space or
compute resources for say 2,500 motifs. We can simply
truncate off the bottom ¾ of the motifs and push the model onto
the smaller device. The main disadvantage of this method is that
it is essentially uncompressed. Since the size of the model
affects the number of operations required to perform the
prediction, performing inference when k is large can be slow
and prohibitively expensive to run in real-time.
TABLE 1: TRAINING AND PREDICTING USING THE TOP-k MOTIFS LAMP
REPRESENTATION

 Inputs: time series t, subsequence length m,
number of motifs to extract k, diversity
threshold d.

1
2
3
4
5
6
7
8
9
10
11
12
13

Train(t,m,k,d):
MP = GPU-STOMP(t, m)
indexes = sequence(0,length(MP))
indexes = argsort(indexes, MP)
model = [], count = 0
while count < length(MP) and length(model) < k do
 considered = t[indexes[count]:indexes[count]+m]
 if IsDiverse(considered, model, d) then
 model.append(considered)
 endif
 count++
done
return model

1
2
3
4
5
6
7

IsDiverse(motif, currentMotifs, threshold)
 for sequence in currentMotifs do
 if correlation(motif, sequence)> threshold then
 return false
 endif
 done
 return true

1
2
3
4
5
6
7
8

Predict (sequence, model)
 maxcorr = -1;
 for motif in model do
 corr = correlation(motif, sequence)
 if corr > maxcorr then
 maxcorr = corr
 endif
 return maxcorr

B. Neural Networks

Using a neural network as the basis of the LAMP model has
many advantages. We can utilize any of the infrastructures built
up around deep learning over the last several years, including
GPU optimized code, embedded platform support, and ongoing
research in accuracy/speed tradeoffs, which can allow us to
adapt to a stream’s sample rate according to our platform.

While LAMP is agnostic to the actual network used, in this
work we use the simplified version of Resnet [11] proposed by
[27] for time series classification, but with the activation on the
output layer changed to sigmoid to enable regression. We also
modify the input and output of the Resnet model to support
multiple predictions at once. i.e. Each of our inputs consists of
J z-normalized subsequences of length M from the data,
extracted with stride S. This procedure defines an extraction
window in the time series, W, where ||𝑾|| 	= 	𝑱𝑺	 + 	𝑴	– 	1.
We can slide W across the time series and extract a new input
for the neural network for each position of W. Following this
logic, each input to the neural network is a vector of length M
with J channels, where we set M as the subsequence length
parameter of the matrix profile. For each input, the neural
network outputs 𝑱𝑺 LAMP values, one for each subsequence in
W. Fig. 7 shows the outline of our scheme.

Fig. 7: LAMP neural network input scheme.

This input scheme has three main advantages over a single
subsequence input scheme:
1. Reduces overfitting by increasing the dimensionality of the

output space. Intuitively, a larger output dimension
provides regularization and leads to smoother predictions.

2. Enables faster processing by GPUs and CPUs by exposing
additional parallelism through the added dimensionality.

3. Enables the convolutional network to learn short-term time
dependencies in the data.

It is important to note that when the subsequence length is
very long, the inputs to the neural network also get large.
Though it is possible to perform subsampling and other types
of dimensionality reduction on the input before sending it to a
LAMP model, we have found that the most effective way to
reduce the amount of input to the model is to increase the
extraction stride S. In almost all applications, this is a
reasonable assumption. For example, if a classifier correctly
predicts that you are running at time 17sec, and that you are
running at time 19sec, it is a reasonable assumption that you
were also running at all times in-between. For very long
subsequence lengths, there is a large overlap between the
information contained in consecutive or close-by subsequences,
so a moderate increase in the extraction stride typically causes
an imperceptible accuracy loss in these cases.

For the experiments in this paper, we set W=256, S=8, J=32.
We set the learning rate to 1e-3 and we use the Adam [7]
optimizer for stochastic gradient descent with a batch size of
32. We optimize the network for the mean squared error loss
between the predicted and exact RMP values for our training
data. These all reflect common values/practices in the literature.
We did not carefully optimize the model, as we wish to
demonstrate the robustness of our overall system. The network
is implemented in Keras and available at [13].

