
Intelligent Icons: Integrating Lite-Weight Data Mining and Visualization
into GUI Operating Systems

Eamonn Keogh Li Wei Xiaopeng Xi Stefano Lonardi Jin Shieh Scott Sirowy
University of California – Riverside

 {eamonn, wli, xxi, stelo, shiehj, ssirowy}@cs.ucr.edu

ABSTRACT
The vast majority of visualization tools introduced so far are
specialized pieces of software that are explicitly run on a
particular dataset at a particular time for a particular
purpose. In this work we introduce a novel framework for
allowing visualization to take place in the background of
normal day to day operation of any GUI based operation
system such as MS Windows, OS X or Linux. By allowing
visualization to occur in the background of quotidian
computer activity (i.e. finding, moving, deleting, copying
files etc) we allow a greater possibility of unexpected and
serendipitous discoveries.

Our system works by replacing the standard file icons with
automatically created icons that reflect the contents of the
files in a principled way. We call such icons INTELLIGENT
ICONS. While there is little utility in examining an individual
icon, examining groups of them allows us to take advantage
of small multiples paradigm advocated by Tufte. We can
further enhance the utility of Intelligent Icons by arranging
them on the screen in a way that reflects their
similarity/differences, rather than the traditional “view by
date”, “view by size” etc. We demonstrate the utility of our
approach on data as diverse DNA, text files,
electrocardiograms and Space Shuttle telemetry. In addition
we show that our system is unique in also supporting fast
and intuitive similarity search.

1 INTRODUCTION
At the heart of many information visualization and data
mining techniques is a single question “compared to
what?” [20]. In several application domains, the main
objective of data exploration is to arrange the data such
that meaningful similarities and differences are exposed.
However the vast majority of visualization/data mining
tools introduced so far are specialized pieces of software
that are explicitly run on a particular dataset at a
particular time for a particular purpose. The human effort
involved in this process is high enough that most of these
tools are used rarely, even when data keeps accumulating
at very high rates.

In this work we introduce a novel framework for
allowing lite-weight visualization and data mining to take
place in the background of normal day-to-day operation
of any GUI based operation system such as MS Windows,
OS X or Linux. By allowing visualization to occur in the
background of quotidian computer activity we allow a
greater possibility of unexpected, serendipitous and useful
discoveries.

Our system works by replacing the standard file icons
with automatically created icons that reflect the contents
of the files in a principled way. We call such icons
INTELLIGENT ICONS. While there is little utility in
examining an individual icon, examining groups of them
allows us to take advantage of small multiples paradigm
elucidated by Tufte, allowing us to answer the question
“compared to what?” We can enhance the utility of
Intelligent Icons by arranging them on the screen in a way
that reflects their similarity/differences, rather than the
traditional “view by date”, “view by size” etc. As we will
demonstrate, our approach has utility for data as diverse
as DNA, text files, and time series.

The rest of the paper is organized as follows, we
conclude Section 1 with a discussion of related work.
Section 2 introduces our ideas on a single data type,
DNA. In Section 3 we generalize these ideas to other
types of data. Section 4 contains demonstrations and
experiments. Finally in Section 5 we discuss future
directions.

1.1 Prior and Related Work
Our work is closest in sprit to the recent VisualIDs work
of Lewis et. al. [15]. Here the authors note that “search
and memory for images is known to be generally faster
and more robust than search and memory for words”, and
they leverage off this fact by automatically creating
distinctive icons for desktop interfaces. The icons are
created by hashing the filenames to seeds of a
pseudorandom generator that in turn is used to create a
shape grammar. In this way, similar filenames will map to
similar shapes, thus allowing a user to see at glance when
two files are related.

The most important distinction between VisualIDs and
INTELLIGENT ICONS is that the former only looks at a file
name, whereas the latter looks at file content. The authors
of VisualIDs make a convincing case that producing the
icons appearance exclusively from the file name does
lend a “permanence” (in spite of editing changes) that
may aid the user in navigating through a large file system.
However our goal extends beyond creating a simple aide-
memoire for navigation. The objective is to create a
system that also supports information visualization and
query by content. As a simple example of the difference
of the two approaches consider Figure 1.

Figure 1: The similarity of 3 DNA files based on file name
(left) and file contents (right).

The three files in the example are ASCII text files, each
of which contains approximately 16,000 base pairs of
mitochondrial DNA. Here we used string edit distance as
suggested in [15] to measure the distance between file
names, and Euclidean distance to measure the distance
between the file icons (as explained in more detail
below). Note that two of the species share the same
specific name of “americanus” (with a different generic
name) and this makes them similar in a way that is not
biologically meaningful1, whereas the INTELLIGENT ICON
approach captures the correct relationship between the
three species.

An additional limitation of VisualIDs is that most
people do not explicitly name the vast majority of files on
their hard drive. Rather the file names are inherited when
the files are downloaded, or they are automatically named
by automatic links to an external database (i.e. music files
named by CDDB.com), or they are automatically
generated by an application, for example Canon-
001.jpg, Canon-002.jpg etc. In such cases
VisualIDs may have limited utility. Given the different
goals of our approach and VisualIDs, we will not discuss
this work any further.

The idea of using the values of variables to change the
shape of an icon (glyph) dates back at least to the classic
work of Chernoff [6]. Beddow and others exploited the
availably of color display and printers to extend this
mapping to colors [5]. Keim et. al. introduced Recursive
Patterns in [8]. Recursive patterns can be considered as a
general technique to map data to bitmaps, although icons
were not explicitly considered.

The arrangement of icons on the screen is an important
component of our work. Ward [22] contains an excellent
overview and some important original contributions.

2 AN EXAMPLE OF AN ICON GENERATION
ALGORITHM

For concreteness we begin with a particular example of an
icon generation algorithm before considering the more
general framework below. We have chosen DNA data for
our first example. We recognize that DNA is a rather
specialized file type. However there are two reasons for
using it as the introductory example. First, its special
structure lends itself to simple elucidation. Second, DNA

1 It might be argued that the discovered similarity of specific name of

“americanus” is somehow geographically meaningful. However, the
specific name part of most organisms such as “orientalis”, “japonicum”,
“asiatica” are used in fairly arbitrary and inconsistent ways that have
little utility for taxonomy.

is unique in that it is the only dataset for which there
exists a unique taxonomy, and this taxonomy is near
universally agreed on for most “major” animals. This fact
will allow us to objectively test the similarity of icons.

