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ABSTRACT 
he recent digitization of more than twenty 

million books has been led by initiatives 

from countries wishing to preserve their 

cultural heritage and by commercial 

endeavors, such as the Google Print 

Library Project. Within a few years a significant 

fraction of the world’s books will be online. For 

millions of intact books and tens of millions of loose 

pages, the provenance of the manuscripts may be in 

doubt or completely unknown, thus denying historians 

an understanding of the context of the content. In some 

cases it may be possible for human experts to regain the 

provenance by examining linguistic, cultural and/or 

stylistic clues.  However, such experts are rare and this 

investigation is clearly a time-consuming process. One 

technique used by experts to establish provenance is the 

examination of the ornate initial letters appearing in the 

questioned manuscript. By comparing the initial letters 

in the manuscript to annotated initial letters whose 

origin is known, the provenance can be determined.  

In this work we show for the first time that we can 

reproduce this ability with a computer algorithm. We 

leverage off a recently introduced technique to measure 

texture similarity and show that it can recognize initial 

letters with an accuracy that rivals or exceeds human 

performance. A brute force implementation of this 

measure would require several years to process a single 

large book; however, we introduce a novel lower bound 

that allows us to process the books in minutes. 
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1. INTRODUCTION 
he last decade has seen the digitizization of 

twenty million historical texts [6][23][30], 

and an even greater number of individual 

manuscripts, including maps, playing cards, 

posters and most frequently, orphaned pages that have 

been separated from their original books (often due to 

theft [1][3][8]). The majority of such texts published 

before the 1830s are ascribed to the Hand-Press period. 

The Hand-Press period started with Gutenberg’s 

invention around 1450, ushering in the advent of 

mechanized presses. This period is characterized by the 

use of wood blocks [33] with a relief (negative) carving 

on it, to print the ornamental letters at the beginning of 

chapters. Figure 1 shows some representative examples.  

 
 

Figure 1: Decorative initials are large letters 

illuminated with tendrils, figures and hatching. These 

four examples hint at their diversity 

or some books from this period, the 

provenance of the texts is known down to 

the name of the printer who physically 

printed it and the day it was printed. 

However, for many texts (especially those 

missing the frontispiece) and most single page 

documents, the provenance may be as uncertain as 

“probably printed somewhere in Germany or Austria in 

the late sixteenth or early seventeenth century.” 

There are at least two reasons why we may wish to 

determine the provenance of such manuscripts: 

 There is a huge market for stolen manuscripts, 

especially of individual pages. In several recent 

high profile cases, individuals have been caught 

stealing pages from libraries in Europe and the 

Middle East and brazenly selling them on EBay 

[1][3]. In just one criminal case, thousands of 

individual pages worth millions of dollars were 

involved [1]. This represents a tragic loss of 

national identity for the affected countries. As 

noted by Lord Renfrew, a leading advocate against 

art crime, “the single largest source of destruction 

of heritage today is through looting... ...for 

commercial profit” [8]. Clearly establishing the 

provenance of a suspect document is the first step 

in a criminal investigation [10]. 

 For historians and linguists, knowing the 

provenance of a manuscript is critical to 

understanding the evolution of ideas and the 

process of cultural transmission [2]. 

n some cases it may be possible for human 

experts to regain the provenance of 

unannotated manuscripts by examining 

linguistic, cultural, and/or stylistic clues.  

However, such experts are rare and this is clearly a time 

consuming and expensive process. One of the most 

important clues used by human experts are the initial 

letters present in the text, which is sometimes referred 

to as the “fingerprint” of the printer. We propose using 

data mining techniques to examine initial letters and 

thereby automate the discovery of provenance. 

 

 

 

 



The legal/technical model of fingerprint biometrics is 

actually a good analogy for what we are proposing. It is 

the computer’s task simply to eliminate the countless 

true negatives and to bring to the attention of a human 

expert a handful of candidate examples, hopefully 

including any true positives.  

This is essentially what we are proposing. In fact, 

fingerprint biometrics is an example of impression 

evidence [21] and initial letters are also literal examples 

of impression evidence. Just as a person’s finger can 

make multiple impressions during their lifetime, wood 

blocks were also used to create multiple impressions 

throughout their usage (which may have been several 

decades or more). Likewise, fingerprint recognition 

may be difficult because the two impressions we wish 

to link may have been made decades apart; the finger 

may have picked up additional scars or blemishes in the 

interim. This is also true of our initial letters, which 

receive constant wear and possibly occasional repairs 

during their lifetime.  

The obvious difference between our task and 

fingerprint recognition is that the latter, because of its 

legal and commercial importance, has received a huge 

amount of research effort [21], whereas our task is 

relatively understudied. As historical manuscript expert 

Dr. Jean-Marc Ogier, who has spent over a decade 

studying this problem recently bemoaned, “There is 

little known on how to compute invariants for indexing 

documents on this kind of features.” [22] 

We have surveyed all the relevant literature 

[5][9][11][22][25] and we argue that none of the current 

techniques are able to scale to web sized collections of 

manuscripts and, more critically, none of them are 

likely to be accurate and robust enough for the task at 

hand. While there is some tentative evidence of 

accurate measures, there is also evidence that some of 

the results can be attributed to careful cherry-picking of 

test datasets, manual extraction of the initial letters, 

careful parameter tuning and (perhaps) overfitting. 

We propose to solve this problem by leveraging off a 

recently introduced parameter-free distance measure 

called the CK1 measure [7]. As we shall show, the CK1 

measure is extraordinarily effective for matching 

problems in historical manuscripts, with discrimination 

abilities that rival human experts. While the CK1 

measure is relatively efficient, a naive search method 

based on it would take several months to test an entire 

large book for the occurrence of a pattern; however, we 

introduce in this work a novel lower bound that allows 

us to process such books in hours or less. 

