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ABSTRACT 
The vast majority of visualization tools introduced so far are 
specialized pieces of software that are explicitly run on a 
particular dataset at a particular time for a particular 
purpose. In this work we introduce a novel framework for 
allowing visualization to take place in the background of 
normal day to day operation of any GUI based operation 
system such as MS Windows, OS X or Linux. By allowing 
visualization to occur in the background of quotidian 
computer activity (i.e. finding, moving, deleting, copying 
files etc) we allow a greater possibility of unexpected and 
serendipitous discoveries. 

Our system works by replacing the standard file icons with 
automatically created icons that reflect the contents of the 
files in a principled way. We call such icons INTELLIGENT 
ICONS. While there is little utility in examining an individual 
icon, examining groups of them allows us to take advantage 
of small multiples paradigm advocated by Tufte. We can 
further enhance the utility of Intelligent Icons by arranging 
them on the screen in a way that reflects their 
similarity/differences, rather than the traditional “view by 
date”, “view by size” etc. We demonstrate the utility of our 
approach on data as diverse DNA, text files, 
electrocardiograms and Space Shuttle telemetry. In addition 
we show that our system is unique in also supporting fast 
and intuitive similarity search. 

 

1 INTRODUCTION 
At the heart of many information visualization and data 
mining techniques is a single question “compared to 
what?” [20]. In several application domains, the main 
objective of data exploration is to arrange the data such 
that meaningful similarities and differences are exposed. 
However the vast majority of visualization/data mining 
tools introduced so far are specialized pieces of software 
that are explicitly run on a particular dataset at a 
particular time for a particular purpose. The human effort 
involved in this process is high enough that most of these 
tools are used rarely, even when data keeps accumulating 
at very high rates.  

In this work we introduce a novel framework for 
allowing lite-weight visualization and data mining to take 
place in the background of normal day-to-day operation 
of any GUI based operation system such as MS Windows, 
OS X or Linux. By allowing visualization to occur in the 
background of quotidian computer activity we allow a 
greater possibility of unexpected, serendipitous and useful 
discoveries. 

Our system works by replacing the standard file icons 
with automatically created icons that reflect the contents 
of the files in a principled way. We call such icons 
INTELLIGENT ICONS. While there is little utility in 
examining an individual icon, examining groups of them 
allows us to take advantage of small multiples paradigm 
elucidated by Tufte, allowing us to answer the question 
“compared to what?” We can enhance the utility of 
Intelligent Icons by arranging them on the screen in a way 
that reflects their similarity/differences, rather than the 
traditional “view by date”, “view by size” etc. As we will 
demonstrate, our approach has utility for data as diverse 
as DNA, text files, and time series. 

The rest of the paper is organized as follows, we 
conclude Section 1 with a discussion of related work. 
Section 2 introduces our ideas on a single data type, 
DNA. In Section 3 we generalize these ideas to other 
types of data. Section 4 contains demonstrations and 
experiments. Finally in Section 5 we discuss future 
directions. 

1.1 Prior and Related Work 
Our work is closest in sprit to the recent VisualIDs work 
of Lewis et. al. [15]. Here the authors note that “search 
and memory for images is known to be generally faster 
and more robust than search and memory for words”, and 
they leverage off this fact by automatically creating 
distinctive icons for desktop interfaces. The icons are 
created by hashing the filenames to seeds of a 
pseudorandom generator that in turn is used to create a 
shape grammar. In this way, similar filenames will map to 
similar shapes, thus allowing a user to see at glance when 
two files are related. 

The most important distinction between VisualIDs and 
INTELLIGENT ICONS is that the former only looks at a file 
name, whereas the latter looks at file content. The authors 
of VisualIDs make a convincing case that producing the 
icons appearance exclusively from the file name does 
lend a “permanence” (in spite of editing changes) that 
may aid the user in navigating through a large file system. 
However our goal extends beyond creating a simple aide-
memoire for navigation. The objective is to create a 
system that also supports information visualization and 
query by content. As a simple example of the difference 
of the two approaches consider Figure 1. 



 

Figure 1: The similarity of 3 DNA files based on file name 
(left) and file contents (right).  

The three files in the example are ASCII text files, each 
of which contains approximately 16,000 base pairs of 
mitochondrial DNA. Here we used string edit distance as 
suggested in [15] to measure the distance between file 
names, and Euclidean distance to measure the distance 
between the file icons (as explained in more detail 
below). Note that two of the species share the same 
specific name of “americanus” (with a different generic 
name) and this makes them similar in a way that is not 
biologically meaningful1, whereas the INTELLIGENT ICON 
approach captures the correct relationship between the 
three species. 