2.1 DNA to INTELLIGENT ICON
Consider a DNA string, which is a sequence of symbols
drawn from the alphabet {A, C, G, T}. DNA strings can be
very long. For example the human mitochondrial DNA
has 16,571 such symbols, beginning with
GATCACAGGTCTATCACCCTATTAACCACT… and ending
with …ACATCACGATG. This long sequence
(approximately five pages of text in this papers format) is
only a tiny subset of the three billion letters that actually
make up the entire human genome. We want to note here
that size of the icon (32 by 32 pixels) is the limiting factor
in summarizing the information content of large files.

Although the rich literature on the problem of
classifying DNA sequences contains very sophisticated
approaches, here we pursue a very simple technique based
on the frequency of short substrings. The first attempt to
map a sequence in an icon would be to divide the bitmap
into four quadrants and count the frequency of each of the
four possible base pairs. We can then map the observed
frequencies to a linear colormap to produce a icon using
the indexed colors to fill in the corresponding sections of
the bitmaps as shown in Figure 2.

Figure 2: i) The four DNA base pairs arranged in a 2 by 2
grid. ii) The observed frequencies of each letter in human
mitochondrial DNA can be indexed to a colormap to produce
a file icon as shown in iii.

Note that in this case the arrangement of the four letters
is arbitrary, and that the choice of colormap is also
arbitrary. In order to use as much of the color spectrum as
possible, we normalize the data such that the lowest
frequency symbol maps to zero and the highest frequency
symbol maps to one. More concretely, if j is one symbol
in the alphabet, then the color index of j is denoted as
ci(j), and calculated as:
ci(j) = (f(j) - min[f(A), f(C), f(G), f(T)]) / max[f(A), f(C), f(G), f(T)] (1

One could apply this simple mapping to a set of DNA
sequences corresponding to different species and examine
the icons in a file browser. Unsurprisingly however (and
unfortunately for human vanity) there is very little
difference between the icons obtained in this way for
most mammals. In an attempt to improve the
discrimination ability of the icons we can use more
features, examining the frequencies of all possible pairs of
letters. For example the substring AT appears 3 times in
the first 30 base pairs of the human mitochondrial DNA,

Ursus
americanus

(bear)

Argulus
americanus
(crustacean)

Mus
musculus
(mouse)

4

6

8

10

12

bear crustaceanmouse

Ursus
americanus

(bear)

Argulus
americanus
(crustacean)

Mus
musculus
(mouse)

4

6

8

10

12

bear crustaceanmouse

CA

TG
0.2 0.4 0.6 0.8 1.00

f(A) = 0.308
f(C) = 0.313
f(G) = 0.121
f(T) = 0.246

Homo sapiens.dna

i ii iii

CA

TG

CA

TG
0.2 0.4 0.6 0.8 1.00 0.2 0.4 0.6 0.8 1.00

f(A) = 0.308
f(C) = 0.313
f(G) = 0.121
f(T) = 0.246

Homo sapiens.dna

i ii iii

which is GATCACAGGTCTATCACCCTATTAACCACT. If
we attempt this strategy, we must consider the best way to
map the new features to our 32 by 32 bitmap. We could
do this arbitrarily as before, for example we could sort
lexicographically the words and fill in the bitmap left to
right, top to bottom. However below we show an
alternative method that has a potentially useful property.

Most GUI operating systems allow the user to view
files icons at different sizes. For example MS Windows
XP can show the icons in 4 different sizes depending on
whether you chose “thumbnails”, “tiles” “icons”, “list” in
the view options. It would therefore be desirable if we
could arrange for a file icon to be similar to itself
regardless of the number of features used to create it.
Surprisingly, this is easy to arrange for DNA. Below we
show a general mapping for DNA that has this property.

We begin by assigning each letter a unique key value,
k:

A → 0 C → 1 G → 2 T → 3
We can control the desired number of features by

choosing l, the length of the DNA words. Each word has
an index for the location of each symbol, for clarity we
can show them explicitly as subscripts. For example, the
first word with l = 4 extracted from the human
mitochondrial DNA is GOA1T2C3. So in this example we
would say k0 is G, k1 = A, k2 = T and kl = C.

To map a word into a bitmap we can use the following
equation to find its row and column values:

11

0

1

0
1 2)2(,2mod)2(−−−

=

−

=
−−− ∗=∗= ∑∑ nll

n n
l

n
nlnl

n divkrowkcol (2

Figure 3 shows the mapping for l = 1, 2 and (part of) 3.

Figure 3: The mapping of DNA words of l = 1, 2 and 3. (The
colors of the text are just to allow visualization of the mapping
algorithm).

If one examines the mapping in Figure 3, one can get a
hint as to why a bitmap for a given species might be self-
similar across different scales. For example note that for
any value of l, the top column consists only of
permutations of A and C, and that the two diagonals
consist of permutations of A and T, or G and C. Similar
remarks apply other rows and columns.

To demonstrate this self-similar property we have
creates the icons for two different species at multiple
levels in Figure 4.

Figure 4:The icons created for two species at every level from
1 to 4. Note that the icons for a given species look similar
across all levels.

Note that this converging property of has been noted
before (for a more complex variation of our mapping
scheme) and has been used to study genomes [1]. For
example, a biologist can recognize that a particular DNA
word, say in a bacterial genome, is rarely used. This
would suggest the possibility that the bacteria have
evolved to avoid a particular restriction enzyme site,
which means that it might not be easily attacked by a
specific bacterio-phage.

2.2 Optimizing and Arranging the Icons
Recall that our intent is to produce icons that reflect the
similarity of the files. We can objectively measure the
similarity of two icons by using the Euclidean distance
between the matrices of original frequency counts. Given
matrices A and B, of the same level l, and denoting the ith,
jth element as Aij, we can measure the distance as:

2
2

1

2

1
)(),(ij

i j
ij BABAdist

l l

∑∑
= =

−= (3

This distance measure assumes that we have access to
the original frequency counts matrices. However in
practice we can use the actual icons, provided we keep the
colormap to translate the 3-dimensional color (RGB
values) back to 1-dimensional frequency counts.

In Figure 5 we have clustered five familiar species
based on the Euclidean distance between their bitmap
representations.

Figure 5: Five species clustered using the distance between
their bitmap representations (for clarity we used their
common names).