C. Configuring the Model Size
It is useful to consider how to select the size of a LAMP

model, as this can be done deterministically before model
construction. Given the computational capability c (FLOP/s) of
a system and the sample rate r (Hz) of a stream we can compute
the maximum size of a model, in terms of the number of FLOPs
possible per inference step using the equation 𝐹𝐿𝑂𝑃𝑠 = 𝒄𝒓.
Once we know our limitations, we can choose a model
appropriate for our specific use case.

It is also important to note that in many of these applications
we do not need the result immediately even in a real-time
application. For example, if our sample rate is 100Hz, perhaps
we don’t need to make decisions based on every single new

datapoint, but only once per second. In this case, we can process
multiple subsequences at once via batching, like in our neural
network input scheme, which is more efficient computationally,
and can help give additional context to our predictions.

IV. EMPIRICAL EVALUATION
To ensure that our experiments are reproducible, we have

built a website [13] which contains all data/code/raw
spreadsheets for the results, in addition to many experiments that
are omitted here for brevity. Unless otherwise stated, all
experiments were run on a system with an Intel Core i7-8700K
CPU and 32GB RAM.

For neural network LAMP, we used the parameters
discussed in Section III.B for all experiments. Clearly tuning the
neural networks could produce improved results, however we
wanted to demonstrate the generality of LAMP models and to
show that they can work well “out of the box”. Similarly, for
Diverse Motifs LAMP we use a hard-coded diversity threshold
of 0.95 unless otherwise noted.

In the following section we evaluate LAMP in the most
direct way possible. Recall that the goal of LAMP is to predict
the value that the much slower full Matrix Profile algorithm
would have produced, thus we can both visualize and measure
the difference between the OMP and LAMPs output. However,
in some sense this is an indirect measurement for most
practitioners. They typically only care about the classification or
detection accuracy of their higher-level tasks which would
exploit LAMP. Thus, in the remainder of the paper we will offer
detailed case studies to demonstrate that LAMP can offer real-
time performance even in challenging scenarios.

A. LAMP method evaluation
In TABLE 2, we compare the performance of various model

types with a subsequence length of 100 on various
architectures. The values in the table are measured in
subsequences per second. The first two rows show the Diverse
Motifs model with various settings for K. We did not
implement these methods on the GPU, which is why no results
are reported for the Tesla P100. For these models, our
implementation was unbatched; it used only a single thread and
processed just a single subsequence at a time.
TABLE 2: LAMP INFERENCE PERFORMANCE FOR M = 100

Method NVIDIA
Tesla P100

Desktop CPU
I7-8700K

Raspberry
Pi 3

Diverse Motifs Inference Rates (Hz)
K = 1000 N/A 4852 434.8
K = 60000 N/A 403 16.9

Neural Network Inference Rates (Hz)
J = 1, S = 1, Batch = 1 125 200 9.2
J = 32, S = 8, Batch = 1 51.2K 85.3K 2782
J = 32, S = 8, Batch = 128 482K 206K 5461

The bottom 3 rows show the results for our neural network
scheme with various levels of batching. The first row is
completely unbatched. The neural network is shown every
subsequence individually and predicts a matrix profile value for
each one. The second row uses the default settings that we

presented in the Section III.B: with an input of 32 subsequences
with stride 8, each inference produces 256 LAMP values. This
enables increased efficiency and other advantages described in
Section III.B. The last row uses a second level of batching
where the neural network inputs are batched. Depending on
how quickly decisions must be made, a user can choose a
method of batching to suit their constraints. Differences in
speed between single input and batched input are only because
of the added data locality and dimensionality, which allow for
exploiting multiprocessor and SIMD architectures. As
mentioned previously, LAMP model inference time is dataset
agnostic, depending only on the model size and input size.

We note that the neural network is much more efficient in
general, due in part to a multitude of optimizations
implemented by the Tensorflow developers and the deep
learning community at large. Given the resources, a more
efficient solution to inference with diverse motifs could be
developed. However, it is also true that we have not actively
optimized the neural network for any particular inference task.
Depending on the dataset and other parameters of the problem,
it might be possible to also make the neural network
significantly faster via speed/accuracy tradeoffs. For example,
adjusting the extraction stride S, applying quantization [25] or
resource-constrained structure learning frameworks such as
Morphnet [3]. We defer such an investigation to future work.