An additional limitation of VisualIDs is that most 
people do not explicitly name the vast majority of files on 
their hard drive. Rather the file names are inherited when 
the files are downloaded, or they are automatically named 
by automatic links to an external database (i.e. music files 
named by CDDB.com), or they are automatically 
generated by an application, for example Canon-
001.jpg, Canon-002.jpg etc. In such cases 
VisualIDs may have limited utility. Given the different 
goals of our approach and VisualIDs, we will not discuss 
this work any further. 

The idea of using the values of variables to change the 
shape of an icon (glyph) dates back at least to the classic 
work of Chernoff [6]. Beddow and others exploited the 
availably of color display and printers to extend this 
mapping to colors [5].  Keim et. al. introduced Recursive 
Patterns in [8]. Recursive patterns can be considered as a 
general technique to map data to bitmaps, although icons 
were not explicitly considered. 

The arrangement of icons on the screen is an important 
component of our work. Ward [22] contains an excellent 
overview and some important original contributions.  

2 AN EXAMPLE OF AN ICON GENERATION 
ALGORITHM  

For concreteness we begin with a particular example of an 
icon generation algorithm before considering the more 
general framework below. We have chosen DNA data for 
our first example. We recognize that DNA is a rather 
specialized file type. However there are two reasons for 
using it as the introductory example. First, its special 
structure lends itself to simple elucidation. Second, DNA 

                                                                 
1 It might be argued that the discovered similarity of specific name of 

“americanus” is somehow geographically meaningful. However, the 
specific name part of most organisms such as “orientalis”, “japonicum”, 
“asiatica” are used in fairly arbitrary and inconsistent ways that have 
little utility for taxonomy. 

is unique in that it is the only dataset for which there 
exists a unique taxonomy, and this taxonomy is near 
universally agreed on for most “major” animals. This fact 
will allow us to objectively test the similarity of icons.  

2.1 DNA to INTELLIGENT ICON 
Consider a DNA string, which is a sequence of symbols 
drawn from the alphabet {A, C, G, T}. DNA strings can be 
very long. For example the human mitochondrial DNA 
has 16,571 such symbols, beginning with 
GATCACAGGTCTATCACCCTATTAACCACT… and ending 
with …ACATCACGATG. This long sequence 
(approximately five pages of text in this papers format) is 
only a tiny subset of the three billion letters that actually 
make up the entire human genome. We want to note here 
that size of the icon (32 by 32 pixels) is the limiting factor 
in summarizing the information content of large files. 

Although the rich literature on the problem of 
classifying DNA sequences contains very sophisticated 
approaches, here we pursue a very simple technique based 
on the frequency of short substrings. The first attempt to 
map a sequence in an icon would be to divide the bitmap 
into four quadrants and count the frequency of each of the 
four possible base pairs. We can then map the observed 
frequencies to a linear colormap to produce a icon using 
the indexed colors to fill in the corresponding sections of 
the bitmaps as shown in Figure 2. 

 

Figure 2: i) The four DNA base pairs arranged in a 2 by 2 
grid. ii) The observed frequencies of each letter in human 
mitochondrial DNA can be indexed to a colormap to produce 
a file icon as shown in iii. 

Note that in this case the arrangement of the four letters 
is arbitrary, and that the choice of colormap is also 
arbitrary. In order to use as much of the color spectrum as 
possible, we normalize the data such that the lowest 
frequency symbol maps to zero and the highest frequency 
symbol maps to one. More concretely, if j is one symbol 
in the alphabet, then the color index of j is denoted as 
ci(j), and calculated as: 
ci(j) = (f(j) - min[f(A), f(C), f(G), f(T)]) / max[f(A), f(C), f(G), f(T)]    (1 

One could apply this simple mapping to a set of DNA 
sequences corresponding to different species and examine 
the icons in a file browser. Unsurprisingly however (and 
unfortunately for human vanity) there is very little 
difference between the icons obtained in this way for 
most mammals. In an attempt to improve the 
discrimination ability of the icons we can use more 
features, examining the frequencies of all possible pairs of 
letters. For example the substring AT appears 3 times in 
the first 30 base pairs of the human mitochondrial DNA, 
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which is GATCACAGGTCTATCACCCTATTAACCACT. If 
we attempt this strategy, we must consider the best way to 
map the new features to our 32 by 32 bitmap. We could 
do this arbitrarily as before, for example we could sort 
lexicographically the words and fill in the bitmap left to 
right, top to bottom. However below we show an 
alternative method that has a potentially useful property.  