These results are something of a mixed bag for us.
Although the clustering is objectively correct, the
differences detected by Euclidean distance measure are
very subtle to the naked eye. For example one must look

AA AC CA CC

AG AT CG CT

GA GC TA TC

GG GT TG TT

A C

G T

AAA AAC ACA

AAG AAT ACG

AGA AGC

AGG

l = 1 l = 2 l = 3

AA AC CA CC

AG AT CG CT

GA GC TA TC

GG GT TG TT

A C

G T

AAA AAC ACA

AAG AAT ACG

AGA AGC

AGG

AA AC CA CC

AG AT CG CT

GA GC TA TC

GG GT TG TT

AA AC CA CCAA AC CA CC

AG AT CG CTAG AT CG CT

GA GC TA TCGA GC TA TC

GG GT TG TTGG GT TG TT

A C

G T

A C

G T

AAA AAC ACA

AAG AAT ACG

AGA AGC

AGG

l = 1 l = 2 l = 3

Argulus
americanus
(crustacean)

l = 1

Homo
Sapiens
(human)

l = 2 l = 3 l = 4

Argulus
americanus
(crustacean)

l = 1

Homo
Sapiens
(human)

l = 2 l = 3 l = 4

chimpanzee.dna pygmy
chimpanzee.dna

Human.dna African
elephant.dna

Indian
elephant.dna

chimpanzee.dna pygmy
chimpanzee.dna

Human.dna African
elephant.dna

Indian
elephant.dna

quite closely to observe that the top right element of the
primates bitmap is pink, whereas the corresponding
element for the elephants is blue.

We have therefore identified the need to enhance the
subjective visual discriminatory power of the icons. We
will devote an entire section to a discussion of general
techniques for doing just that. In what follows we show
an example of the type of modification that could enhance
the subtle visual similarities and differences of icons. An
obvious possible “trick” would be to normalize the ith,jth
elements across all icons. This has the effect of enhancing
subtle differences in color. For example the bottom right
element of all 5 icons shown in Figure 5 appear to be
minor variations of blue violet, it requires careful
inspection to note that the elephants have a slightly darker
shade of it. In Figure 6 however, normalization has
emphasized the differences such that the element in
question is magenta (fuchsia) for the elephants and pale
turquoise for the human.

Figure 6: Five species clustered using the distance between
their normalized bitmap representations.

Here the visual patterns are much more satisfactory,
and we can finally see a hint of the potential utility of
INTELLIGENT ICONS. As a simple example of this, imagine
we encountered the icon shown in Figure 7.

Figure 7: The icon for another African mammal. Is this animal
more similar to an elephant or ape?

Based on the file name, we probably cannot say
anything about this animal, but simply by glancing at the
file icon and comparing it to the icons in Figure 6 we
might reasonably guess that this animal is more similar to
the chimps/human than to the elephants. In fact, this is the
case, Macaca mulatto is more commonly known as the
rhesus monkey.

We can further leverage off the INTELLIGENT ICONS by
arranging them within a file browser based on their
similarity. By way of contrast consider the classic file
browser interaction shown in Figure 8.

Figure 8: Twelve DNA files, sorted by name, in a typical file
browser. Using the classic technique of bounding box
selection we can select subsets of the files, in this case the
Indian elephant and the Indian rhinoceros.

We can use the classic bounding box section tool to
selection various subsets. However in this example it is
hard to extract meaningful subsets, other than the dubious
pairs pygmy chimpanzee/pygmy sperm whale and Indian
elephant/ Indian rhinoceros (Note we are using familiar
English names here for clarity, however using scientific
names does not help, for example the two types of
elephant, Elephas maximus and Loxodonta Africana, are
not alphabetically close).

We can use INTELLIGENT ICONS to solve this problem
by arranging the icons in the file browser based on their
similarity, rather than the classic options of name, size,
date etc. There has been much work on arranging icons
(glyphs/photo thumbnails etc) on a screen (see [22] for an
excellent overview). We have adopted Multi-Dimensional
Scaling (MDS), which requires a distance matrix between
all icons as its input (calculated using E.q. 3). In order to
prevent the icons from partially or completely
overlapping, we snap-to-grid the icons to the nearest
unoccupied grid point as suggested by Basalaj [4].

Although the time complexity of MDS is cubic in the
number of objects, we found that even on a large screen
full of small icons, an efficient MDS implementation can
dynamically adjust the position of the icons in real time as
the user changes the aspect ratio of the file browser.
Figure 9 shows the same 12 mammals as shown in Figure
8 arranged in this way2.

2 To mitigate some of the problems of reproducing screen captures at

a small scale, this screen capture and some those that follow, have had
minor touch ups in a photo editing program. For example, the cursor
was made twice its normal size. However in no case where the colors or
locations of the icons changed.

chimpanzee.dna pygmy
chimpanzee.dna

Human.dna African
elephant.dna

Indian
elephant.dna

chimpanzee.dna pygmy
chimpanzee.dna

Human.dna African
elephant.dna

Indian
elephant.dna

chimpanzee.dna pygmy
chimpanzee.dna

Human.dna African
elephant.dna

Indian
elephant.dna

Macaca
mulatta.dna

Macaca
mulatta.dna

Macaca
mulatta.dna

Figure 9: Twelve DNA files, arranged by INTELLIGENT ICONS,
in a typical file browser. Using the classic technique of
bounding box selection we can select subsets of the files, in
this case the Indian rhinoceros and the white rhinoceros.

In addition to being able to select both types of Rhinos
(Rhinocerotidae) as shown above, we can now also use
standard bounding rectangles to select other logical
groups, such as:

• Both types of elephants (Elephantidae).
• All the primates (Catarrhini).
• Just the greater apes (Hominidae).
• Just the two types of chimps (Panines).
• Just the chimps and humans (Hominids).

At first glance the fact that we must select the hippo
when we select the two types of whales seems like an
error, surely the hippo belongs with either the elephants
or the rhinos. Interestingly, this is not the case; the hippos
are more closely related to whales than to any other
mammals! Whales and hippos diverged a mere 54 million
years ago, whereas the whale/hippo group parted from the
rhinos about 76 million years ago, and from the elephants
about 105 million years ago. The group that includes
hippo and whales/dolphins, but excludes all other
mammals above is called Cetartiodactyla [23]. We call
the combination of INTELLIGENT ICONS and the MDS
layout a Smart Browser.