Fig. 8: Tradeoff between input subsequence length and inference rate for our
neural network method on three different architectures.

It is also important to note that because we are extracting
subsequences and sending them to the model for inference, the
subsequence length parameter influences both the size of the
models and inference time, as more FLOPS are required to
perform a single inference using larger subsequences. Fig. 8
illustrates this tradeoff for our default neural network method
defined in Section III.B.
TABLE 3: COMPARISON OF LAMP MODEL PERFORMANCE TO ORACLE

Dataset Correlation to Oracle (OMP)
Name Train/Test

Split
Exact
RMP

Neural
Network

Diverse Motifs
K Correlation

Earthquake 20M/10M .965 .887 60179 .731
Street Mall 59K/17K .986 .690 128 .615
Insect EPG 2.5M/5M .973 .959 11602 .625

TABLE 3 illustrates how well our model fits the oracle for
various datasets. The RMP’s performance can be viewed as a
performance measure of the training data. A perfect LAMP
model would achieve performance similar to the RMP. Note
that as mentioned previously, this is an indirect measurement,
as practitioners will be mostly concerned with classification or
detection accuracy, which we discuss in the following sections.
As mentioned before, there is room for improvement here via

0 10,000 20,000

Subsequence Length
101

102

103

104

104

P100 GPU

i7-8700K CPU

Raspberry Pi 3

Su
bs

eq
ue

nc
es

 P
er

 S
ec

on
d

(lo
g

sc
al

e)

parameter tuning, but we have explicitly kept a single set of
parameters for Neural Network LAMP to show its robustness.
The performance variation for the street mall dataset might be
addressed via parameter tuning or the addition of more training
data. For the Diverse Motifs model, we report the number of
motifs used for that particular dataset. Due to the sensitivity of
this parameter and the differences in the size of each of the
datasets we evaluated, we could not achieve acceptable
performance with the same K across the board.

Fig. 9 shows a visual comparison of the performance of
various LAMP models on a snippet of the seismogram dataset
from TABLE 3. Note the smoothness of the neural network
model and the improvement of the matches as K is increased
for the diverse motifs model. For this figure, the diverse motif
models were generated using a diversity threshold of 0.85, the
neural network settings were set to the default.

We have not reported training times for our experiments;
however, most of the Neural Network LAMP models were
quickly trainable in under an hour or two on a Tesla P100 GPU.
The only exception to this is the large dataset presented in the
next section, which took approximately 1 day to train on the
GPU.

Fig. 9: Visual Comparison of LAMP methods for a snippet of earthquake data

B. Case Study in Seismology
Real-time seismic event detection is a primary task in

seismology that has a direct impact on earthquake physics, fault
behavior and seismic hazard assessment studies [1][22][15].
Most modern seismic networks have implemented real-time
streaming of data from their remotely installed instruments to
their seismic observatories. There, real-time event detection
methods are used to monitor earthquake activity and provide
basic information on event occurrence, timing, and magnitude.
This can have a direct impact on seismic hazard assessment and
response and early warning systems [1][15].

One of the most common real-time event detection methods
is the short-term-average/long-term-average (STA/LTA)
method, which computes the ratio between the average
seismogram amplitude over a short time window and a longer
time window. We expect that an earthquake will cause a sudden
increase in the amplitude of the seismic waveform in the short
term, leading to a spike in the ratio [24]. This method is widely
used due to the ease of implementation and is effective at
detecting large and/or close-by events. However, it can fail to
detect smaller or more distant earthquakes, whose average
waveform amplitudes are close to the noise floor. As a result,

we speculate that many small events are missing from seismic
event catalogs. Finding these small events is of particular
significance in the seismology domain as they have a direct
impact on studies of seismic triggering, short-term earthquake
forecasting, foreshock and aftershock behaviors, etc. [4].

