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Abstract
The past decade has seen a wealth of research on time se-

ries representations, because the manipulation, storage, and
indexing of large volumes of raw time series data is imprac-
tical. The vast majority of research has concentrated on rep-
resentations that are calculated in batch mode and represent
each value with approximately equal fidelity. However, the in-
creasing deployment of mobile devices and real time sensors
has brought home the need for representations that can be
incrementally updated, and can approximate the data with fi-
delity proportional to its age. The latter property allows us to
answer queries about the recent past with greater precision,
since in many domains recent information is more useful than
older information. We call such representations amnesic.

While there has been previous work on amnesic represen-
tations, the class of amnesic functions possible was dictated
by the representation itself. In this work, we introduce a
novel representation of time series that can represent arbi-
trary, user-specified amnesic functions. For example, a mete-
orologist may decide that data that is twice as old can tolerate
twice as much error, and thus, specify a linear amnesic func-
tion. In contrast, an econometrist might opt for an exponential
amnesic function. We propose online algorithms for our rep-
resentation, and discuss their properties. Finally, we perform
an extensive empirical evaluation on �� datasets, and show
that our approach can efficiently maintain a high quality am-
nesic approximation.

1 Introduction

Time series are one of the most frequently encountered
forms of data. Many applications in diverse domains, pro-
duce voluminous amounts of time series [29, 26]. Examples
of such applications exist in finance [29], medicine [21], me-
teorology, oceanography [26], manufacturing, network man-
agement [17], sensor networks [11], and other domains.

The sheer number and size of the time series we need to
manipulate in many of the real-world applications mentioned
above dictates the need for a more compact representation of
time series than the raw data itself. A plethora of representa-
tions have been proposed for time series approximation [19].

The problem of approximating time series becomes more
interesting and challenging in the context of streaming time
series, where data values are continuously generated, poten-
tially forever. In this situation, we cannot apply approxima-
tion techniques that require knowledge of the entire series,
such as singular value decomposition [6] and most symbolic
approaches [2]. Furthermore, all current time series repre-
sentations treat every point of the time series equally. This
means that, when computing the approximation, the time po-
sition of a point does not make a difference in the fidelity of
its approximation. This may be desirable for some applica-
tions, such as archiving, however, there exist many real world
situations where we would like to take into account the time
dimension in the approximation of the time series. The intu-
ition behind this requirement may be stated as follows. While
we are willing to accept some margin of error in the approxi-
mation, we would like the most recent data to have low error,
and we would be more forgiving of error in older data. We
call this kind of time series approximationamnesic, since the
fidelity of approximation decreases with time, and it therefore
requires less memory for the events further in the past.

The potential utility of such a representation has been doc-
umented in many domains. Consider the following motivating
examples.

� The Environmental Observation and Forecasting System
[26] is a large-scale distributed system designed to mon-
itor, model, and forecast wide-area physical processes
such as river systems. They note that in their current
model, the loss of a repeater station results in the loss
of real time information. Allowing the stations to record
some data to a buffer can mitigate this problem. How-
ever, since the station does not know how long it will be
offline and has a finite buffer, amnesic approximation is
the only logical way to record the data.

� NASA is developing robots to be used in an urban set-
ting [15]. Typical applications include search and res-
cue, and inspection of hazardous environments. In many
situations, information about the path traversed must be
known if the robot is to back up to a more promising
avenue of exploration after reaching a dead end. Power
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Figure 1. Depiction of an amnesic approximation, using
the piecewise linear approximation technique.

and size constraints prohibit the robot from storing all
the data with perfect fidelity, so the utility of an amnesic
approximation has been noted for this domain [15].

� Hussain et al. [17] propose a framework for classifying
denial of service attacks using (among other things) tem-
poral information. They explicitly note that the utility of
information is in proportion to its age.

Although this work suggests that the usefulness of data can
diminish with age, we note that the rate at which its utility de-
cays depends on the application. The function that determines
the amount of error we can tolerate at each point in the time
series is called anamnesic function. Ideally, we would like
to allow arbitrary amnesic functions, so that we can match the
requirements of a wide variety of applications. For example, a
meteorologist may decide that data that is twice as old can tol-
erate twice as much error, and thus, specify a linear amnesic
function. In contrast, an econometrist using classic models
might well specify an exponential amnesic function. Fig-
ure 1 depicts an amnesic approximation of a static time series,
and the amnesic function that was used. Note that as we get
to older points (to the right) the approximation gets coarser.