The rest of this paper is organized as follows. In 

Section 2, we introduce all the necessary definitions 

and notation. In Section 3 we review the CK1 measure 

that is at the heart of our technique. Section 4 

introduces our lower bound algorithms for the CK1 

measure and a search algorithm that exploits it. We 

evaluate our ideas in Section 5 and offer conclusions 

and directions for future work in Section 6. 

2. DEFINITIONS AND NOTATION 
We begin by introducing all necessary notation and 

definitions. Whether we are mining archives of books, 

maps, single page manuscripts, etc., we can simply 

generalize our data source as pages: 

Definition 1: A page, P, is represented as an M × N 

matrix. Each pixel of the page corresponds to an 

element in the matrix, where M and N are the width 

and height of the page, respectively.   

As noted in [14], “Most classical methods (to process 

historical manuscripts) need a binarization step.” Our 

method does not require a binarization step to produce 

high quality results. For example, the results reported 

later in Figure 4 and Figure 12 used the original gray- 

scale images.  However, as we will show in Section 4, 

we can exploit an internal binarized representation to 

produce lower bounds to make our search algorithms 

significantly faster. To binarize a page P we transform 

the grayscale page into black or white using a simple 

binary threshold filter [15]. 

To identify the provenance of an unlabeled page, 

experts compare any existing initial letters, as shown in 

Figure 1, in the page to the reference initial letters. We 

call such reference initial letters annotated initial 

letters. 

Definition 2: Annotated initial letters are the initial 

letters whose provenances have been firmly 

established. 

Because of the increasing interest in cultural heritage 

there are many digital repositories that have huge 

collections of carefully annotated initial letters [30]. 

Many of these sources have on the order of thousands 

of annotated initial letters. Since the goal of our work is 

to establish the provenance of historical manuscripts by 

using just small sub-regions of a page containing initial 

letters, we compare all candidate regions within a page 

to the annotated initial letters. We call these small 

regions windows. 

Definition 3: A window W of pixels d is a rectangular 

area inside a page. 
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where m and n are the width and height of the 

window, respectively.  

The window size is determined by the size of the 

annotated initial letters. 

For the page shown in Figure 2.right, the fine/blue 

square is an example of a window.  The full set of all 

possible windows is obtained by sliding a window from 

the left to the right, and the top to the bottom of the 

page. For a page with size M by N, given a target initial 



letter size m by n, the number of windows is (M-m+1) 

× (N-n+1).  

 
 

Figure 2: left) The zoom-in of the bold/red box shown 

in page from Comediae, published in 1552.  right). The 

bold/red box is the target, an initial letter. The 

fine/blue box is a window  

Note that while our choice of an axis parallel rectangle 

as our primitive window shape is clearly based on how 

wood block initial letters are typically presented, it is 

not a limiting assumption. As we later show, our 

algorithm is oblivious to minor violations of the axis-

parallel assumptions (such as the rotated letters shown 

in Figure 12).  Moreover, our algorithms can be 

trivially adapted to be optimized to other shapes, such 

as the typically round shape of Japanese mon (the 

Japanese equivalent of European heraldic shields [34]). 

At the heart of our provenance attribution scheme is the 

ability to compare candidate windows with initial 

letters from our reference library.  We will use the 

recently introduced CK1 distance measure [7] for this 

task: 

Definition 4: The distance between a window and an 

annotated initial letter is denoted as dist(W, IL). Thus, 

the distance is:   dist(W, IL)  =  CK1_dist(W, IL)   

In Section 3, we give a more detailed explanation of 

how the CK1 distance measure works and our reasons 

for using it rather than the dozens of rival techniques.   

As hinted at above, while the CK1 measure can work 

with either grayscale or binary images, for the purpose 

of allowing lower bounding search, we need to use an 

internal binarized representation. Note that this does not 

preclude working directly with the grayscale images; it 

is only the internal search algorithm that must work 

with the internal binarized representation.  

To support this internal representation, we define the 

black pixel density of a window. 

Definition 5: The black pixel density of a binarized 

image is the total number of pixels that are ‘0’, 

divided by the total number of pixels in this image. 

Note that we assume that in a binary image, ‘0’ 

represents a black pixel and ‘1’ represents a white pixel. 

The black pixel densities of the three images in Figure 3 

(from left to right) are 70.9%, 38.1% and 18.6%, 

respectively. From these results, we can see that there is 

a large difference in black pixel density between an 

initial letter and the typical plain text in a page (Figure 

3.right). In Section 4, we will explain how to exploit 

this property to create tight lower bounds. 

 

Figure 3: left). A “dense” initial letter.  center). A 

“sparse” initial letter.  right).  The zoom-in of the 

window marked by the light/blue square in Figure 2 

3. A REVIEW OF THE CK1 MEASURE 
As noted in the previous section, we intend to use the 

recently introduced CK1 distance measure [7] to 

compare windows from historical texts to initial letters 

from our reference collections. We begin by giving the 

reader a hint of the utility of CK1 in this domain. In 

Figure 4 we cluster twelve initial letters known to come 

from three classes, including two classes that have just 

the subtlest of differences.  

 

Figure 4: Twelve ornamental initial letters, from three 

classes that represent the letter ‘S’, are clustered using 

CK1 with complete linkage hierarchical clustering 

As we can see, the CK1 distance measure is able to 

robustly recognize very subtle distinctions.  

Surprisingly, as shown in Table 1, computing the CK1 

distance between two images x and y is accomplished 

with just a single line of parameter-free Matlab code: 

Table 1: CK1 distance measure 

function dist = CK1Distance(x, y) 

dist = ((mpegSize(x,y) + mpegSize(y,x))/(mpegSize(x,x) + mpegSize(y,y)))- 1; 

The distance range for the CK1 measure is from zero to 

a “soft” one. That is to say, the distance between an 

object and itself is exactly zero, and the distance 



between two very dissimilar objects is expected to be 

one, but can be slightly larger. 