In some cases, seismologists apply more sensitive detection
methods to ‘mine’ these smaller events from the continuous
waveform data. One recent example [20], used query search
(‘matched filtering’ in the terminology used by seismologists)
to identify an order of magnitude more small events than had
been detected using traditional methods in southern California.
Such efforts show the power of a more sophisticated approach,
although this improvement in sensitivity is not without cost –
in the southern California case, the necessary computation
required many hundreds of thousands of GPU hours [20].
Another limitation is that such methods use queries (‘template
waveforms’ in seismology) from the existing seismic catalog in
order to search for more events, leaving the possibility of a
remaining population of undetected earthquakes for which
there are no appropriate queries in the catalog.

We argue that LAMP is a potential solution for sensitive,
rapid and inexpensive real-time seismic event detection. A
common sample rate for local earthquake detection is 100 Hz,
which is in the range of sample rates for which LAMP can
produce the MP for the stream of seismic data in real-time, even
on a relatively inexpensive device.

Note that there are many machine learning-based methods
that have been proposed for earthquake event detection in
recent years [21][30]. These methods are usually trained using
existing catalogs, and are based on classified earthquake-noise
training data sets. The training data set in this case might pass
on the insensitivity of the catalogs to the models. LAMP is
trained using the exact MP calculated from one year of data.
The MP for one year of data is very sensitive to earthquake
occurrence and can increase the number of event detections by
~16 times [34]. Rather than the binary classification of
earthquake and non-earthquake (noise), LAMP weights
waveforms based on a range of MP values (e.g. ~0.5 to 1),
based on their similarity to other events.

Here we test LAMP for a real seismic waveform data set
and compare the results with the existing catalog of
earthquakes. We use a data set from a sensitive, low-noise,
borehole seismic station (station name ‘VCAB’, network ID
‘BP’) near Parkfield in central California, close to a segment of
the San Andreas fault where earthquakes occur frequently.
TABLE 4: COMPARISON OF DETECTION RATES OF VARIOUS TYPES OF
SEISMIC EVENTS FOR VARIOUS DETECTION THRESHOLDS
 Threshold W0

(%)
W1
(%)

W2
(%)

W3
(%)

W4
(%)

Total
(%)

“False”
Positives (%)

conservative 0.95 76 37 34 27 15 61 0.56
:: 0.90 89 65 60 54 32 79 1.77
:: 0.85 95 80 76 70 42 89 3.94

liberal 0.8 98 90 88 83 47 94 7.75

We train a neural network LAMP model using a 20 percent
contiguous sample of this exact MP that we obtain from the

author of [34] for 580 days (2003-11-28 to 2005-07-09) of
20Hz seismic data. We then use LAMP to estimate the MP for
5.5 years of data (from 2005-07-10 to 2011-01-01) for the same
seismic station. The total inference time for this dataset of
around 4 billion datapoints was approximately 20 minutes using
the large batch inference configuration from TABLE 2 on a
single GPU. By extrapolating the performance of [34]’s exact
GPU implementation to 4 billion datapoints, this is a speedup
of over four orders of magnitude.

We then use four different thresholds of 0.8, 0.85, 0.9 and
0.95 for detecting motifs. The smaller values are more liberal
(sensitive), and more likely to include some false positives.

Then in TABLE 4 we compare our detection with earthquake
information that we obtained from the Northern California
Seismic Network (NCSN) catalog [17]. Here we use two
different catalogs to validate the LAMP outputs. The first
catalog contains events whose seismic signals have been
observed and picked at the station of interest, either by human
analysts or by event detection algorithms (e.g., the STA/LTA
method). These seismic signal observations are reported with
five different weights based on confidence (W0 to W4, from
‘very strong detection’ to ‘weak detection’). In this work, we
refer to this catalog as the ‘event-station catalog’. The second
catalog contains all detected earthquakes, whether or not they
were observed at this station, and we refer to it as the ‘event-
only catalog’. In this 5.5-year period, there were 9546 events in
the event-station catalog and 26255 in the event-only catalog.
Note that the event-station catalog is a subset of the event-only
catalog.

We list our true positive detection rates for four different
MP thresholds and for different event-station weighted events
in TABLE 4. In general, for the event-station catalog we detect
94 percent of all events and 98 percent of the W0 events using
a threshold of 0.8. For the thresholds of 0.95, 0.9 and 0.85 we
have a true positive rate of 76, 89 and 95 percent for strong
detected events (weighed 0). This indicates that we had a very
high true positive rates with respect to the event-station catalog.
Fig. 10 shows an example of a detected event waveform and
the predicted MP for that event.