In this paper, we describe a framework for online am-
nesic approximation of streaming time series. We characterize
the different classes of amnesic functions, and present corre-
sponding algorithms for performing amnesic approximation.
We study two variations of the problem. First, the case when
we are interested in approximating the entire time series seen
so far. We refer to this case as theunrestricted window. Sec-
ond, thesliding window case, where at any point in time, we
are only interested in a fixed number of the last values of the
time series. In Figure 2 we show how the approximation of
a time series changes as a function of time, for five different
timestamps. In this example, we use an unrestricted window
to approximate the Space Shuttle STS-57 dataset, using piece-
wise linear approximation with ten linear segments. The time
progresses form right to left (i.e., the most recent point is the
left-most point). We observe that the approximation of the
most recent points always remains accurate, while it grace-
fully degrades at each time step for the older points.

While some recent work [8, 5] has proposed tools and tech-
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Figure 2. Example of online amnesic approximation.

niques for computing special cases of amnesic approximations
of time series, as we discuss in Section 6, these solutions are
specific and rather restrictive in the variety of applications
they can accommodate. In particular, the types of amnesic
functions they can use are dictated by therepresentation of
the time series. In contrast, our framework is general and able
to operate with a wide class of amnesic functions, which are
defined by theuser.

Our contributions can be summarized as follows.

� We introduce the notion of general amnesic functions.
We present a taxonomy of these functions, discuss their
properties, and describe how they affect the solution of
the problem of online amnesic approximation.

� We formulate the above problem as an optimization
problem, where we wish to minimize the reconstruction
error given the available amount of memory for the ap-
proximation. We study two important variations of it,
namely, the unrestricted and the sliding window cases.

� We propose efficient algorithms for solving the above op-
timization problems. The time complexity of the algo-
rithms we propose is independent of the size of the time
series. The time to process each new point is essentially
constant (logarithmic on the number of segments used in
the approximation). These are the first algorithms pro-
posed for solving the general case of the problem.

� We present an extensive experimental evaluation of
our techniques, using more than 40 synthetic and real
datasets. The experiments show the applicability of our
approach, and the quality of solutions of our algorithms.

The rest of the paper is organized as follows. In Section 2
we give the necessary background. In Section 3 we introduce
some new terminology and formally define the problems we
study. The algorithms we propose are presented in Section 4,
and Section 5 discusses the experimental evaluation. Section 6
reviews related work, and Section 7 concludes the paper.
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2 Time Series Approximation

A time series,� ���, is a series of data points, each one ar-
riving at a distinct time instance��. � ������ defines a range
of data points. When the total number of data points in the
time series,� , is known in advance, we call the time series
static, and we say that is has length� . When data points are
arriving continuously, in a streaming fashion, the value of�
represents the number of data points seen in the time series so
far, and we call the time seriesstreaming. The focus of our
work is on streaming time series.

Several techniques have been proposed in the literature for
the approximation of time series, includingDiscrete Fourier
Transform (DFT) [25, 10],Discrete Cosine Transform (DCT),
Piecewise Aggregate Approximation (PAA) [28], Discrete
Wavelet Transform (DWT) [23, 7], Adaptive Piecewise Con-
stant Approximation (APCA) [6, 22], Piecewise Linear Ap-
proximation (PLA) [20], Piecewise Quadratic Approximation
(PQA), and others. Before we consider which of these repre-
sentations is best suited for the task at hand, it is natural to ask
which is best, simply in terms of reconstruction accuracy. In
order to answer this question, we experimentally compare the
above approaches using many real-world datasets. We con-
ducted such an experiment on�� diverse time series from the
UCR Time Series Data Mining Archive [1].

For our experiment, we randomly extracted a subsequence
of length��� from each time series, and approximated it with
each of the representations under consideration, using a�� to
� compression ratio. This was a fair comparison, using the
same amount of memory for each representation, and apply-
ing all possible optimizations for all representations. How-
ever, for the piecewise polynomial approaches, the optimal
representation requires quadratic time to produce, and we
used a well known near linear-time algorithm instead [18, 20].
We measured the quality of the approximation using the root
mean squared error. We repeated this procedure��� times,
averaged the results, and normalized the performance of each
representation by dividing by the best performing approach.
Finally we averaged all�� scores as shown in Table 1.