We refer the reader to the original paper [7] for more 

details on this measure. However, we briefly note that it 

is a measure that follows the framework developed by 

Li and Vitányi (and colleagues [20]) which states that 

two objects can be considered similar if information 

garnered from one can help compress the other [17].  

There are three main reasons why we chose the CK1 

distance measure over dozens of alternatives. First, it is 

a parameter-free measure. Compared to parameter-

laden algorithms [25], the CK1 measure is more likely 

to be adopted by historians who will be unable or 

unwilling to carefully tune parameters. Second, as 

shown by the original authors and confirmed by 

experiments below, the CK1 measure is very accurate. 

Thirdly, compared to other algorithms [9], the measure 

is very robust to distortions on images. Historical 

documents are often represented by a single surviving 

instance and have a lot of variability. For example, the 

images may be faded, printed with the rotation askew, 

be inconsistently illuminated, have insect damage, be 

poorly scanned, etc. As we shall show, the CK1 

measure is largely robust to these variances. 

3.1 Accuracy and Robustness of CK1 
We claimed above that the CK1 measure is very 

accurate and robust for our domain. This will be 

implicitly shown in our experiments in Section 5, and 

was hinted at in Figure 4. However, we take this 

opportunity to explicitly demonstrate this here.  

We have conducted an experiment 1  to illustrate how 

well CK1 works as a distance measure in our domain. 

Using a subset 2  of the dataset created by [4] which 

contains nineteen classes of 16
th

-century ornamental 

letters, with 578 images (including those shown in 

Figure 4), we conducted leave-one-out cross-validation 

classification. The error rate is 0.00%. Recall that we 

had no parameters to tune; thus, these results are highly 

likely to generalize.  As the largest class (the letter ‘A’) 

has 82 members, the default error rate is 85.8%. 

We also tried two rival approaches. One was 

specifically designed for initial letters by a team with 

more than a decade of experience working in this area 

[9]. The error rate of that approach is 39.42%. The 

second rival approach is based on the ubiquitous scale-

invariant feature transform (SIFT) algorithm [29]. 

While we are not aware of any papers that use SIFT for 

initial letter classification, a very recent paper proposes 

SIFT for the highly related task of segmenting historical 

manuscripts (into margin, text, figures, initial letters, 

                                                                 
1 We defer a detailed discussion of our experimental philosophy until 

Section 5; however, we briefly note that all our experiments are 

reproducible, and all code and data are available at [35]. 

2 Just the unique initial letters were deleted.  

etc.) [12].   SIFT features (each of them is a 128-

dimensional vector) are first extracted from the query 

and candidate images using Lowe’s SIFT algorithm 

[19]. Then the number of matched features/key points is 

used as the similarity measure between two images. 

The more features that are matched, the more similar 

two images are adjudged. The error rate of the leave-

one-out cross-validation classification when using SIFT 

is 10.21%. 

We note that we attempted just one SIFT-based 

distance measure. While the literature is replete with 

others, most of them require several parameters; this is 

exactly what we are trying to avoid. 

The time taken for SIFT and CK1 are commensurate 

for this one-to-one matching problem3. However, as we 

shall later show, for the similarity search (one-to-all) 

problem we are interested in, we can speed up CK1 by 

many orders of magnitude. It is less clear that SIFT 

would yield to such optimizations.  

Rare manuscripts are almost always digitized by hand 

[13]. Digital archivists usually place some kind of 

photomacrographic scale at the end of a book in order 

to record the size of the original pages (and normalize 

the color values). Figure 5 shows two representative 

examples. 

 

Figure 5: Two examples of historical manuscripts 

digitized with scales to allow accurate recording of size 

Nevertheless, the size of the manuscripts still may have 

some small amount of uncertainty because of affine 

transformations during the digitization processes. This 

is especially true for historical texts, which are typically 

not contact scanned, because that requires laying the 

book flat on the glass and damaging the spine. Instead, 

such manuscripts are photographed in special rigs. 

To check the robustness of the CK1 measure to scale 

variability, we have conducted the following 

experiment. After randomly resizing each image in the 

dataset mentioned above, in the range from 90%  to 

110% (much larger variability than we actually observe 

in digital archives), we recomputed the leave-one-out 

cross-validation error rate and found it increased only 

very slightly, to just 3.81%. 

                                                                 

3 SIFT was faster by about 30% when given unlimited main memory. 

If we force it to use a smaller memory footprint, it becomes 

significantly slower [19]. 



A small amount of rotation invariance is also required 

because the scanning process may have misaligned the 

manuscript. The initial letter wood block itself may 

have also been originally loose in the mold. We 

frequently observe misalignments of up to five or six 

degrees. We therefore have conducted an experiment to 

check the robustness of the CK1 measure on rotation 

variability. After randomly rotating each image 

individually from +10 degrees to -10 degrees, the 

classification error degrades to just 12.21%. 

Before moving on, we will take a moment to emphasize 

how surprisingly good these results are by visually 

analyzing the dataset. 

Figure 6 shows some sample letters from this data. Note 

that the ‘O’ looks very similar to the ‘Q’, and neither 

of them fits into a perfect axis parallel rectangle. While 

the two examples of ‘C’ were pressed from the same 

wood block, because of foreshortening during the 

scanning process, one version appears to be 13% wider 

than the other. Finally, from a quick glance, the ‘L’ 

seems to have as much in common with the center ‘I’ as 

the rightmost ‘I’ does.   

 

Figure 6: Samples of images from the classification 

dataset hint at how difficult this problem is 

It is important to note that this sanity-check 

classification experiment is significantly harder than 

our recognition task at hand. As such, the results above 

suggest that we may be able to approach perfect 

precision/recall for our purposes. 