Most GUI operating systems allow the user to view 
files icons at different sizes. For example MS Windows 
XP can show the icons in 4 different sizes depending on 
whether you chose “thumbnails”, “tiles” “icons”, “list” in 
the view options. It would therefore be desirable if we 
could arrange for a file icon to be similar to itself 
regardless of the number of features used to create it. 
Surprisingly, this is easy to arrange for DNA. Below we 
show a general mapping for DNA that has this property.  

We begin by assigning each letter a unique key value, 
k:  

A → 0 C → 1 G → 2 T → 3 
We can control the desired number of features by 

choosing l, the length of the DNA words. Each word has 
an index for the location of each symbol, for clarity we 
can show them explicitly as subscripts. For example, the 
first word with l = 4 extracted from the human 
mitochondrial DNA is GOA1T2C3. So in this example we 
would say k0 is G, k1 = A, k2 = T and kl = C.  

To map a word into a bitmap we can use the following 
equation to find its row and column values: 
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Figure 3 shows the mapping for l = 1, 2 and (part of) 3. 

 

Figure 3: The mapping of DNA words of l = 1, 2 and 3. (The 
colors of the text are just to allow visualization of the mapping 
algorithm).  

If one examines the mapping in Figure 3, one can get a 
hint as to why a bitmap for a given species might be self-
similar across different scales. For example note that for 
any value of l, the top column consists only of 
permutations of A and C, and that the two diagonals 
consist of permutations of A and T, or G and C. Similar 
remarks apply other rows and columns. 

To demonstrate this self-similar property we have 
creates the icons for two different species at multiple 
levels in Figure 4. 

 

Figure 4:The icons created for two species at every level from 
1 to 4. Note that the icons for a given species look similar 
across all levels.  

Note that this converging property of has been noted 
before (for a more complex variation of our mapping 
scheme) and has been used to study genomes [1]. For 
example, a biologist can recognize that a particular DNA 
word, say in a bacterial genome, is rarely used. This 
would suggest the possibility that the bacteria have 
evolved to avoid a particular restriction enzyme site, 
which means that it might not be easily attacked by a 
specific bacterio-phage. 

2.2 Optimizing and Arranging the Icons 
Recall that our intent is to produce icons that reflect the 
similarity of the files. We can objectively measure the 
similarity of two icons by using the Euclidean distance 
between the matrices of original frequency counts. Given 
matrices A and B, of the same level l, and denoting the ith, 
jth element as Aij, we can measure the distance as: 

2
2

1

2

1
)(),( ij

i j
ij BABAdist

l l

∑∑
= =

−=   (3 

This distance measure assumes that we have access to 
the original frequency counts matrices. However in 
practice we can use the actual icons, provided we keep the 
colormap to translate the 3-dimensional color (RGB 
values) back to 1-dimensional frequency counts. 

In Figure 5 we have clustered five familiar species 
based on the Euclidean distance between their bitmap 
representations. 

 

Figure 5: Five species clustered using the distance between 
their bitmap representations (for clarity we used their 
common names).  

These results are something of a mixed bag for us. 
Although the clustering is objectively correct, the 
differences detected by Euclidean distance measure are 
very subtle to the naked eye. For example one must look 
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quite closely to observe that the top right element of the 
primates bitmap is pink, whereas the corresponding 
element for the elephants is blue.  

We have therefore identified the need to enhance the 
subjective visual discriminatory power of the icons. We 
will devote an entire section to a discussion of general 
techniques for doing just that. In what follows we show 
an example of the type of modification that could enhance 
the subtle visual similarities and differences of icons. An 
obvious possible “trick” would be to normalize the ith,jth 
elements across all icons. This has the effect of enhancing 
subtle differences in color. For example the bottom right 
element of all 5 icons shown in Figure 5 appear to be 
minor variations of blue violet, it requires careful 
inspection to note that the elephants have a slightly darker 
shade of it. In Figure 6 however, normalization has 
emphasized the differences such that the element in 
question is magenta (fuchsia) for the elephants and pale 
turquoise for the human. 

 

Figure 6: Five species clustered using the distance between 
their normalized bitmap representations. 

Here the visual patterns are much more satisfactory, 
and we can finally see a hint of the potential utility of 
INTELLIGENT ICONS. As a simple example of this, imagine 
we encountered the icon shown in Figure 7.  

 

Figure 7: The icon for another African mammal. Is this animal 
more similar to an elephant or ape?  

Based on the file name, we probably cannot say 
anything about this animal, but simply by glancing at the 
file icon and comparing it to the icons in Figure 6 we 
might reasonably guess that this animal is more similar to 
the chimps/human than to the elephants. In fact, this is the 
case, Macaca mulatto is more commonly known as the 
rhesus monkey. 