3 GENERALIZING FROM THE DNA EXAMPLE
We have now seen a concrete example of INTELLIGENT
ICONS, and shown some examples of their utility. We
want to have a software tool that (1) is capable of
changing the individual icons of selected file types and
(2) allows the option of arranging the file icons by
similarity. When the tool is first installed, the user must
to create or download plug-ins that tells our software how
to convert their filetypes. Below we consider plug-ins for
text and time series and provide general guidelines for
arbitrary data types. Note that this type of software design
has recently become very popular. For example, the
Google Desktop Search Tool is able to index a handful of
common file types as shipped, however volunteers have

written plug-ins that allow the program to index more
exotic file types such as DjVu, 3dsmax and C++ source
code [14].

In order to be able to handle more file types, next we
generalize the ideas presented in the previous section. Let
us begin by considering the desirable properties of
INTELLIGENT ICONS.

3.1 Desirable Properties of INTELLIGENT ICONS
Below we list four desirable properties of Intelligent
Icons:
• File types should retain distinctiveness. In current

operating systems, most file types have a particular
icon associated with them. This makes it easy to
determine at a glance the file type (e.g., PDF,
PowerPoint, etc.) It is desirable that INTELLIGENT
ICONS inherit this property. As we shall see, this
property is only apparently in conflict with the
property 2 below.

• Similar files should have similar icons. This is the
fundamental property that allows smart browsing,
that is allow users to spot clusters, duplicates and
outliers in their data. Furthermore, as we shall see
later, this property can support query by content (e.g.,
find me the file most similar to this one), whereas
current systems only support query by name, data,
size etc.

• File icons should look similar at different resolution
(cf. Figure 4). This is because most operating systems
allow use to view icons at various sizes.

• File icon updates should be fast. It is important files
can be added, deleted or edited, and have their icons
instantaneously reflect their content.

Below we will consider how to address these properties
in more detail.

3.1.1 Distinctiveness of File Type
There can be little doubt that having distinctive file icons
for different file types aids rapid file navigation. At first
blush it may appear that the idea of basing the icons on
the file contents would remove this benefit. However, this
is not the case. We can retain file distinctiveness while
allowing individuality with a combination of two
techniques:
• Using different colormaps for different file types.
• Using different mappings for different file types.
To illustrate this we have chosen three distinctive

colormaps for the three main datatypes that we have
encountered (personally, given our research interests). In
addition we have chosen a distinctive mapping for video
games as shown in Figure 10.

African
elephant.dna

Indian
elephant.dna

chimpanzee.dnahippopotamus.dna

Human.dna

orangutan.dna

pygmy
chimpanzee.dna

pygmy
sperm whale.dna

rhesus
monkey.dna

sperm
whale.dna

white
rhinoceros.dna

Indian
rhinoceros.dna

African
elephant.dna

Indian
elephant.dna

chimpanzee.dnahippopotamus.dna

Human.dna

orangutan.dna

pygmy
chimpanzee.dna

pygmy
sperm whale.dna

rhesus
monkey.dna

sperm
whale.dna

white
rhinoceros.dna

Indian
rhinoceros.dna

African
elephant.dna

Indian
elephant.dna

chimpanzee.dnahippopotamus.dna

Human.dna

orangutan.dna

pygmy
chimpanzee.dna

pygmy
sperm whale.dna

rhesus
monkey.dna

sperm
whale.dna

white
rhinoceros.dna

Indian
rhinoceros.dna

Figure 10: i) The three different colormaps used for the 3
principle file types considered in this work. ii) Two examples
of mapping templates for INTELLIGENT ICONS. iii) A screen
capture of a folder with 3 different file types.

In the figure above the choice of colormaps was
completely arbitrary, however this need not be the case.
For example gene expressions visualizations almost
always use a red/green colormaps [19] and we could
leverage of this fact to create intuitive icons for that file
type.

3.1.2 Similar Files should have Similar Icons
The basic idea discussed in Section 2 of extracting
features from the file, measuring their frequency, and
mapping these frequencies to color and spatial
arrangements can be easily applied to other domains.
These general principles are familiar to those in the
machine learning and visualization communities.

We want to extract features that have high
discriminatory power. For example, for text documents
the feature, frequency_of_word(the) is not useful.

We want features that are as independent as possible.
For example, for text documents if we included the
feature frequency_of_word(bicycle), there would
probably be little utility of including the
frequency_of_word(bike).

Below we consider these requirements on two concrete
examples, namely text and time series and a generic
“type”, metadata.
Text: Files containing text, such as MS Word, PDF, TEX,
TXT files etc. are perhaps the most commonly
encountered file types for the majority of people. We can
leverage off the large body of work in the text IR
community to map these files to icons. For example we
begin by discarding stop words, such as “the”, “of”, “and”
etc. Such words tend to have equal frequency across all
documents and thus have little discriminative power. We
next stem the words using Porters algorithm [17], so that
variations on a word map to a single root, for example
“dividing”, “divided” and “divide” all map to “divid”.
After completing these steps we are typically left with
much fewer words, although for large documents
collections many tens of thousands of words is still
possible. Since the number of possible words is much

greater than the number of pixels available, we need to
reduce the dimensionality of the features. We achieve this
by using a classic text-processing algorithm called Latent
Symantec Indexing (LSI). LSI finds a lower
dimensionality representation of the data by projecting it
onto a space that reflects the latent structure. This takes
care of the problem of synonymy and also prioritizes the
features by arranging them by relative importance.
Time Series: Time series are a ubiquitous and
increasingly prevalent type of data. They occur in
virtually every field of human endeavor, including
finance, medicine, meteorology and entertainment. There
is some existing work on visualizing time series that
could be adapted for our needs. For example the
Recursive Pattern work of Ankerest et. al. allows
recursive generalization of arbitrary line and column
oriented arrangements, including time series. Another
possibility is to discretize the time series and use the
approach above for text, or to discretize the time series
into exactly 4 symbols and use the algorithm above for
DNA. Let us consider the later approach in more detail.

While there are at least 200 techniques in the literature
for converting real valued time series into discrete
symbols [12], the SAX technique of Lin et. al. is unique
and ideally suited for our purposes [16]. The SAX
representation is created by taking a real valued signal
and dividing it into equal sized sections. The mean value
of each section is then calculated. This produces a
reduced dimensionality piecewise constant approximation
of the data. This representation is then discretized in such
a manner as to produce a word with approximately equi-
probable symbols. Figure 11 shows a short time series
being converted to a discrete string.