Based on these and subsequent experiments (c.f. 

Section 5), we feel that the CK1 measure is perfect for 

our task at hand. The one drawback of CK1 distance is 

that it is not a metric, and thus we cannot use classic 

spatial tree indexing algorithms such as the R-tree. 

However, as we shall see, we can mitigate even this 

weakness. 

Having introduced the necessary notation and 

definitions, and having justified our choice of the CK1 

measure, in the next section we can formally define the 

problem and our solution to it.     

4.   SEARCH ALGORITHMS  
For an unlabeled page P, we want to identify its 

provenance by comparing initial letters on the page 

with annotated initial letters of known provenance from 

our reference library.  This is a binary decision 

problem. For a single annotated initial letter from our 

reference library, either a page contains a letter stamped 

from the same wood block or it does not. To sharpen 

the reader’s intuition for our ultimate solution, we begin 

by explaining the brute force search algorithm. 

4.1 Brute Force Search Algorithm  
For ease of exposition, we assume that there is just one 

annotated initial letter in the reference library, and that 

we are examining a single page. The generalizations to 

multiple letters and multiple pages are trivial [35].  

Given a single annotated initial letter IL, of size m by n, 

and a distance threshold t, we want to know if there 

exists an initial letter, pressed from the same wooden 

block, on page P.  We defer a discussion of how the 

threshold t is learned until Section 4.3.  

Because the window size is determined by the query 

size, the window size is also m by n. We show the 

search algorithm in Table 2. 

Table 2:  Brute Force Search Algorithm 

Algorithm: Brute Force Search 
Input:    P,  A page 

          IL, Target annotated initial letter 

          t,  The threshold  

Output:   exists-flag, Wi // Where Wi encodes location 

1 

2 

3 

5 

6 

7 

8 

9 

10 

W = the set of all possible windows in P 

 for i = 1 to |W| 

   current_dist = CK1_dist(Wi, IL); 

   if current_dist < t  

    disp('initial letter found at', Wi); 

    break;          // algorithm  terminates 

   endif 

 endfor 

disp('target initial letter not found'); 

Note that the program will terminate and report that the 

annotated initial letter exists as soon as a distance 

smaller than the given threshold is encountered. Under 

realistic conditions it will take approximately 48 hours 

to calculate the distances of an annotated initial letter 

with all the possible windows in a page.  Thus, for a 

dataset pool with 6,000 annotated initial letters [30], it 

will take about 32 years to finish. Furthermore, the size 

of the dataset pool keeps growing with continuing 

digitization of historical manuscripts [30]. Recall that 

these figures are for a single page; a single manuscript 

may have several hundred pages. Thus, the brute force 

algorithm is clearly not tractable.  

A common way to speed up a brute force search is to 

use a lower bounding search [34]. Assume for the 

moment that we have some lower bounding function for 

the CK1 measure, which we denote LB. Table 3 shows 

an algorithm that can exploit such a lower bound for a 

faster search.  

Assuming only that the lower bound is effective and 

efficient–that is to say, it is reasonably tight most of the 

time, and much faster to calculate than the CK1 

measure–then we should expect the algorithm shown in 

‘O’ ‘Q’

‘C’ ‘C’

m 1.13 m

‘L’ ‘I’

‘I’

‘I’



Table 3 to be significantly faster than the brute force 

search. Since this is critical to our problem, we devote 

the next section to a discussion of lower bounding the 

CK1 measure. 
Table 3:  Lower Bounding Search Algorithm 

Algorithm:  Lower Bound Algorithm 
Input:    P,  A page 

          IL, Target annotated initial letter 

          t,  A threshold  

Output:   exists-flag, Wi // Where Wi encodes location 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

W = set of all possible windows in P 

for i = 1:|W| 

 if LB(Wi, ILlower_bound_info) < t 

    current_dist = CK1_dist (Wi, IL); 

    if current_dist < t 

 disp('initial letter found at',Wi); 

 break;      // algorithm  returns 

endif      

  endif 

endfor 

disp('target initial letter not found'); 

4.2 Lower Bounding the CK1 Measure 

4.2.1 CK1 cannot be exactly lower bounded 
Lower bounds are known for many expensive distance 

measures, including Dynamic Time Warping [18], 

Earth Movers Distance [27], string edit distance, etc. 

Can the CK1 measure be lower bounded? The greatest 

strength of the CK1 distance is its “black box” nature. 

The user does not have to extract any features from the 

two images to be compared. The two images are simply 

handed over to the CK1 algorithm in Table 1. However, 

this is also a great weakness, since most lower bounds 

work by measuring a “relaxed” distance on features 

derived from the data [27].  

Recall that for a lower bound to be useful, it must have 

two properties: it must be tight (it must have a value 

that is reasonably close to the true value for at least a 

significant fraction of comparisons) and it must be 

significantly faster than the true measure. We can 

naively produce a perfectly tight lower bound to the 

CK1-distance by simply using the CK1-distance 

distance function itself. Likewise, we can clearly 

produce a fast (indeed, constant time) lower bound by 

simply hard coding the bound to be zero. However, can 

we produce a tight and fast lower bound? 

Let us take a moment to contemplate the speed 

requirement. Because video compression is so 

ubiquitous and commercially important, MPEG-1 

encoders are among the most tightly optimized 

compression methods available [28]. So producing code 

that can model even one aspect of their behavior (e.g. 

the output file size), and be, say, 100 times faster is a 

daunting challenge. The problem is compounded by the 

complexity of MPEG encoding. To lower bound the 

CK1 measure we need to predict the minimum (for the 

numerator of the CK1 equation) and maximum (for the 

denominator) possible final file size of a compression 

algorithm that uses a plethora of tricks, including the 

Discrete Cosine Transform, quantization, truncation, 

block searching  [28], etc. A recent paper on the related, 

but much simpler problem of estimating the compressed 

size of a JPEG image had errors of up to 24.8% even in 

the best cases [24]. 