Fig. 10: a) Example of an event from the event-station catalog detected by
LAMP. b) Example of an event detected by LAMP that was not in the event-
station catalog but was in the event catalog.

One interesting thing that we observe by experimenting
with LAMP on this data set is that when using the 0.9 threshold
we detect 1962 events from the event-only catalog that are not
in the event-station catalog. This could be because these events
occur far from the station, and thus produce weak seismic
signals that a human analyst or the STA/LTA method could not
identify, but have sufficiently similar characteristics to other

events that LAMP could identify. Fig. 10.b is one example of
such an event.

After removing these ~2k events plus the true positives from
the event-station catalog, we end up with 48454 detected motifs
that are not associated with any catalog events (i.e. not in either
catalog; our “false” positives from TABLE 4). By visually
inspecting these detected motifs, we group them into four
categories:

i) Earthquake waveforms for events missed by the
catalog (Fig. 11.a).

ii) Station glitches (Fig. 11.b), which can be caused by
voltage surges or the electromagnetic radiation from a
lightning strike.

iii) Station artifacts, such as internal instrument calibration
pulses (Fig. 11.c).

iv) Harmonic noise, possibly related to human activity or
surface processes (Fig. 11.d). For example, a gust of
wind or earthmoving equipment.

Clearly type (i) is the most exciting for seismologists,
allowing them to populate their models and catalogs with
additional examples that are currently missing.

Type (ii) and (iii) motifs can be easily removed from the
data set by applying a simple query search using one of these
instrumental errors as a query. Note that future LAMP models
could be trained to ignore those signals. Type (iv) motifs can
potentially be investigated by using LAMP on several stations
to constrain their locations, which may be diagnostic of the
source (e.g. a source located in the ocean might be caused by
ocean waves and storms; a source located at the land surface
could be weather or human-mediated).

Approximately 5% of the motifs discovered do not fit into
this classification and are currently being investigated.

Fig. 11: Examples of various non-catalog events detected by LAMP. a)
Earthquake not in any catalog b) Station glitches c) Station artifacts d)
Harmonic noise.

C. Case Study in Entomology
Across the world, there are hundreds of species of insects

that feed by ingesting plant fluids. Some of these insects can
cause damage to their host plants by transmitting pathogens. As
a concrete example, the Asian citrus psyllid (Diaphorina citri)
shown in Fig. 12.left is a vector of the pathogen causing
huánglóngbìng (citrus greening disease), which has already
caused billions of dollars of damage to Florida’s citrus industry
in recent years, and is poised to do more damage worldwide. To
design effective interventions, entomologists worldwide are
attempting to understand the feeding behavior of such insects.

B Waveform
-3000

0

3000

A Waveform

0.6

0.7

0.8

0.9

1

0 600 12000 600 1200

0 600 12000 600 1200

B LAMPA LAMP

LA
M

P
NN

As Fig. 12 hints at, one of the most important tools used to study
such insects is an EPG apparatus, which records the insects
behavior as a one-dimensional time series [28].

Fig. 12: left) Fifty seconds of data collected from an EPG apparatus (center),
which measures the changes in resistance as an insect interacts with a host plant.
This data comes from a psyllid (right).

Dozens of labs worldwide collect such data, but to the best
of our knowledge, all analytics are conducted in post-hoc batch
sessions, missing the opportunity to test hypotheses in real time.
For example, a recent paper suggests that the Asian citrus psyllid
changes its behavior in response to some “combination of long
and short wavelengths” [19]. Other research has suggested that
various cocktails of volatile organic compounds can modify
their behavior [2]. With such a huge search space of optical and
semiochemicals parameters progress in designing interventions
has been slow. Researchers have resorted to making a single
change each session then adjusting the intervention for next
day’s session. However, if we could measure the behavior the
insects in real-time, the entomologists could adaptively tune the
optical and/or chemical mixture to optimize its effectiveness.
Below we will show that LAMP makes this possible.