We can further leverage off the INTELLIGENT ICONS by 
arranging them within a file browser based on their 
similarity. By way of contrast consider the classic file 
browser interaction shown in Figure 8. 

 

Figure 8: Twelve DNA files, sorted by name, in a typical file 
browser. Using the classic technique of bounding box 
selection we can select subsets of the files, in this case the 
Indian elephant and the Indian rhinoceros. 

We can use the classic bounding box section tool to 
selection various subsets. However in this example it is 
hard to extract meaningful subsets, other than the dubious 
pairs pygmy chimpanzee/pygmy sperm whale and Indian 
elephant/ Indian rhinoceros (Note we are using familiar 
English names here for clarity, however using scientific 
names does not help, for example the two types of 
elephant, Elephas maximus and Loxodonta Africana, are 
not alphabetically close). 

We can use INTELLIGENT ICONS to solve this problem 
by arranging the icons in the file browser based on their 
similarity, rather than the classic options of name, size, 
date etc. There has been much work on arranging icons 
(glyphs/photo thumbnails etc) on a screen (see [22] for an 
excellent overview). We have adopted Multi-Dimensional 
Scaling (MDS), which requires a distance matrix between 
all icons as its input (calculated using E.q. 3). In order to 
prevent the icons from partially or completely 
overlapping, we snap-to-grid the icons to the nearest 
unoccupied grid point as suggested by Basalaj [4]. 

Although the time complexity of MDS is cubic in the 
number of objects, we found that even on a large screen 
full of small icons, an efficient MDS implementation can 
dynamically adjust the position of the icons in real time as 
the user changes the aspect ratio of the file browser. 
Figure 9 shows the same 12 mammals as shown in Figure 
8 arranged in this way2.  

                                                                 
2 To mitigate some of the problems of reproducing screen captures at 

a small scale, this screen capture and some those that follow, have had 
minor touch ups in a photo editing program. For example, the cursor 
was made twice its normal size. However in no case where the colors or 
locations of the icons changed. 
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Figure 9: Twelve DNA files, arranged by INTELLIGENT ICONS, 
in a typical file browser. Using the classic technique of 
bounding box selection we can select subsets of the files, in 
this case the Indian rhinoceros and the white rhinoceros. 

In addition to being able to select both types of Rhinos 
(Rhinocerotidae) as shown above, we can now also use 
standard bounding rectangles to select other logical 
groups, such as: 

• Both types of elephants (Elephantidae).  
• All the primates (Catarrhini). 
• Just the greater apes (Hominidae). 
• Just the two types of chimps (Panines). 
• Just the chimps and humans (Hominids). 

At first glance the fact that we must select the hippo 
when we select the two types of whales seems like an 
error, surely the hippo belongs with either the elephants 
or the rhinos. Interestingly, this is not the case; the hippos 
are more closely related to whales than to any other 
mammals! Whales and hippos diverged a mere 54 million 
years ago, whereas the whale/hippo group parted from the 
rhinos about 76 million years ago, and from the elephants 
about 105 million years ago. The group that includes 
hippo and whales/dolphins, but excludes all other 
mammals above is called Cetartiodactyla [23]. We call 
the combination of INTELLIGENT ICONS and the MDS 
layout a Smart Browser.  

3 GENERALIZING FROM THE DNA EXAMPLE  
We have now seen a concrete example of INTELLIGENT 
ICONS, and shown some examples of their utility. We 
want to have a software tool that (1) is capable of 
changing the individual icons of selected file types and  
(2) allows the option of arranging the file icons by 
similarity.  When the tool is first installed, the user must 
to create or download plug-ins that tells our software how 
to convert their filetypes. Below we consider plug-ins for 
text and time series and provide general guidelines for 
arbitrary data types. Note that this type of software design 
has recently become very popular. For example, the 
Google Desktop Search Tool is able to index a handful of 
common file types as shipped, however volunteers have 

written plug-ins that allow the program to index more 
exotic file types such as DjVu, 3dsmax and C++ source 
code [14]. 

In order to be able to handle more file types, next we 
generalize the ideas presented in the previous section. Let 
us begin by considering the desirable properties of 
INTELLIGENT ICONS. 

3.1 Desirable Properties of INTELLIGENT ICONS 
Below we list four desirable properties of Intelligent 
Icons: 
• File types should retain distinctiveness. In current 

operating systems, most file types have a particular 
icon associated with them. This makes it easy to 
determine at a glance the file type (e.g., PDF, 
PowerPoint, etc.) It is desirable that INTELLIGENT 
ICONS inherit this property. As we shall see, this 
property is only apparently in conflict with the 
property 2 below. 