In summary, the current authors, after carefully 

considering the problem and consulting many image 

and video compression experts, are unable to come up 

with a fast and tight lower bound for CK1; we strongly 

suspect that none exists. However, as we shall show in 

the next section, it is possible to create an approximate 

lower bound that is fast, close to the true value, and 

empirically never fails to be a true lower bound even 

after tens of millions of empirical tests.     

4.2.2 An Approximate Lower Bound of CK1 
Our approximate lower bound algorithm exploits the 

black pixel density introduced in Definition 5. As 

shown in Figure 3, there is typically a large difference 

in the black pixel density between a window that 

contains an initial letter and a window that contains 

plain text or the page margin, etc. In Figure 7, we show 

the black pixel density distribution of a typical page.  

The “peak” in the contour map in Figure 7 is the black 

pixel density corresponding to an initial letter, which 

begins the last paragraph of column two in the page 

shown above it. Based on this observation, we suspect 

that a lower bound algorithm might somehow exploit 

this easy-to-compute black pixel density. 

 

 

Figure 7:  A page from Comediae (1552), with its black 

pixel density distribution shown as a contour map. Note 

that the region containing an initial letter shows up as a 

distinct peak 

Our idea is that for any particular initial letter IL, we 

can build a lookup function that maps the black pixel 

density of a candidate window to the minimum possible 

(i.e., the lower bound) CK1 distance between that 

window and IL. The blue “V” shaped curved line in 

Figure 8 is the lookup function we learned for the IL 

shown in Figure 8.c. 



 

Figure 8: A lower bound curve that maps the black 

pixel density of a candidate window to the minimum 

distance to IL. c) shows the original image IL, (b)/(a) 
shows the result of randomly removing pixels, whereas 

(d)/(e) shows the result of randomly adding pixels 

But how can we create this lower bound function? The 

reader may have already realized that we can trivially 

compute one point on the curve. The IL in question 

(Figure 8.c) has a black pixel density of 41%, so an 

arbitrary window that also has a black pixel density of 

exactly 41% could have a CK1 distance of zero, since it 

could be a pixel-for-pixel exact match. This point 

corresponds to the deepest part of the ‘V’ shape in 

Figure 8. 

We can calculate the value of the curve one pixel to the 

left (right) of this special point by testing the CK1-

distance between IL and all possible variations of IL 

with a single pixel added (removed) and choosing the 

minimum value over multiple runs. 

Exactly computing the rest of the curve in this manner 

is impossible due to the combinatorial explosion in the 

number of ways it is possible to add (remove) K pixels 

to IL. However, for each pixel density represented in 

the X-axis we can simply create 1,000 random images 

that differ from IL by the requisite number of pixels, 

and compute all their true CK1 distances, recording 

only the minimum value as the lookup function. For 

example, the image shown in Figure 8.b is created by 

randomly changing 50% of the black pixels in the 

original initial letter to white.  The image shown in 

Figure 8.d is created by randomly changing 50% of the 

white pixels to black. The last point of this curve is the 

distance between the original initial letter and a 

completely black image, as shown in  Figure 8.e.  The 

algorithm used for calculating this lower bound 

distance is shown in Table 4.  

Note that we must learn a lower bound for each letter in 

our reference library. This requires tens of thousands of 

CK1-distance measures, and thus on the order of tens of 

seconds. However, this only has to be done once, and it 

is done offline. 

Recall that in the brute force search algorithm in Table 

2, we used a threshold distance to decide if a candidate 

window should be considered a match to a reference 

internal letter.  
          Table 4:  Lower Bound Function Creation  

Algorithm:  Lower Bound Function Creation 
Input:    IL, One annotated initial letter 

Output:   lower_bound_dist 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

num_black_pixel = find(IL ==0); 

num_white_pixel = find(IL ==1); 

flip_black2white=[1:0.01:0] * num_black_pixel;  

flip_white2black=[0.01:1] * num_white_pixel;  

pixels_flipped =[flip_black2white,flip_white2black]; 

for i = 1: 1,000   // minimum over some large constant 

 for j = 1:|pixels_flipped| // pure white to pure black  

 noise_image = change_pixels(IL,pixels_flipped(j)); 

 lower_bounds(i,j)=  CK1_dist(IL,noise_image); 

 endfor 

endfor  

lower_bound_dist = min(lower_bounds); // a vector 

We are now in the position to introduce a technique to 

learn this threshold distance. 

4.3 Learning the threshold distance  
We have deliberately glossed over the problem of 

setting the threshold t until now. A t that is too large 

decreases the risk of a false negative, but at the expense 

of decreasing the pruning power. In contrast, a t that is 

too small will make our search faster, but will also 

increase the possibility of false dismissals.  

In most cases the task of learning t is greatly simplified 

by the fact that in our annotated initial letter database 

there are typically many images for each initial letter. 

This is because, apart from the fact that the same initial 

letter often appears multiple times in a single book, the 

wood block that impressed the initial letter could have 

been used for many decades in a given printing house. 

Figure 9 shows ten examples of an initial letter “L” 

pressed from the same wood block, from a single 

manuscript.  As it happens, this ‘L’ appears 109 times 

in just this one text. 