We consider a dataset of insect behavior that records an Asian
citrus psyllid feeding on a Citrus natsudaidai (a type of orange).
We took the first seven hours of data (2,500,000 datapoints), and
using the annotations of [28], we created two classes:

Class A: Xylem Ingestion/Stylet Passage (181 min)
Class B: Non-Probing (235 min)
Note that as the data snippets shown in Fig. 1 and Fig. 12

hint at, the data here is very complex and noisy. Moreover, each
class is polymorphic: A features two different stages of a feeding
behavior and class B is something of a “catch-all” [28]. For our
testing data we consider 1,013 minutes of data, collected from
the same insect in a later session. The class balance in that
session happens to be almost equal, whereas the class balance in
the training data is more skewed, at about five to one.

We can use a combination of multiple LAMP models to
create a nearest neighbor classifier. Given a representative
dataset of class A (RA), another from class B (RB), and stream of
EPG data (S), we can train two separate LAMP models. The first
LAMP model, MA, is trained to approximate the RMP of S
where matches can only occur in RA. The second model, MB, is
trained to approximate the RMP of S where matches can only
occur in RB. Given a new subsequence I from S, we can produce
the output of MA and MB when they are shown I. We can then
use the class represented by the model that generated the largest
value as the label for I. Table 5 shows the results for EPG
classification across all models.
TABLE 5: COMPARISON OF EPG CLASSIFICATION RESULTS
Method Accuracy (%)
Exact RMP 97.7
LAMP Diverse Motifs (K = 1600) 86.5
LAMP Neural Network 97.8
Direct Neural Network Classifier 99.2

 Note that the neural network performs very slightly better
than the exact RMP for the same task, but the difference is not
statistically significant. Note also that we have trained a direct
classifier using the same neural network used for LAMP but
minimizing the binary cross entropy of the predicted labels
versus the true labels. As expected, this classifier performs better
than a LAMP NN-classifier, as LAMP is not trained directly for
classification, However, LAMP remains competitive.

 Fig. 13 shows how the accuracy of the diverse motifs method
improves as K is increased. Note that the tradeoff between
model size, efficiency, and accuracy is not always clear cut.

Fig. 13: Effect on accuracy of varying the number of diverse motifs in the
LAMP model.

D. Case Study on Pedestrian Traffic
The two previous case studies highlight the use of LAMP to

predict high correlations, which are indicative of conserved
structure. However, as we noted above, LAMP also predicts
low correlations, which can be indicative of anomalies. To test
the utility of LAMP in this context, we conducted the following
experiment. As shown in Fig 14.top, we consider pedestrian
traffic data from Bourke Street in Melbourne. We trained
LAMP on 6.7 years of such data, beginning at 04/30/2009. For
test data, we consider the following two years. While the test
data surely has natural “anomalies” (usual weather/cultural
events), to have some ground truth we embedded three
synthetic anomalies:
• Reversed: A week of data was flipped backwards.
• Replaced: A week of data was replaced by a week of data

from a different location in Melbourne (Southbank).
• Diminished: We simulated a sensor that slowly began to

undercount over a week.
The first two anomalies are so subtle that they defy human

inspection (Fig 14.top), and the third happens so slowly that
examining only a few days at a time, it would be impossible to
detect. Nevertheless, as Fig 14.bottom shows, a LAMP model
with m = three days is able to correctly detect each of our three
anomalies.

Fig 14: top) About 2% of the Reversed test dataset with embedded anomaly
highlighted. bottom: left to right) The MP predicted by LAMP on two years of
data with: no anomaly, the Reversed anomaly, the Replaced anomaly, and the
Diminished anomaly. All three anomalous datasets have a significant dip in the
LAMP output at the appropriate location.