Figure 11: A real valued time series being discretized into the
SAX word GTTGACCA.

The figure shows a relatively short time series
converted into a pseudo DNA word of 8 symbols, hardly
long enough to robustly extract frequency information.
Fortunately most time series in the real world are
typically much longer, for example ECG samples in a
medical log often contain at least 10,000 datapoints.
Metadata: The diligent reader may already be wondering
how we extracted meaningful features from the video
game executables show in Figure 10. The answer is, we
did not. It is extremely difficult to extract useful features
from many file types, including executables, music and
video files. Fortunately, many such file types can be
mapped to extensive repositories of metadata. For
example, we create icons for MP3 music files based not
the file contents, but on metadata provided

00 20 40 60 80 100 120

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5

-1

-0.5

0

0.5

1

1.5

A

C

G

T

GTTGACCA

00 20 40 60 80 100 120

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5

-1

-0.5

0

0.5

1

1.5

A

C

G

T

GTTGACCA

0.2 0.4 0.6 0.8 1.00

DNA

Text

Time
Series Template for DNA,

text and time series
Template for
video games

i ii

Jedi Knight: Dark
Forces II

Jedi Knight: Jedi
Outcast

Matthew.txt Mark.txt Polar Bear.dna

iii

0.2 0.4 0.6 0.8 1.00 0.2 0.4 0.6 0.8 1.00

DNA

Text

Time
Series Template for DNA,

text and time series
Template for
video games

i ii

Jedi Knight: Dark
Forces II

Jedi Knight: Jedi
Outcast

Matthew.txt Mark.txt Polar Bear.dnaJedi Knight: Dark
Forces II

Jedi Knight: Jedi
Outcast

Matthew.txt Mark.txt Polar Bear.dna

iii

(automatically) by CDDB.com. The features available
include, Track Artist, Record Label, Year,
Beats Per Minute, Metagenre (rock, classical, new age,
jazz, etc.), Subgenre (punk, ska, baroque, choral, ambient,
bebop, ragtime) etc.

For video games, there is no completely automatic
metadata server, but an hours work enabled use to write a
crawler which extracted features from
www.metacritic.com/games/pc/scores/.

The idea of using external metadata to create the icons
opens several exciting possibilities for future research;
however for brevity we will not further discuss this here.

3.1.3 File icons should look similar to different
resolution versions of themselves

File icons should look similar when viewed at different
scales because most operating systems allow user to view
icons at different resolutions. For example Windows XP
supports icons sized 48 × 48, 32 × 32, 24 × 24, and 16 ×
16 pixels. Microsoft invites application developers to
produce optimized versions of icons in each size;
otherwise it takes the single icon provided and (linearly)
interpolates it to the other sizes.

In some cases this “self-similar” property can be easily
arranged, we have already seen in Figure 4 that our
mapping for DNA has this property, and our mapping
function for time series inherits this property. So we can
use an l = 2 mapping for 16 × 16 pixels, and an l = 3
mapping for 32 × 32 pixels, and expect the two icons to
resemble each other.

More generally, this property may be hard to ensure if
we wish to use every pixel of say a 48 × 48 bitmap. When
we reduce the size of this bitmap to 24 × 24, we must
average the quartets of pixels into one. If the original
pixels elements are independent (a general requirement
cf. section 3.1.2) the smaller bitmaps will not resemble
the larger bitmaps from which they where derived. The
good news is that it is unlikely we would ever want to use
all 2,304 pixels of the largest icon size. Decades of
research in machine learning and information retrieval
strongly suggests that although objects may exist in very
high dimensional spaces, meaningful similarity can best
be captured in some low dimensional subspace. Even the
256 dimensions allowed by the smallest icon size would
be hard to meaningfully populate for most domains. We
therefore restrict ourselves to some small number of
features, typically less than one hundred, and map each
feature to several contiguous pixels in the smallest
bitmap. The larger sizes bitmaps can then be obtained by
simple linear extrapolation.

The two techniques, variable level mappings, and
simple linear extrapolation are not mutually exclusive;
Figure 12 shows how we combine both techniques for the
DNA file icons.

Figure 12: Four different sized DNA icons for Argulus
americanus. The smallest icon is a level 2 mapping of one
feature to 4 pixels; the next size up is simply an enlargement
of the smallest size. The 32*32 size icon is a level 3 mapping
of one feature to 4 pixels, and the largest icon is simply an
enlargement of the second largest size.

3.1.4 File icon updates should be fast
In general, if we only need to process a few files in order
to create their INTELLIGENT ICON, time complexity might
not be an issue. For example, using the mapping
algorithm in Eq. 2 for DNA, we can create an icon in a
few milliseconds for a file containing hundreds of
thousands of base pairs. However the issue of time
complexity does become important if the mapping
algorithm requires access to multiple files. We have
already seen examples of this situation. In Section 2.2 we
have shown that DNA icons look better if we normalize
the frequencies across all icons. Clearly, if we add a new
file to our collection, these frequencies can be expected to
change somewhat. This means that every update
(deletions, insertions, and editing changes) to our files
should be accompanied by an update to all icons. These
updates could become unacceptably slow if we have
many files.

Our solution is to use a classic idea in the database
community, lazy updates [13]. The basic idea is to learn
the best mapping on all N files offline, use it to create
icons for all N files, and save the mapping function. If we
later need to add a new file to the collection, we simply
use the current mapping function to immediately create
the new icon, and wait for an opportunity to create the
optimal icons for all N + 1 icons. We do this in one of two
ways, either assign a very low priority thread to the
process (this is Google’s solution for its desktop search
indexer) or perform all updates at a scheduled time when
we are unlikely to compete with human users for CPU
time, say in the middle of the night.

4 EXPERIMENTAL EVALUATION OF INTELLIGENT
ICONS

The central claim of our paper is that INTELLIGENT ICONS
allow unexpected and serendipitous discoveries. This is a
difficult claim to prove in anything but an anecdotal way.
Fortunately, UCR is the home of a very large archive of
time series test datasets. We can begin by examining this
archive in a smart browser.

We used the tool to browse the hundreds of datasets in
the UCR archive. One such dataset, known as
Kalpakis_ECG, contains 18 normal ECGS used to test
time series clustering techniques. Figure 13 shows the
dataset as most people have viewed it.

l = 2

16*16
24*24

l = 2 l = 3 l = 3

32*32

48*48

l = 2

16*16
24*24

l = 2 l = 3 l = 3

32*32

48*48

Figure 13: The 18 normal ECGs from the Kalpakis dataset
shown in a typical MS Window XP file browser.