• Similar files should have similar icons. This is the 
fundamental property that allows smart browsing, 
that is allow users to spot clusters, duplicates and 
outliers in their data. Furthermore, as we shall see 
later, this property can support query by content (e.g., 
find me the file most similar to this one), whereas 
current systems only support query by name, data, 
size etc. 

• File icons should look similar at different resolution 
(cf. Figure 4). This is because most operating systems 
allow use to view icons at various sizes. 

• File icon updates should be fast. It is important files 
can be added, deleted or edited, and have their icons 
instantaneously reflect their content.   

Below we will consider how to address these properties 
in more detail. 

3.1.1 Distinctiveness of File Type 
There can be little doubt that having distinctive file icons 
for different file types aids rapid file navigation. At first 
blush it may appear that the idea of basing the icons on 
the file contents would remove this benefit. However, this 
is not the case. We can retain file distinctiveness while 
allowing individuality with a combination of two 
techniques: 
• Using different colormaps for different file types. 
• Using different mappings for different file types. 
To illustrate this we have chosen three distinctive 

colormaps for the three main datatypes that we have 
encountered (personally, given our research interests). In 
addition we have chosen a distinctive mapping for video 
games as shown in Figure 10. 
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Figure 10: i) The three different colormaps used for the 3 
principle file types considered in this work. ii) Two examples 
of mapping templates for INTELLIGENT ICONS. iii) A screen 
capture of a folder with 3 different file types. 

In the figure above the choice of colormaps was 
completely arbitrary, however this need not be the case. 
For example gene expressions visualizations almost 
always use a red/green colormaps [19] and we could 
leverage of this fact to create intuitive icons for that file 
type.   

3.1.2 Similar Files should have Similar Icons 
The basic idea discussed in Section 2 of extracting 
features from the file, measuring their frequency, and 
mapping these frequencies to color and spatial 
arrangements can be easily applied to other domains. 
These general principles are familiar to those in the 
machine learning and visualization communities.  

We want to extract features that have high 
discriminatory power. For example, for text documents 
the feature, frequency_of_word(the) is not useful. 

We want features that are as independent as possible. 
For example, for text documents if we included the 
feature frequency_of_word(bicycle), there would 
probably be little utility of including the 
frequency_of_word(bike). 

Below we consider these requirements on two concrete 
examples, namely text and time series and a generic 
“type”, metadata. 
Text: Files containing text, such as MS Word, PDF, TEX, 
TXT files etc. are perhaps the most commonly 
encountered file types for the majority of people. We can 
leverage off the large body of work in the text IR 
community to map these files to icons. For example we 
begin by discarding stop words, such as “the”, “of”, “and” 
etc. Such words tend to have equal frequency across all 
documents and thus have little discriminative power. We 
next stem the words using Porters algorithm [17], so that 
variations on a word map to a single root, for example 
“dividing”, “divided” and “divide” all map to “divid”. 
After completing these steps we are typically left with 
much fewer words, although for large documents 
collections many tens of thousands of words is still 
possible. Since the number of possible words is much 

greater than the number of pixels available, we need to 
reduce the dimensionality of the features. We achieve this 
by using a classic text-processing algorithm called Latent 
Symantec Indexing (LSI). LSI finds a lower 
dimensionality representation of the data by projecting it 
onto a space that reflects the latent structure. This takes 
care of the problem of synonymy and also prioritizes the 
features by arranging them by relative importance.  
Time Series: Time series are a ubiquitous and 
increasingly prevalent type of data.  They occur in 
virtually every field of human endeavor, including 
finance, medicine, meteorology and entertainment. There 
is some existing work on visualizing time series that 
could be adapted for our needs. For example the 
Recursive Pattern work of Ankerest et. al. allows  
recursive generalization of arbitrary line and column 
oriented arrangements, including time series. Another 
possibility is to discretize the time series and use the 
approach above for text, or to discretize the time series 
into exactly 4 symbols and use the algorithm above for 
DNA. Let us consider the later approach in more detail. 

While there are at least 200 techniques in the literature 
for converting real valued time series into discrete 
symbols [12], the SAX technique of Lin et. al. is unique 
and ideally suited for our purposes [16]. The SAX 
representation is created by taking a real valued signal 
and dividing it into equal sized sections. The mean value 
of each section is then calculated. This produces a 
reduced dimensionality piecewise constant approximation 
of the data. This representation is then discretized in such 
a manner as to produce a word with approximately equi-
probable symbols. Figure 11 shows a short time series 
being converted to a discrete string. 

 

Figure 11: A real valued time series being discretized into the 
SAX word GTTGACCA.  