 

Figure 9: Ten examples of ‘L’ from the book “Les 

Oeuvres pharmaceutiques du Sr Jean de Renou, 

Conseiller & Medecin du Roy” published in 1626 [26]  

Note that even in these images from a single book there 

is some amount of variability in (apparent) size, 

rotation, contrast, etc.  We can thus use this data to 

learn the threshold. In essence, for each initial letter IL, 

we want to set a threshold t, such that most letters 

pressed from the same block are less than t from IL, and 

most other images encountered in historical texts are 

(a)          (b)              (c)                    (d)                  (e) 
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greater than t. At first we imagined that this might 

require careful tuning to balance the false positive/false 

negative tradeoff. However, using the CK1 measure, 

these two groups are so well separated that we can use a 

simple method to assign t. We calculate the CK1 

distances between all the annotated initials that are from 

the same wood block. Then, the mean value of these 

pairwise distances plus three standard deviations is 

chosen as the threshold distance for all members of that 

class. As discussed in Section 4.2.2, the blue/thick line 

in Figure 8 is the lower bound distances for the initial 

letter shown in Figure 8.c. This figure is augmented in 

Figure 10 with a horizontal red/dashed line, which is 

the threshold learned from the twenty-one examples of 

the same ‘N’ from the book Comediae.  

We can use this example to show how four candidate 

windows (labeled a, b, c and d) will be processed by 

our search algorithm. We computed their lower bounds 

with the initial letter in Figure 8.c to see if they warrant 

further comparison with the more expensive CK1 

measure. The leftmost window (a) in Figure 10 contains 

only about 12% of black pixels and its lower bound 

distance is 0.96, as shown on the curve. Since this is 

greater than the threshold, we do not further examine it.  

In contrast, Figure 10.b contains about 38% black 

pixels and its lower bound is 0.32, which is less than 

the threshold, so we invoke the CK1 measure to find 

the true distance (denoted by a green dot) to be 0.89. 

This means it was a false positive produced by the 

lower bound, but converted to a true negative by a 

refining pass with the CK1 distance. Figure 10.c 

contains 42% black pixels, so it also has its true CK1 

measure calculated; the CK1 distance is just 0.41, so it 

is a true positive. This suggests that the letters shown in 

Figure 10.c and Figure 8.c are from the same wood 

block.  

 
Figure 10: Four windows have their lower bounds to 
the image shown in Figure 8.c). Both (a) and (d) have 
lower bounds that exceed the threshold (horizontal red 
line) and are thus pruned, while (b) and (c) have small 
lower bound values and therefore the true distance 
(shown as dots) must be calculated. After the true CK1 
distance was calculated, (b) was discarded while (c) 
was found to be a true positive 

Finally, Figure 10.d contains 72% black pixels. Its 

lower bound is 0.98, much larger than the threshold, 

and thus it is also pruned without further consideration. 

This method assumes that we have enough data to learn 

the threshold. Suppose, however, that this is not the 

case? For example, in the same text considered in 

Figure 9, we find that there is a single instance of the 

initial letter ‘K’, as shown in Figure 11.left. 

We have two solutions to the scarce training data 

problem. The first is to simply take the thresholds 

learned for common letters in a given text (in this text, 

‘L’, ‘O’, ‘C’, etc.) and use the mean of those values as 

the threshold for the rare initial letters from the same 

text (here, ‘K’, ‘A’, ‘M’, etc.). 

Our second solution is inspired by [31], which also 

faced the problem of scarce training data in historical 

manuscripts. As shown in Figure 11.right, we can take 

singleton or rare initial letters and produce slightly 

distorted versions of them. We can then use this large 

synthetic dataset to learn the threshold. 

 

Figure 11: left) The single example of an initial letter 

‘K’ from the text considered in Figure 9. right) Six 

examples of artificially distorted versions of the letter 

As we shall see in our experiments, the exact setting of 

the threshold is not a critical parameter, and thus we 

omit further details here and refer the reader to [35]. 

5.   EXPERIMENTAL EVALUATION 
We have designed all experiments to be completely 

reproducible. To this end, all datasets and code are 

permanently archived at [35]. In addition, this website 

contains many additional experiments that are omitted 

here for brevity.  

In our experiments we wish to show that our ideas are 

accurate, robust to realistic conditions, and scalable to 

large datasets. Note that we are in a near unique 

position of not having to test robustness to parameter 

choices, since our method requires essentially no 

parameters to be set.  

5.1 A Sanity Check for Robustness of CK1 
The results discussed in Section 2 already hint at the 

effectiveness of the CK1 distance for the task at hand. 

In order to understand, and also to demonstrate, the 

robustness of our chosen distance measure to various 

problems often encountered in real manuscripts, we 

conducted extensive experiments where we 

synthetically introduced “flaws” in the images and 

examined the effect on the CK1 distance. In Figure 

12.top we show the clustering of four pairs of initial 

letters pressed from the same wood block. There is no 

reason to expect much structure at the highest level of 
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the dendrogram, but gratifyingly, at the lowest level the 

branches are arranged in pairs. 

 

Figure 12: top) A clustering of four pairs of the same 

initial letter. bottom) The clustering repeated after 

randomly introducing various “distortions” 

According to our observations and a survey of the 

literature [11][12][14][22][25], the most commonly 

encountered difficulties in processing historical 

manuscripts are “occlusions”, such as white holes in the 

text due to insect damage or black dots caused by ink  

or candle wax drips; misalignment due to rotation, from 

either at the time of scanning or in the original text; and 

size uncertainty due to the scanning process. We 

simulated all of these distortions and applied them to 

the initial letters seen in Figure 12.top. The 

representative clustering result shown in Figure 

12.bottom suggests that our proposed measure achieves 

significant invariance to these difficulties.    

5.2 A Sanity Check for the Lower Bound 
We conducted an experiment to test the robustness of 

the lower bound algorithm shown in Table 3. If there 

are occasional violations of our approximate lower 

bound (i.e., false negatives) this may not affect the 

overall accuracy of our system. Consider that we may 

have twenty examples from a particular publisher in our 

reference library. Even if we incorrectly rejected one 

match due to a failure of the lower bound, we still have 

nineteen chances for a correct match and any of those 

nineteen would establish provenance. For example, if 

while searching for an initial letter ‘A’ we incorrectly 

rejected a match due to false rejection caused by an 

overly optimistic lower bound, we still have a chance 

for a true positive with ‘b’, ‘c’, etc. As it happens, this 

discussion is somewhat moot, since in over 100 million 

experiments we did not observe a single false positive. 