When we glanced at this dataset with our Smart
Browser, we immediately noticed something interesting.
While ECGs (and therefore the icons derived from them)
can have great variability, five of the 18 thumbnails had
radically different icons. Figure 14 illustrates this.

Figure 14: The 18 normal ECGs from the Kalpakis dataset
shown in a Smart browser. Five of the INTELLIGENT ICONS are
radically different from the rest.

This structure was so unexpected we asked UCLA
cardiologist, Dr. Helga Van Herle to explain these
findings. She informed us that the 5 recordings in
question are not ECGs! They are in fact examples of the
action potential of a normal pacemaker cell (not to be
confused with the man-made devices which mimic them,
and are named after them). Figure 15 illustrates the
difference.

Figure 15: Top) Four snippets from randomly chosen ECGs
from the Kalpakis_ECG dataset. Note that ECGs can have
great variability. Bottom) A snippet from the normal18.txt
“ECG” from the Kalpakis_ECG dataset.

In retrospect, after visualizing the data it is apparent
even to the untrained eye that the five time series in
question are radically different to the rest. Nevertheless
many people have used this dataset to test algorithms,
apparently without noticing this [7].

Another dataset we examined with Smart Browser was
a NASA dataset containing examples of telemetry from a
Space Shuttle valve. Figure 16 shows five such time
series.

Figure 16: Five NASA Marotta MPV-41 valve trace files
shown in a Smart Browser.

It is immediately apparent that one file has quite a
different structure to the rest. NASA engineers where able
to explain the difference by noting that while the other
four files correspond to normal sequences, file
TEK00016.CSV corresponds to an abnormal trace, as
shown in Figure 17.

normal1.txt normal10.txt normal11.txt

normal12.txt

normal13.txt normal2.txt

normal3.txtnormal4.txt

normal5.txt

normal6.txt

normal7.txt

normal8.txt

normal9.txt

normal14.txtnormal15.txt

normal16.txt

normal17.txt

normal18.txt

normal1.txt normal10.txt normal11.txt

normal12.txt

normal13.txt normal2.txt

normal3.txtnormal4.txt

normal5.txt

normal6.txt

normal7.txt

normal8.txt

normal9.txt

normal14.txtnormal15.txt

normal16.txt

normal17.txt

normal18.txt

0 100 200 300 400 500

v en tricu la r dep o la riza tion

in itia l rap id
rep o la riza tion

“p la teau ” s tage

re po la riza tion

reco ve ry p hase

0 100 200 300 400 500

0 100 200 300 400 5000 100 200 300 400 500

v en tricu la r dep o la riza tion

in itia l rap id
rep o la riza tion

“p la teau ” s tage

re po la riza tion

reco ve ry p hase

0 100 200 300 400 500

TEK00000.CSV

TEK00001.CSV

TEK00003.CSV TEK000002.CSV

TEK00016.CSV

TEK00000.CSV

TEK00001.CSV

TEK00003.CSV TEK000002.CSV

TEK00016.CSV

Figure 17: The five time series whose INTELLIGENT ICONS are
shown in Figure 16. Note that the bottom four are normal, but
TEK00016.CSV has a fault.

As a final example we consider twelve monthly
electrical power demand time series from Italy, Figure 18
shows the data viewed in a smart browser. It is
immediately apparent that there are two major clusters
that correspond to winter months (October to March) and
summer months (April to September). Such a division
makes sense. Given that the demand for heating
dominates the winter power demand (Air conditioning is
still fairly rare in Italy).

The other immediately obvious feature of Figure 18 is
that the month of August is an outlier. This is apparent
from both its icon’s location on the screen and by its
color. To get some insight into this phenomenon we can
visualize the entire year as a single time series as in
Figure 19. Clearly the month of August is a true outlier,
but what is going on? The answer lies in an Italian
cultural phenomenon. According to travel writer Nella
Nencini, “By the middle of July, normal activity begins to
wane and by the beginning of August, shops no longer
close between 1 and 4 p.m., they close for two or three
weeks. Dry cleaners close, mechanics close, factories
close, wineries close, restaurants close, even some
museums close. Cities like Florence and Venice would be
abandoned if not for the tourists braving the heat to visit
artistic treasures”.

Figure 18: Twelve monthly power demand time series from
Italy shown in a Smart Browser.

The dramatic change in power demand reflects the fact
that most major employers (like Fiat and many
government offices) simple shut down for the month.

Figure 19: One Year of Italian Power Demand (1997). Note
that the month of August is radically different to the rest of the
year.

As before, once the data is viewed by plotting it in
Matlab or MS Excel, it is fairly easy to see the
differences. However, without the Smart Browser to
invoke the users curiosity, this simply may never happen.

4.1 INTELLIGENT ICONS FOR TEXT
A central claim of this work is that once the basic

framework for INTELLIGENT ICONS has been established, it
is easy for people to write “plug-ins” for their favourite
data types. To test this hypotheses, the first author spent
15 minutes explaining the basics of INTELLIGENT ICONS to
graduate students taking a data mining course (UCR
CS235, Spring 06), and invited students to write a plug-in
for any data type they were interested in. Two students
(Jin and Scott, credited here as co-authors) produced a
text plug-in. Their approach is somewhat different to the
approach suggested above, and does not (currently) obey
the ”File icons should look similar at different resolution”
property. However their project demonstration elicited
such a positive reaction we decided to include an example
of their work as an example of the kind of thing which is
possible with a days work. Full details of how their
approach works can be found in [18].

TEK00016.CSV

TEK00000.CSV

TEK00001.CSV TEK00003.CSV

TEK000002.CSV

Poppet pulled significantly out of the solenoid before energizing

TEK00016.CSV

TEK00000.CSV TEK00000.CSV

TEK00001.CSV TEK00001.CSV TEK00003.CSV TEK00003.CSV

TEK000002.CSV TEK000002.CSV

Poppet pulled significantly out of the solenoid before energizing

July.txt June.txt April.txt

May.txt Sept.txt

March.txt

Oct.txt Feb.txt

Nov.txt Jan.txt

Dec.txt

August.txt

July.txt June.txt April.txt

May.txt Sept.txt

March.txt

Oct.txt Feb.txt

Nov.txt Jan.txt

Dec.txt

August.txt

January

0

100

200

300

December
August

One Year of Italian Power Demand

January

0

100

200

300

December
August

One Year of Italian Power Demand

Figure 20: Thirty-eight PDF files represented by Shieh-Sirowy INTELLIGENT ICONS. See Figure 21 for an explanation of the results

Figure 21: A visual key explaining the results of Figure 20

The dataset in question is a collection of database/data mining
papers by diverse authors, which reference one of two papers by
the first author. Those two papers are “Exact indexing of
dynamic time warping” [10] and “Learning the Structure of

Augmented Bayesian Classifiers” [11]. In order to make the task
more challenging, we indexed all the text except the references.