The results may appear surprising, because there is little
difference between all the approaches. In fact, similar results
have been documented elsewhere as well [19, 6]. The overall
conclusion from this experiment is the following. If we want
to choose a representation for the task of approximating time
series, then we should not choose the representation based on
approximation fidelity, but rather on other features.

One important feature may be the visual appearance of the
representation, since in many application domains we are in-
terested in visualizing the time series. In Figure 3 we visually
compare all representations1 on an important and familiar ex-
ample, an electrocardiogram. We show just one example for
brevity. For a fair comparison, we use an equal number of
bytes for each approach (as discussed above). Although the

1We omit the result forDCT since it is indistinguishable fromDFT.
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Figure 3. Comparison of (top to bottom) APCA, PLA,
PQA, DWT (Haar), and DFT (”koski ecg.dat” dataset [1]).

quality of visualization for a representation is subjective, we
feel that thePLA approach (second from top) is the best of the
approaches.

When considering the alternative representations in the
context of amnesic approximation, it is not obvious how some
of them can accommodate the requirements of this new en-
vironment. TheDWT representation is intrinsically coupled
with approximating sequences whose length is a power of two,
which severely restricts the choices of amnesic functions. Us-
ing wavelets with sequences that have other lengths requires
ad-hoc measures that reduce the fidelity of the approximation,
and increase the complexity of the implementation. While
DFT has been successfully adapted to incremental computa-
tion [29], it is not clear that it can be adapted to perform am-
nesic approximation, since eachDFT coefficient corresponds
to a global contribution to the entire time series. The same is
true forDCT as well.

In contrast to the above, the piecewise polynomial methods
offer several desirable properties for the task at hand. Much
is already known about their incremental calculation, and be-
cause each segment is independent of each other, we can re-
duce the fidelity of ”older” segments simply by merging them
with their neighbors, without affecting ”newer” segments.
The only question remaining is which piecewise polynomial
technique to use. We decide onPLA for the following reasons.
Piecewise linear approximations are already widely used and
accepted in the medical and financial domains [16, 21]. There
are many useful distance measures defined onPLA, includ-
ing weighed measures [20], time warping [27], Markov model
based measures [12] and lower bounding approximations to
the Euclidean distance.
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DFT DCT PAA DWT (Haar) DWT (Daub12) APCA PLA PQA
0.951 0.923 0.948 0.948 0.902 0.893 0.940 0.927

Table 1. Comparison among various techniques for time series approximation.
2.1 Properties ofPLA Approximation

In PLA, we approximate the data points in a time series
using a number of linear segments whose ends need not be
contiguous [20]. ThePLA approximation scheme has some
desirable properties that allow incremental computation of the
solution. These properties are necessary in order for the algo-
rithm to be able to operate efficiently on large datasets. In the
following paragraphs we present these properties in the form
of theorems, and we discuss their applications in Section 4.

Assume we have� data points of a time series,� ���,
� � � � � , and we use them to fit two line segments (us-
ing least squares). Let the first line,��, approximate points
� to �, � � � , and the second line,��, approximate points
��� to� . In addition, suppose we use a single line segment
to approximate all the points� to � , call it ����. The above
three lines are depicted in the top graph of Figure 4. Related
to these three lines are the errors		��
, 		��
, and		����
.
The error of a segment� is computed according to the for-
mula		�
 �

�
��� 	� ���� ����
�, where� ranges over all

the points in segment�, � ��� is the value of point� in the time
series, and���� is the estimate for point� given by segment�.

Now imagine that we keep�� and��, and throw away the
original� points, and that we want to use a single line seg-
ment to approximate all the original points. The construction
of this new line,����, can be based only on the information in
�� and��, and we prove that���� is the same as����. Since we
no longer have the original points, we assume that all� points
lie on line segments�� and��, and we build���� based on this
assumption. This situation is depicted in the bottom graph of
Figure 4. The residual error of this new line is		����
. Unlike
the previous cases, this is the error between the points on line
���� and the points on lines�� and��. (Remember that line
���� is not calculated based on the original points of the time
series.) It turns out that we can also calculate		����
 without
the need to refer to the original� points.
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Figure 4. Combining two regression lines.

We can now prove the following theorems regarding the

process of merging two line segments into one.