Concretely, we learned the lower bound functions for 

the ten diverse initial letters shown in Figure 13. For 

each initial letter, we calculated both the lower bounds 

and the CK1 distances between each letter and ten 

million randomly chosen windows from historical 

manuscripts. Among these 100 million CK1 distance 

calculations, not a single violation of the lower bound 

was observed.  

 

Figure 13: Ten initial letters used to test the accuracy 

of our approximate lower bound 

5.3 Experiments on Historical Manuscripts 
In this section we will illustrate how we use our lower 

bound approach to identify the provenance of historical 

manuscripts with significant speedup.  

We learned the lower bound and threshold distances for 

every unique initial letter that exists in the book Les 

Histoires universelles de Trogue Pompee, abbregees 

par Justin Historien, published in 1559 [16]. The 

number of distinct initial letters in this book is twelve, 

but the number of different wood blocks used in this 

book was fifteen; e.g., the printer used two different 

wood blocks (with different backgrounds) for the initial 

letter ‘A’, etc. It was not uncommon for a printer to 

have multiple versions of the same letter because it 

allowed multiple pages to be printed in parallel and, in 

any case, it is logically possible that a single page could 

require two initial letters with the same character.   

We use these fifteen initial letters to search two books, 

using the search algorithm introduced in Table 3. One is 

a 619-page book, L’Architecture, published in 1576; the 

other is a 452-page text, Epistres des Princes, which 

was published in 1572. 

Recall that the algorithm will terminate if the existence 

of the same initial letter is detected; otherwise, it will 

continue to search over the entire book by using all 

available annotated initial letters. If none of the 

reference initial letters are discovered, the program will 

report this nonexistence after searching the entire book. 

For the book published in 1576, we started the search 

by using the most frequent initial letter observed in the 

earlier text, which was the letter ‘A’. After scanning 47 

pages, the program detects the first appearance of an 

initial letter ‘A’ on the page shown in Figure 14.right. 

The two ‘A’s are found to be impressed from the same 

wood block, which indicates that the two books are 

related. As the reader may have anticipated, the book 

L’Architecture is known to be related to our target text 

Les Histoires universelles de Trogue Pompee, 

abbregees par Justin Historien. Both were printed by a 

well-known 16
th

-century Parisian printer [30]. In this 

experiment 98.04% of the candidate windows were 

pruned by the lower bound, meaning that our search 

was about fifty times faster than that of the brute force 

search. 

The pruning ratio, and hence the speedup, depend on 

the number of windows not pruned by the lower bound 
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distance curve (shown in Figure 10). For this 

experiment the tested book is about architecture, so 

there are many dense architectural images and thus our 

obtained speedup is perhaps pessimistic. 

To further test the algorithm, we again searched the 

book with the letter ‘M’, which is the only letter that 

appears in the reference text but not in the searched 

text.  There are 88 initial letters in the text that might 

have been found as false positives, but were not. The 

algorithm searched the entire book and reported 

'target letter not found'. For this 

experiment, 98.06% of the windows were pruned. 

  

Figure 14: left) initial letters from the book published in 

1559. right) the first appearance of  the initial letter was 

detected on page 47 of the later book published in 1576 

As a sanity check we conducted an experiment that had 

a much larger probability to produce false positives. We 

found a text that was similar in age, style, language and 

use of initial letters, but published by a different 

Parisian printer. The text is Epistres des Princes, 
published in 1572. After searching the whole book 

using all fifteen reference initial letters, we found that 

our algorithm did not report any false positives. This is 

in spite of the fact that, as shown in Figure 15, there are 

many possibilities for false positives to occur.  

 

Figure 15: top) Sample letters from our reference set. 

Our algorithm correctly classifies the somewhat similar 

letters from different printers (bottom) as true negatives   

5.4 Robustness to the Threshold Setting 
We noted earlier that one of the strongest points of our 

algorithm is that it has no parameters to set. However, 

there is one choice we made: to set the threshold to be 

the mean plus three standard deviations of the 

interclass distance. Suppose we had made a different 

choice? We tested to see what effect this would have by 

exactly repeating the experiment in the previous section 

but with the threshold instead set to the mean plus two 

standard deviations and the mean plus four standard 

deviations of the interclass distance. In the former case 

the algorithm’s slightly more aggressive pruning 

resulted in a speedup of 1.2%, but critically, the output 

of the algorithm was identical. In the latter the slightly 

less aggressive pruning resulted in the search taking 

2.3% longer, and (as logically must be the case), the 

results were identical. These results, and similar 

experiments archived at [35], strongly suggest that the 

threshold setting is not a critical parameter.  

5.5 A Test for Robustness to Page Condition 
To test the robustness of our algorithm to both the 

condition of the original manuscript and to various 

choices made by the digital archivists (resolution, 

image format, camera settings etc.) we conducted the 

following experiment. 

We took the page shown in Figure 14.right and printed 

it using a standard off-the-shelf HP LaserJet 4300 at 

600 dpi. We then randomly scribbled on the printout 

with a red pen, ensuring the scribble passed through the 

initial letter at least ten times. Finally, we crumpled the 

page into a tight ball. We recovered the page by 

opening the crumpled ball of paper and scanning it with 

a Canon LIDE70 scanner to scan at 300dpi; the result is 

in Figure 16.right.  