In Figure 20 we can see two major distinct clusters. One
cluster is a collection of papers on (mostly Bayesian)
classification, the other cluster is a collection of papers on
Dynamic Time Warping (DTW). One icon is centered almost
exactly in-between the two major clusters. This makes perfect
sense, since it is a paper on classification of time series that
using DTW (Decision-tree Induction from Time-series Data…
by Yamada et al. [24]) and thus belongs equally to both clusters.

The two remaining icons also have intuitive placement and
coloring. Both are written in languages other than English,
which explains why they appear as outliers. However, their
coloring still gives us a clue as to their content. The icon that has
mostly blue pixels (in Italian) is about classification, and the
icon that has mostly red pixels (In Portuguese) is about warping.
This coloring is reflected in the major clusters. It is perhaps
surprising that the icons are intuitive even in the face of been in
different languages, however an examination of the texts reveals
the occasional passage that lapses into English, such as:
“..verificar a superioridade da Warp Metric Distance como
medida…”, and this is enough structure for the algorithm to
produce intuitive icon coloring.

Cluster of “warping” papers

Cluster of
classification papers

Paper on using
“warping” to

classify

Classification
paper in Italian

“Warping” paper
in Portuguese

Cluster of “warping” papers

Cluster of
classification papers

Paper on using
“warping” to

classify

Classification
paper in Italian

“Warping” paper
in Portuguese

Efficient subsequence
matching in time…

Making Time series
Classification More….

Augmenting Naive Bayes
Classifiers with…

Naive Bayes with
Higher Order Attributes…

Warp Metric Distance
Aprimorando o Uso de…

Rotation invariant distance
measures for…

Warping the Time on
Data Streams…

Scaling and time
warping in time series…

Combining Naive Bayes
and nGram Language…

Efficient subsequence
matching for…

Detection of surface
defects on raw…

Tree augmented naive
Bayes ensembles…

An efficient data mining
method for…

LB Keogh Supports
Exact Indexing of…

FEATURE SELECTION
FOR THE NAÏVE…

FTW fast similarity
search…

A novel technique for
indexing…

Averaged One-
Dependence Estimators…

A Heuristic Lazy
Bayesian Rule…

Learning Recursive
Bayesian Multinets…

Floating search algorithm
for structure…

WARP accurate retrieval
of shapes…

Efficiently and
Accurately Comparing…

Indexing multidimensional
time-series…

Learning Bayesian
network classifiers…

Decision tree Induction
from Time series…

A PCA based similarity
measure for…

Warping indexes with
envelope…

Applying general
Bayesian techniques…

Discriminative versus
generative parameter…

Boosted Bayesian
Network Classifiers…

Robust and fast similarity
search…

Clustering Multidimensional
Trajectories…

Indexing spatio temporal
trajectories…

Elastic Translation Invariant
Matching…

Lower Bounding of
Dynamic Time Warping….

Estensione del Classificatore
Naive Bayes…

FastDTW Toward Accurate
Dynamic Time…

Efficient subsequence
matching in time…

Making Time series
Classification More….

Augmenting Naive Bayes
Classifiers with…

Naive Bayes with
Higher Order Attributes…

Warp Metric Distance
Aprimorando o Uso de…

Rotation invariant distance
measures for…

Warping the Time on
Data Streams…

Scaling and time
warping in time series…

Combining Naive Bayes
and nGram Language…

Efficient subsequence
matching for…

Detection of surface
defects on raw…

Tree augmented naive
Bayes ensembles…

An efficient data mining
method for…

LB Keogh Supports
Exact Indexing of…

FEATURE SELECTION
FOR THE NAÏVE…

FTW fast similarity
search…

A novel technique for
indexing…

Averaged One-
Dependence Estimators…

A Heuristic Lazy
Bayesian Rule…

Learning Recursive
Bayesian Multinets…

Floating search algorithm
for structure…

WARP accurate retrieval
of shapes…

Efficiently and
Accurately Comparing…

Indexing multidimensional
time-series…

Learning Bayesian
network classifiers…

Decision tree Induction
from Time series…

A PCA based similarity
measure for…

Warping indexes with
envelope…

Applying general
Bayesian techniques…

Discriminative versus
generative parameter…

Boosted Bayesian
Network Classifiers…

Robust and fast similarity
search…

Clustering Multidimensional
Trajectories…

Indexing spatio temporal
trajectories…

Elastic Translation Invariant
Matching…

Lower Bounding of
Dynamic Time Warping….

Estensione del Classificatore
Naive Bayes…

FastDTW Toward Accurate
Dynamic Time…

4.2 INTELLIGENT ICON SEARCH
Although the primary use of INTELLIGENT ICONS is
visualization and data mining, their utility for query by
content is related and potentially so useful that we briefly
consider it here.

Most operating systems support search by ‘name’,
‘date’, ‘size’ etc, and further enhance the search by
‘name’ by allowing wildcards. However, no current
operating systems support query-by-content. The utility of
such search is becoming increasing obvious as
commercial hard drives now exceeded 400 gigabytes in
size. For example, suppose we know that we have a
preliminary version of a paper buried among our files, but
we don’t remember its name. It would be useful to be able
to simply right click on the icon, and choose an option
“find most similar file”. We have built such a utility into
our Smart Browser tool. When searching for the most
similar icon we exclude from consideration files in the
same folder as the query file.

In general, query-by-content search using icons
provides very intuitive results. For example, we have
arranged DNA icons for approximately 380 mammals,
reptiles and birds in folders that reflect their geographical
location rather than their taxonomic relationship. If we
search for the most similar file to chimpanzee.dna in
the African folder, we are told that the closest match is
orangutan.dna in the Asian folder. Likewise, as
shown in Figure 22, a search for the most similar file to
american black bear.dna, returns Polar
Bear.dna3.