Theorem 1 [Computing the New Line Segment.]The line
segment ����, built from the two line segments �� and ��, is the
same as the line segment ����, built from the original points of
the time series2. That is, ���� � ����.

Theorem 2 [Computing the New Error.] The error of the
line segment approximating all the original data points can
be computed as the sum of the errors of the two individual
line segments, and the error between those two line segments
and the line calculated based on those two. That is, 		����
 �
		��
 �		��
 �		����
.

Another interesting property ofPLA is that for the compu-
tation of the error		����
 we do not need to process individ-
ually all the points corresponding to line segment����. We
can instead avoid the linear complexity of this procedure and
compute the value of		����
 in constant time, according to
the following lemma.

Lemma 1 [Computing the Error Between Two Segments.]
The error, 		����
, of a line segment, ����, which was con-
structed from two line segments, �� and ��, can be computed
with a closed form formula3 in time 
	�
, regardless of the
length of the line segments.

The intuition behind Lemma 1 is that we can compute the er-
ror between two lines as a summation over the corresponding
discrete points, by taking into account the offsets and slopes
of the two lines. The above formulation leads to a closed form
formula for the computation of the error.

The properties ofPLA, presented in Theorems 1 and 2 and
Lemma 1, form the basis for the design of the online algo-
rithms we propose. These properties enable our algorithms to
merge two line segments, and calculate exactly the resulting
line segment along with its residual error in constant time.

3 Problem Formulation

In the following paragraphs we establish some additional
terminology necessary for the rest of the paper. Then, we for-
mally define the problems that we address with this work.

3.1 Amnesic Functions

As we mentioned earlier, we need a way to specify for each
point in time the amount of error allowed for the approxima-
tion of the time series. In order to achieve this goal, we use the

2A similar result has also appeared elsewhere [8].
3The formula requires the introduction of additional notation, and we omit

it due to lack of space.
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amnesic function �	�
, which returns the acceptable approx-
imation error for point� � �� � ��, where�� is the current
time, and�� is the time that point� ��� arrived. The time��
refers to the time when the last data point arrived, and corre-
sponds to position� � � of the amnesic function. Note that
the function�	�
 is only defined for� � �, since� � � �� .

A key property that an amnesic function has to satisfy is
themonotonicity property.

Definition 1 [Monotonic Amnesic Functions.] An amnesic
function, �	�
, is called monotonic if and only if �	�
 �
�	�� �
, for every value of � in its domain.

The approximation of a time series is a lossy compression
technique, which by definition is irreversible. Thus, the mono-
tonicity property poses a natural restriction in our setting. It
ensures that if at time� we can tolerate some error	 �	� ���

in the approximation of point� ���, then we will not request an
approximation of the same point� ��� with error	 ��	� ���
 �
	�	� ���
, at any time�� 
 �.

We now define a taxonomy of amnesic functions (refer to
Figure 5). As we discuss in the next section, each class in the
taxonomy has its own special characteristics, which have to
be taken into account when designing an efficient algorithm
for the amnesic approximation of time series.

Piecewise Constant:The piecewise constant function is the
simplest form that an amnesic function can assume (with
the exception of the constant function, which is a trivial
case, and we do not discuss it here). It has the following
general form.

���� �

�
�� , � � � � ���
� � �
�� , ���� � ��

where��� � � � � �� are constants, such that�� � � � � � ��.
We refer to each step of the function as asection, to dis-
tinguish it from the segments used in the approximation.

Linear: A linear function has the general form:�	�
 �
��� �, �� � 
 �.

Piecewise Linear: The general form of apiecewise linear
function with � sections is as follows.

���� �

�
���� �� , � � � � ���
� � �
���� �� , ���� � ��

where�� � ��� ���
, � � � � �, �� 
 �, and�� �
���� � ��� � � � � �� � �������� � ����.

Continuous: The amnesic functions of this class can take any
form not subsumed by the previous classes. The only
restriction is that the function is monotonic (according to
Definition 1). We do not require that these functions have
a closed form formula.

We also define two forms of amnesic functions, namely, the
relative,��	�
, and theabsolute,��	�
, amnesic functions.

(d) continuous

(b) linear

(c) piecewise linear

(a) piecewise constant

c1

c

cL

2

1d d dL−12

1d d dL−12

Figure 5. The different classes of amnesic functions.