 
Figure 16: The page shown in Figure 14 after it was 

printed out, defaced, crumpled and rescanned at a lower 

resolution. None of this affected our search algorithm  

If we simply replace the original page of the text with 

this highly corrupted version, it makes no perceptible 

difference to the search process. We still find the 

matching initial letter in the same amount of time. 

Since the corruptions we added to this page dwarf the 

problems we have encountered with real historical 

manuscripts [13], this experiment bodes well for the 

robustness of our approach.  

5.6 Large Scale Experiments  
To further test the algorithm, we conducted an 

experiment by using twenty books from the 15
th

 and 

16
th

 centuries [35]. We learned the lower bound and 

threshold distances for every unique initial letter that 

exists in the book Bellum Christianorum principium, 

praecipue Gallorum, contra Saracenos, published in 

1533. The number of distinct initial letters in this book 

is sixteen, but the number of different wood blocks used 

 

 

 



in this book was twenty-four.  We used these learned 

initial letters to test another nineteen books. We found 

that there are two books that share the same initial 

letters with the book published in 1533. These two 

books were published in 1538 and 1557, respectively. 

After checking the provenance of the true positives, we 

found that these two books and the book published in 

1533 were printed by the same printer, Heinrich Petri.  

There are a total of 6,956 pages in these twenty books. 

By using the lower bound algorithm, the pruning ratio 

is 99.38%, meaning we are about 160 times faster than 

a brute force search. These experiments did not report 

any false positives.  

6. RUNNING TIME  
The speedup produced by our algorithm is impressive, 

but is it enough to allow real-time processing? For the 

texts we are interested in, the careful handing required 

for scanning requires at least an hour per book [14]. 

Thus, we are about a factor of ten away from real-time 

processing for realistic collections of reference initial 

letters. We could gain this factor of ten with more/better 

hardware. However, below we show that we could also 

mitigate this gap with a simple down-sampling idea.   

We repeated the classification experiment in Section 

3.1 for various levels of down-sampling, recording both 

the speedup and error rates. As shown in Figure 17, 

using a 50% sample size, the error rate is only 4.33%.  

However, the running time is sixteen times faster. This 

is because the speedup comes from two factors. First, 

the running time for calculating CK1 distances is four 

times faster if we down-sample the images by half [7]. 

Moreover, in the experiment shown in Section 5.3 and 

Section 5.6, the number of windows that need to 

calculate the CK1 distance decreases by one-fourth. 

Combining these two factors, a dramatic speedup can 

be achieved by sacrificing a small amount of accuracy.  

Recall that classification is actually a harder problem 

than our recognition problem. Thus, we expect (and 

have confirmed in [35]) that we can use this simple 

down-sampling trick to gain a ten to twenty-fold 

increase with a near-zero chance of a false negative.  

 
Figure 17:  Running time VS classification error rate. 

The bold/red line is the running time for down-

sampling the image size from 100% to 30%. The 

thin/blue line is the classification error rate  

7. DISCUSSION  
We did not directly compare to any other technique in 

the experimental section; here we explain this omission. 

Recall that in Section 3.1 we did compare classification 

accuracy with a benchmark dataset that other 

researchers had created. As we achieved zero error 

(without tuning any parameters) and the two most 

obvious rivals achieved significant errors (RLE 39.42% 

[9], SIFT 10.21% [19]), we felt that further 

comparisons to these techniques are pointless. 

There are a handful of other image matching techniques 

optimized for initial letters that we do not compare to 

here. For example, [15] proposes a method that works 

by segmenting the initial letters, using a Zipf Law 

distribution to label the segmented regions, measuring 

four features of these regions, constructing a graph of 

these regions and finally using (an approximation of) 

the graph edit distance to measure the similarity 

between two images in their graph representation.  We 

do not compare to this work because there are more 

than eight parameters that must be set, and there is little 

guidance on setting them. Moreover, as the mean 

number of nodes n for an initial letter is reported at 108, 

and their graph edit distance approximation method 

uses the O (n
3
) Hungarian method as a subroutine, this 

method will be conservatively tens of thousands of 

times slower than our proposed method. 

There is significant work on texture analysis for 

historical manuscripts; see [14][22] and the references 

therein. However, texture is typically only used for 

layout analysis and segmentation, not for classification. 

Much of this work suffers from the difficulty of 

parameter setting; for example, [5] uses Gabor filters 

for texture analysis and the user must decide the best 

values for scales, orientations, and filter mask size 

parameters in addition to several other parameters. It is 

not clear how well these parameters will generalize 

from book to book or even from page to page within a 

single manuscript. Recently, some researchers have 

begun to apply SIFT to problems in historical 

manuscripts, but again only to the problems of layout 

analysis and segmentation [11]. It is not clear that these 

results would generalize to our task at hand, and our 

results in Section 3.1 suggest that SIFT may have 

difficulty with some of the very subtle distinctions that 

must be made.  

8. CONCLUSION AND FUTURE WORK 
We have defined a new problem: determining the 

provenance of historical manuscripts by searching for 

occurrences of initial letters from a reference library of 

annotated letters of known provenance. We have shown 

a technique based on learned approximate lower bounds 

that is robust, fast and accurate, and has the important 

advantage of having essentially no parameters to tune.   

While our algorithm is fast, there are still significant 

avenues for further speedup. Currently, each initial 

letter is searched independently; however, for similar 

problems in text, time series [32], XML, etc., 
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researchers have shown that it is possible to group 

together similar elements (for example, grouping ‘O’ 

and ‘Q’, then conducting a single search for the group 

representative). This idea may be tenable with some 

modifications for our (nonmetric) CK1 measure.  

We also plan to explore other possible uses of 

empirically learned approximate lower bounds. 

Finally, we have made all code and datasets publicly 

available [35] in order to encourage replication and 

extension of our results, and possible adoption of our 

ideas for other historical manuscript data mining tasks.  
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