Figure 22: A screen capture of a search interaction with
Smart Browser. The user right clicked on the icon for the
American Black bear, and chose “Icon Search”, the closest
match was the polar bear.

3 The Polar Bear is found in the Alaska and Canada, in addition to

Iceland, Greenland and Russia, so the choice of placing it in the Europe
folder was somewhat arbitrary. Note that the Asiatic Black Bear (Ursus
thibetanus), which may be more similar to the American Black Bear, has
not yet been sequenced.

Shortly before this paper was submitted, we became aware of
an interesting proof of the similarity of the Polar Bear and the
American Black Bear. The first example of a hybrid in the wild
was confirmed by DNA tests [1].

5 CONCLUSIONS AND FUTURE WORK
We have introduced INTELLIGENT ICONS, a novel
technique for allowing visualization to take place in the
background of day-to-day computer use. Future research
directions include an extensive user study and providing
support for other file types.

ACKNOWLEDGEMENTS: We would like to thank Edward
Tufte, Ben Shneiderman, Christos Faloutsos, Marti Hearst
and Margaret H. Dunham for encouraging comments on
an early draft of this work. We would also like Dr. Helga
Van Herle of the David Geffen School of Medicine at
UCLA and all the donors of datasets.

REPRODUCIBLE RESEARCH STATEMENT: All datasets
use in this work are available by emailing the first author.

REFERENCE
[1] Associated Press: “Hunter Shoots Hybrid Bear”, 2006-05-

12. Retrieved on 2006-06-18.
[2] Jonas S. Almeida, Joao A. Carrico, Antonio Maretzek,

Peter A. Noble, and Madilyn Fletcher. Analysis of genomic
sequences by Chaos Game Representation. In
Bioinformatics, volume 17, no. 5, pages 429-37, 2001.

[3] Daniel A. Keim, Hans-Peter Kriegel, and Mihacl Ankerst.
Recursive pattern: A technique for visualizing very large
amounts of data. In Proceedings of IEEE Conference
Visualization ‘95, pages 279–286, 1995.

[4] Wojciech Basalaj. Proximity visualization of abstract data.
PhD thesis, University of Cambridge Computer
Laboratory, 2000.

[5] Jeff Beddow. Shape coding for multidimensional data on a
microcomputer display. In Proceedings of IEEE
Conference Visualization ‘90, pages 238-246, 1990.

[6] Herman Chernoff. The use of faces to represent points in k-
dimensional space graphically. In Journal of the American
Statistical Association, volume 68, pages 361-368, 1973.

[7] Konstantinos Kalpakis, Dhiral Gada, and Vasundhara
Puttagunta. Distance measures for effective clustering of
ARIMA time-series. In Proceedings of the 2001 IEEE
International Conference on Data Mining, pages 273-280,
2001.

[8] Daniel A. Keim, Mihael Ankerst, and Hans-Peter Kriegel.
Recursive Pattern: A Technique for Visualizing Very Large
Amounts of Data. In Proceedings of IEEE Visualization
1995, pages 279-286, 1995.

[9] Eamonn Keogh. The UCR time series data mining archive.
[http://www.cs.ucr.edu/~eamonn/TSDMA/index.html].
University of California, Riverside.

[10] Eamonn Keogh. Exact indexing of dynamic time warping.
In Proceedings of the 28th International Conference on
Very Large Data Bases, Hong Kong, pages 406-417, 2002.

[11] Eamonn Keogh, and Michael Pazzani. Learning the
Structure of Augmented Bayesian Classifiers. International
Journal on Artificial Intelligence Tools, Vol. 11, No. 4,
pages 587-601, 2002.

 Icon Search

 Icon Search

[12] C. Stuart Daw, Charles Edward Andrew Finney, and
Eugene R. Tracy. A review of symbolic analysis of
experimental data. In Review of Scientific Instruments,
volume 74, no. 2, pages 915-930, 2003.

[13] Fabrizio Ferrandina, Thorsten Meyer, and Roberto Zicari.
Implementing lazy database updates for an object database
system. In Proceedings of the Twentieth International
Conference on Very Large Databases, pages 261-272,
1994.

[14] Google desktop search plug-in download page.
http://desktop.google.com/plugins.html

[15] John P. Lewis, Ruth Rosenholtz, Nickson Fong, and Ulrich
Neumann. VisualIDs: automatic distinctive icons for
desktop interfaces. In Proceedings of the 2004 SIGGRAPH
Conference, ACM Transactions on Graphics (TOG),
volume 23, issue 3, pages 416-423, 2004.

[16] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill
Chiu. A symbolic representation of time series, with
implications for streaming algorithms. In proceedings of
the eighth ACM SIGMOD Workshop on Research Issues in
Data Mining and Knowledge Discovery, pages 2-11, 2003.

[17] Martin F. Porter. An algorithm for suffix stripping.
Program, volume 14, no. 3, pages 130-137, 1980.

[18] Jin Shieh and Scott Sirowy: Organizing Internet
Bookmarks using Latent Semantic Analysis and Intelligent
Icons. www.cs.ucr.edu/~eamonn/cs235_final_report.pdf

[19] Jinwook Seo and Ben Shneiderman. A rank-by-feature
framework for unsupervised multidimensional data
exploration using low dimensional projections. In
Proceedings of the IEEE Symposium on Information
Visualization 2004 (INFOVIS 2004), pages 65-72, 2004.

[20] Edward R Tufte. Envisioning Information. Graphics Press,
1990.

[21] Kerry Rodden, Wojciech Basalaj, David Sinclair, and
Kenneth Wood. Does organisation by similarity assist
image browsing? In Proceedings of the ACM Conference
on Human Factors in Computing Systems (ACM CHI
2001), pages 190-197, 2001.

[22] Matthew O. Ward. A taxonomy of glyph placement
strategies for multidimensional data visualization. In
Information Visualization, volume 1, no. 3-4, pages 194-
210, 2002.

[23] Bjorn M. Ursing and Ulfur Arnason. Analyses of
mitochondrial genomes strongly support a hippopotamus-
whale clade. In Proceedings of the Royal Society of
London, Series B, volume 265, pages 2251-2255, 1998.

[24] Yuu Yamada, Einoshin Suzuki, Hideto Yokoi, and
Katsuhiko Takabayashi. Decision-tree Induction from
Time-series Data Based on a Standard-example Split Test.
In Proceedings of the Twentieth International Conference
on Machine Learning, pages 840-847, 2003.