50 Seconds

resistor

voltage source

conductive glue

Asian citrus
psyllid

Voltage readingElectricalpenetration graph

0 25,000Number of Motifs (K)

0.83

0.85

0.87

Ac
cu

ra
cy

K Diverse Motifs EPG Accuracy (Varying K)

0

No Embedded
Anomaly

Year 2

0.9

0.92

0.94

0.96

0.98

1

0

Location of
Embedded
Anomaly
Reversed

Year 2 0 Year 2

Location of
Embedded
Anomaly
Replaced

0

Location of
Embedded
Anomaly
Diminished

Year 2

E. When can LAMP fail?
The results above offer evidence that the LAMP framework

can be useful in diverse settings, for diverse domains.
Nevertheless, it is instructive to consider situations in which it
can fail. LAMP very clearly can fail in the presence of concept
drift, new motifs that have never been seen before may arise
from new underlying processes, and something that was a motif
before may become an anomaly in the future (and vice-versa).

We defer a detailed discussion on retraining of LAMP to
mitigate the effects of concept drift to future work. However,
one simple way it can be done is to keep track of the last segment
of observed data and use that to augment the representative
dataset used to train LAMP. Every so often (or constantly in the
background) we can retrain LAMP based on this augmented
training data, and when the new model is ready, we can hot-swap
the old model with the new and continue our inference.

V. CONCLUSION
We introduced LAMP, a flexible and generic framework that

allow us to approximate the Matrix Profile values in the face of
fast-moving streams. Because the Matrix Profile is at the heart
of many time series algorithms for classification [23], motif
discovery [29], anomaly detection [31], segmentation [10] etc.,
LAMP allows such higher-level algorithms to be used in real-
time settings on fast moving streams that are currently untenable
with the standard Matrix Profile.

VI. ACKNOWLEGEMENTS
This work was supported by NSF awards 1528181, 1544969,
1631776, 1763795, as well as Google, Mitsubishi and NetApp.

REFERENCES
[1] Allen, R. M., Brown, H., Hellweg, M., Khainovski, O., Lombard, P., &

Neuhauser, D. (2009). Real-time earthquake detection and hazard
assessment by ElarmS across California. Geophysical Research Letters,
36(5).

[2] Alquézar, Berta et al. “β-caryophyllene emitted from a transgenic
Arabidopsis or chemical dispenser repels Diaphorina citri, vector of
Candidatus Liberibacters.” Scientific reports vol. 7,1 5639. 17 Jul. 2017,
doi:10.1038/s41598-017-06119-w

[3] Ariel, G., et al. "Morphnet: Fast & simple resource-constrained structure
learning of deep networks." Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2018.

[4] Brodsky, E. E. (2019). The importance of studying small earthquakes.
Science, 364(6442), 736-737.

[5] Brown, A.E., et. al. A dictionary of behavioral motifs reveals clusters of
genes affecting C. elegans locomotion. Proc. Natl. Acad. Sci. 110.2
(2013): 791-796

[6] Carrera, D. Rossi, B. Fragneto, P and Boracchi, G. Domain adaptation for
online ecg monitoring. In Proceedings of the IEEE ICDM, pages 775–
780, 2017.

[7] Diederik P., and Ba. J.n "Adam: A method for stochastic
optimization." arXiv preprint arXiv:1412.6980(2014).

[8] Echihabi, K. Zoumpatianos, K. Palpanas, T. and Benbrahim, H. The
Lernaean Hydra of Data Series Similarity Search: An Experimental
Evaluation of the State of the Art. Proceedings of the VLDB Endowment
(PVLDB) Journal, 2019.

[9] Eravci, B., Ferhatosmanoglu, H. Diverse Relevance Feedback for Time
Series with Autoencoder Based Summarizations. IEEE Trans. Knowl.
Data Eng. 30(12): 2298-2311 (2018)

[10] Gharghabi, S. et. al. Domain agnostic online semantic segmentation for
multi-dimensional time series. Data Min. Knowl. Discov. 33(1): 96-130
(2019)

[11] He, Kaiming, et al. "Deep residual learning for image
recognition." Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016.

[12] Kolb, I., et. al. Evidence for long-timescale patterns of synaptic inputs in
CA1 of mice. Journal of Neuroscience 38.7(2018): 1821-1834.

[13] LAMP supporting webpage: https://sites.google.com/view/lamp2019
[14] Lomax, A., Satriano, C., & Vassallo, M. (2012). Automatic picker

developments and optimization: FilterPicker—A robust, broadband
picker for real-time seismic monitoring and earthquake early warning.
Seismological Research Letters, 83(3), 531-540.