The figure shows a relatively short time series 
converted into a pseudo DNA word of 8 symbols, hardly 
long enough to robustly extract frequency information. 
Fortunately most time series in the real world are 
typically much longer, for example ECG samples in a 
medical log often contain at least 10,000 datapoints. 
Metadata: The diligent reader may already be wondering 
how we extracted meaningful features from the video 
game executables show in Figure 10. The answer is, we 
did not. It is extremely difficult to extract useful features 
from many file types, including executables, music and 
video files. Fortunately, many such file types can be 
mapped to extensive repositories of metadata. For 
example, we create icons for MP3 music files based not 
the file contents, but on metadata provided 
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(automatically) by CDDB.com. The features available 
include, Track Artist, Record Label, Year, 
Beats Per Minute, Metagenre (rock, classical, new age, 
jazz, etc.), Subgenre (punk, ska, baroque, choral, ambient, 
bebop, ragtime) etc.  

For video games, there is no completely automatic 
metadata server, but an hours work enabled use to write a 
crawler which extracted features from 
www.metacritic.com/games/pc/scores/. 

The idea of using external metadata to create the icons 
opens several exciting possibilities for future research; 
however for brevity we will not further discuss this here. 

3.1.3 File icons should look similar to different 
resolution versions of themselves 

File icons should look similar when viewed at different 
scales because most operating systems allow user to view 
icons at different resolutions. For example Windows XP 
supports icons sized 48 × 48, 32 × 32, 24 × 24, and 16 × 
16 pixels. Microsoft invites application developers to 
produce optimized versions of icons in each size; 
otherwise it takes the single icon provided and (linearly) 
interpolates it to the other sizes. 

In some cases this “self-similar” property can be easily 
arranged, we have already seen in Figure 4 that our 
mapping for DNA has this property, and our mapping 
function for time series inherits this property. So we can 
use an l = 2 mapping for   16 × 16 pixels, and an l = 3 
mapping for 32 × 32 pixels, and expect the two icons to 
resemble each other. 

More generally, this property may be hard to ensure if 
we wish to use every pixel of say a 48 × 48 bitmap. When 
we reduce the size of this bitmap to 24 × 24, we must 
average the quartets of pixels into one. If the original 
pixels elements are independent (a general requirement 
cf. section 3.1.2) the smaller bitmaps will not resemble 
the larger bitmaps from which they where derived. The 
good news is that it is unlikely we would ever want to use 
all 2,304 pixels of the largest icon size. Decades of 
research in machine learning and information retrieval 
strongly suggests that although objects may exist in very 
high dimensional spaces, meaningful similarity can best 
be captured in some low dimensional subspace. Even the 
256 dimensions allowed by the smallest icon size would 
be hard to meaningfully populate for most domains. We 
therefore restrict ourselves to some small number of 
features, typically less than one hundred, and map each 
feature to several contiguous pixels in the smallest 
bitmap. The larger sizes bitmaps can then be obtained by 
simple linear extrapolation. 

The two techniques, variable level mappings, and 
simple linear extrapolation are not mutually exclusive; 
Figure 12 shows how we combine both techniques for the 
DNA file icons. 

 

Figure 12: Four different sized DNA icons for Argulus 
americanus. The smallest icon is a level 2 mapping of one 
feature to 4 pixels; the next size up is simply an enlargement 
of the smallest size. The 32*32 size icon is a level 3 mapping 
of one feature to 4 pixels, and the largest icon is simply an 
enlargement of the second largest size.   

3.1.4 File icon updates should be fast 
In general, if we only need to process a few files in order 
to create their INTELLIGENT ICON, time complexity might 
not be an issue. For example, using the mapping 
algorithm in Eq. 2 for DNA, we can create an icon in a 
few milliseconds for a file containing hundreds of 
thousands of base pairs. However the issue of time 
complexity does become important if the mapping 
algorithm requires access to multiple files. We have 
already seen examples of this situation. In Section 2.2 we 
have shown that DNA icons look better if we normalize 
the frequencies across all icons. Clearly, if we add a new 
file to our collection, these frequencies can be expected to 
change somewhat. This means that every update 
(deletions, insertions, and editing changes) to our files 
should be accompanied by an update to all icons. These 
updates could become unacceptably slow if we have 
many files. 

Our solution is to use a classic idea in the database 
community, lazy updates [13]. The basic idea is to learn 
the best mapping on all N files offline, use it to create 
icons for all N files, and save the mapping function. If we 
later need to add a new file to the collection, we simply 
use the current mapping function to immediately create 
the new icon, and wait for an opportunity to create the 
optimal icons for all N + 1 icons. We do this in one of two 
ways, either assign a very low priority thread to the 
process (this is Google’s solution for its desktop search 
indexer) or perform all updates at a scheduled time when 
we are unlikely to compete with human users for CPU 
time, say in the middle of the night.   