[15] Minson, S., Meier, M., Baltay, A., Hanks, T., and Cochran, S. “The limits
of earthquake early warning: Timeliness of ground motion estimates,”
Sci. Adv., vol. 4, no. 3, 2018, Art. no. eaaq0504.

[16] Mueen, A., Nath, S., and Liu, J. Fast approximate correlation for massive
time-series data. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. pp, 171-182.

[17] Northern California Seismic Network catalog. URL, reterived May 20th
2019. NCSN; http://www.ncedc.org/ncsn/

[18] Oyekanlu, E. “Predictive edge computing for time series of industrial IoT
and large scale critical infrastructure based on open-source software
analytic of big data”. Proc. IEEE Int. Conf. Big Data 2017, pp. 1663–69.

[19] Paris T, Allan S, Udell B, Stansly P. Evidence of behavior-based
utilization by the Asian citrus psyllid of a combination of UV and green
or yellow wavelengths. PLoS One. 2017 Dec 13;12(12).

[20] Ross, Z. E., Trugman, D. T., Hauksson, E., & Shearer, P. M. (2019).
Searching for hidden earthquakes in Southern California. Science,
364(6442), 767-771.

[21] Ross, Z., Meier, M., and Hauksson, E. “P wave arrival picking and first-
motion polarity determination with deep learning,” J. Geophys. Res., vol.
123, pp. 5120–5129, Jun. 2018.

[22] Satriano, C., Lomax, A., & Zollo, A. (2008). Real-time evolutionary
earthquake location for seismic early warning. Bulletin of the
Seismological Society of America, 98(3), 1482-1494.

[23] Senobari N. et al. Super Efficient Cross Correlation (SECC): A Fast
Matched Filtering Code Suitable for Desktop Computers. Seismological
Research Letters November 07, 2018, Vol.90, 322-334.

[24] Sharma, B.., Kumar, A., & Murthy, V. (2010). Evaluation of seismic
events detection algorithms. Journal of the Geological Society of India,
75(3), 533-538.

[25] Song, H.,Mao, H., and Dally, W. "Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman
coding." arXiv preprint arXiv:1510.00149 (2015).

[26] Szigeti, B., Deogade, A. and Webb, B. Searching for motifs in the
behaviour of larval Drosophila melanogaster and Caenorhabditis elegans
reveals continuity between behavioural states. Journal of the Royal
Society Interface 12.113 (2015): 20150899.

[27] Wang, Z, Weizhong Y, and Oates. T. "Time series classification from
scratch with deep neural networks: A strong baseline." 2017 International
joint conference on neural networks (IJCNN).

[28] Willett, D., George, J., Willett, N. Stelinski, L. and Lapointe, S. Machine
learning for characterization of insect vector feeding. PLoS computational
biology, 12.11 (2016): e1005158.

[29] Yeh, M., et. al. Matrix Profile I: All Pairs Similarity Joins for Time Series:
A Unifying View that Includes Motifs, Discords and Shapelets. IEEE
ICDM 2016: 1317-1322.

[30] Zhu W, and Beroza, G. “PhaseNet: A deep-neural-network-based seismic
arrival-time picking method,” Geophys. J. Int., vol. 216, no. 1, pp. 261–
273, 2019.

[31] Zhu, Y., et. al. Matrix Profile II: Exploiting a Novel Algorithm and GPUs
to Break the One Hundred Million Barrier for Time Series Motifs and
Joins. IEEE ICDM 2016: 739-748.

[32] Zhu, Y., Imamura, M., Nikovski, D., and Keogh, E. Matrix Profile VII:
Time Series Chains: A New Primitive for Time Series Data Mining. IEEE
ICDM 2017: 695-704.

[33] Zhu, Y., Yeh, M., Zimmerman, Z., Kamgar, K., and Keogh, E. “Matrix
Profile XI: SCRIMP++: Time Series Motif Discovery at Interactive
Speeds”. ICDM 2018: 837-846.

[34] Zimmerman. Z., et al. Matrix Profile XIV: Scaling Time Series Motif
Discovery with GPUs to Break a Quintillion Pairwise Comparisons a Day
and Beyond ACM SoCC 2019. In Press.