4 EXPERIMENTAL EVALUATION OF INTELLIGENT 
ICONS  

The central claim of our paper is that INTELLIGENT ICONS 
allow unexpected and serendipitous discoveries. This is a 
difficult claim to prove in anything but an anecdotal way. 
Fortunately, UCR is the home of a very large archive of 
time series test datasets. We can begin by examining this 
archive in a smart browser.  

We used the tool to browse the hundreds of datasets in 
the UCR archive. One such dataset, known as 
Kalpakis_ECG, contains 18 normal ECGS used to test 
time series clustering techniques. Figure 13 shows the 
dataset as most people have viewed it.  
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Figure 13: The 18 normal ECGs from the Kalpakis dataset 
shown in a typical MS Window XP file browser. 

When we glanced at this dataset with our Smart 
Browser, we immediately noticed something interesting. 
While ECGs (and therefore the icons derived from them) 
can have great variability, five of the 18 thumbnails had 
radically different icons. Figure 14 illustrates this. 

 

Figure 14: The 18 normal ECGs from the Kalpakis dataset 
shown in a Smart browser. Five of the INTELLIGENT ICONS are 
radically different from the rest. 

This structure was so unexpected we asked UCLA 
cardiologist, Dr. Helga Van Herle to explain these 
findings. She informed us that the 5 recordings in 
question are not ECGs! They are in fact examples of the 
action potential of a normal pacemaker cell (not to be 
confused with the man-made devices which mimic them, 
and are named after them). Figure 15 illustrates the 
difference. 

 

Figure 15: Top) Four snippets from randomly chosen ECGs 
from the Kalpakis_ECG dataset. Note that ECGs can have 
great variability. Bottom) A snippet from the normal18.txt 
“ECG” from the Kalpakis_ECG dataset. 

In retrospect, after visualizing the data it is apparent 
even to the untrained eye that the five time series in 
question are radically different to the rest. Nevertheless 
many people have used this dataset to test algorithms, 
apparently without noticing this [7].  

Another dataset we examined with Smart Browser was 
a NASA dataset containing examples of telemetry from a 
Space Shuttle valve. Figure 16 shows five such time 
series.  

 

Figure 16: Five NASA Marotta MPV-41 valve trace files 
shown in a Smart Browser. 

It is immediately apparent that one file has quite a 
different structure to the rest. NASA engineers where able 
to explain the difference by noting that while the other 
four files correspond to normal sequences, file 
TEK00016.CSV corresponds to an abnormal trace, as 
shown in Figure 17. 
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Figure 17: The five time series whose INTELLIGENT ICONS are 
shown in Figure 16. Note that the bottom four are normal, but 
TEK00016.CSV has a fault. 

As a final example we consider twelve monthly 
electrical power demand time series from Italy, Figure 18 
shows the data viewed in a smart browser. It is 
immediately apparent that there are two major clusters 
that correspond to winter months (October to March) and 
summer months (April to September). Such a division 
makes sense. Given that the demand for heating 
dominates the winter power demand (Air conditioning is 
still fairly rare in Italy). 

The other immediately obvious feature of Figure 18 is 
that the month of August is an outlier. This is apparent 
from both its icon’s location on the screen and by its 
color. To get some insight into this phenomenon we can 
visualize the entire year as a single time series as in 
Figure 19. Clearly the month of August is a true outlier, 
but what is going on? The answer lies in an Italian 
cultural phenomenon. According to travel writer Nella 
Nencini, “By the middle of July, normal activity begins to 
wane and by the beginning of August, shops no longer 
close between 1 and 4 p.m., they close for two or three 
weeks. Dry cleaners close, mechanics close, factories 
close, wineries close, restaurants close, even some 
museums close. Cities like Florence and Venice would be 
abandoned if not for the tourists braving the heat to visit 
artistic treasures”. 

 

Figure 18: Twelve monthly power demand time series from 
Italy shown in a Smart Browser. 

The dramatic change in power demand reflects the fact 
that most major employers (like Fiat and many 
government offices) simple shut down for the month. 

 

Figure 19: One Year of Italian Power Demand (1997). Note 
that the month of August is radically different to the rest of the 
year. 

As before, once the data is viewed by plotting it in 
Matlab or MS Excel, it is fairly easy to see the 
differences. However, without the Smart Browser to 
invoke the users curiosity, this simply may never happen. 

4.1 INTELLIGENT ICONS FOR TEXT 
A central claim of this work is that once the basic 

framework for INTELLIGENT ICONS has been established, it 
is easy for people to write “plug-ins” for their favourite 
data types. To test this hypotheses, the first author spent 
15 minutes explaining the basics of INTELLIGENT ICONS to 
graduate students taking a data mining course (UCR 
CS235, Spring 06), and invited students to write a plug-in 
for any data type they were interested in. Two students 
(Jin and Scott, credited here as co-authors) produced a 
text plug-in. Their approach is somewhat different to the 
approach suggested above, and does not (currently) obey 
the ”File icons should look similar at different resolution” 
property. However their project demonstration elicited 
such a positive reaction we decided to include an example 
of their work as an example of the kind of thing which is 
possible with a days work.  Full details of how their 
approach works can be found in [18]. 
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Figure 20: Thirty-eight PDF files represented by Shieh-Sirowy INTELLIGENT ICONS. See Figure 21 for an explanation of the results 

 

 

Figure 21: A visual key explaining the results of Figure 20 

The dataset in question is a collection of database/data mining 
papers by diverse authors, which reference one of two papers by 
the first author. Those two papers are “Exact indexing of 
dynamic time warping” [10] and “Learning the Structure of 

Augmented Bayesian Classifiers” [11]. In order to make the task 
more challenging, we indexed all the text except the references.  

In Figure 20 we can see two major distinct clusters. One 
cluster is a collection of papers on (mostly Bayesian) 
classification, the other cluster is a collection of papers on 
Dynamic Time Warping (DTW).  One icon is centered almost 
exactly in-between the two major clusters. This makes perfect 
sense, since it is a paper on classification of time series that 
using DTW (Decision-tree Induction from Time-series Data… 
by Yamada et al. [24]) and thus belongs equally to both clusters. 

The two remaining icons also have intuitive placement and 
coloring. Both are written in languages other than English, 
which explains why they appear as outliers. However, their 
coloring still gives us a clue as to their content. The icon that has 
mostly blue pixels (in Italian) is about classification, and the 
icon that has mostly red pixels (In Portuguese) is about warping. 
This coloring is reflected in the major clusters. It is perhaps 
surprising that the icons are intuitive even in the face of been in 
different languages, however an examination of the texts reveals 
the occasional passage that lapses into English, such as: 
“..verificar a superioridade da Warp Metric Distance como 
medida…”, and this is enough structure for the algorithm to 
produce intuitive icon coloring. 
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4.2 INTELLIGENT ICON SEARCH 
Although the primary use of INTELLIGENT ICONS is 
visualization and data mining, their utility for query by 
content is related and potentially so useful that we briefly 
consider it here. 

Most operating systems support search by ‘name’, 
‘date’, ‘size’ etc, and further enhance the search by 
‘name’ by allowing wildcards. However, no current 
operating systems support query-by-content. The utility of 
such search is becoming increasing obvious as 
commercial hard drives now exceeded 400 gigabytes in 
size. For example, suppose we know that we have a 
preliminary version of a paper buried among our files, but 
we don’t remember its name. It would be useful to be able 
to simply right click on the icon, and choose an option 
“find most similar file”. We have built such a utility into 
our Smart Browser tool. When searching for the most 
similar icon we exclude from consideration files in the 
same folder as the query file. 

In general, query-by-content search using icons 
provides very intuitive results. For example, we have 
arranged DNA icons for approximately 380 mammals, 
reptiles and birds in folders that reflect their geographical 
location rather than their taxonomic relationship. If we 
search for the most similar file to chimpanzee.dna in 
the African folder, we are told that the closest match is 
orangutan.dna in the Asian folder. Likewise, as 
shown in Figure 22, a search for the most similar file to 
american black bear.dna, returns Polar 
Bear.dna3.  

 

Figure 22: A screen capture of a search interaction with 
Smart Browser. The user right clicked on the icon for the 
American Black bear, and chose “Icon Search”, the closest 
match was the polar bear. 

                                                                 
3 The Polar Bear is found in the Alaska and Canada, in addition to 

Iceland, Greenland and Russia, so the choice of placing it in the Europe 
folder was somewhat arbitrary. Note that the Asiatic Black Bear (Ursus 
thibetanus), which may be more similar to the American Black Bear, has 
not yet been sequenced. 

Shortly before this paper was submitted, we became aware of 
an interesting proof of the similarity of the Polar Bear and the 
American Black Bear. The first example of a hybrid in the wild 
was confirmed by DNA tests [1]. 

5 CONCLUSIONS AND FUTURE WORK  
We have introduced INTELLIGENT ICONS, a novel 
technique for allowing visualization to take place in the 
background of day-to-day computer use. Future research 
directions include an extensive user study and providing 
support for other file types.  
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