Relative: A relative amnesic function determines the relative
approximation error we can tolerate for every point in
the time series. When we use a relative amnesic func-
tion, we essentially weight the error of some data point
by the inverse of the amnesic function corresponding to
that point, so that		�
 � 		�
���	�
. For example,
the relative amnesic function��	�
 � �, specifies that
when we approximate a point that is twice as old, we will
accept twice as much error.

Absolute: An absolute amnesic function specifies, for every
point in the time series, themaximum allowable error for
the approximation. The error		�
, at point�, should
satisfy the inequality		�
 � ��	�
.

When we have to apply an amnesic function to a segment
�, we pick a single point from the segment, on which we apply
the amnesic function. Nevertheless, this computation refers to
the entire segment. Without loss of generality, for the rest of
this paper we assume that segment� is represented by its most
recent point,� ����. Then, when we want to apply an amnesic
function to �, we simply consider the point of the amnesic
function corresponding to point� ����. We can also apply more
elaborate schemes. For example, we could consider taking the
average value of the amnesic function corresponding to the
first, middle, and last points of�.

3.2 Problems for Amnesic Approximation

Under the assumptions discussed above, we want to main-
tain aPLA model� with � segments for a streaming time
series with an unrestricted window. More formally, we define
the following two problems.

Problem 1 [Unrestricted Window with Relative Amnesic
(URA)] Given the number of segments � and a relative
amnesic function ��	�
, find an approximation � using
� segments that at each time step minimizes the error
		� ����� �
 �

��
��� 			��
���	�� � ��� 

.

Problem 2 [Unrestricted Window with Absolute Amnesic
(UAA)] Given an absolute amnesic function��	�
, construct
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a model � with the minimum number of segments �, subject
to the constraints 		��
 � ��	�� � ��� 
, � � � � �.

We are looking for online algorithms that, when a new
point arrives, they update the approximation model in sub-
linear time on the number of segments. Note that in theURA
andUAA problems the optimization objective is different. In
theURA problem we seek to minimize the approximation er-
ror given the memory space used byPLA, while in theUAA
problem we want to minimize the space used in the approxi-
mation given the maximum error allowed.

Following the definition of the problems for the unre-
stricted window, we now define the corresponding problems
for the case where we consider the sliding window model.

Problem 3 [Sliding window with Relative Amnesic (SRA)]
Given a sliding window of length � , the number of segments
� and a relative amnesic function��	�
, find an approxima-
tion � using � segments that at each time step minimizes the
error 		� ����������� �
 �

��

��� 			��
���	�� � ��� 

.

Problem 4 [Sliding window with Absolute Amnesic
(SAA)] Given a sliding window of length � , and an absolute
amnesic function ��	�
, construct a model � with the
minimum number of segments �, subject to the constraints
		��
 � ��	�� � ��� 
, � � � � �.

4 Algorithms for Amnesic Approximation

We now describe algorithms for theURA andSRA prob-
lems. In the experimental evaluation we show that our algo-
rithms perform very close to optimal. At the end of the sec-
tion, we briefly discuss solutions forUAA andSAA.

4.1 Unrestricted Window with Relative Amnesic

4.1.1 Optimal Solution

The optimal solution for theURA problem can be obtained us-
ing dynamic programming [4]. Note that in order to get the
optimal solution in a streaming environment, we have to run
the dynamic programming algorithm every time that a new
data point arrives. The reason is that we cannot reuse the
computations made during the previous step, because the am-
nesic function causes the approximation error of each point,
and their interrelationships, to change at every time step. The
time complexity for the dynamic programming algorithm is

	���
, which renders this approach inapplicable for the
online version of the problem. Nevertheless, in the experi-
mental section we show that our algorithms always find a so-
lution that is very close to optimal.

4.1.2 TheGrAp-R Algorithm

In this section we present the skeleton of our algorithm,GrAp-
R, for solving theURA problem.

At each time step, the algorithm merges the consecutive
pair of segments whose merge will result in the least approx-
imation error, among all possible merges. The pair of seg-
ments that should be merged,�	 and�	��, is given by the
heap structure� . We merge those in one segment,�	�	��,
according to Theorems 1 and 2. Then we compute the approx-
imation error that would result by merging the new segment
with each one of its two neighbors,�	�� and�	��, accord-
ing to Lemma 1. We use these values for the errors to update
the heap� , in order to reflect the new set of possible merges.
This merge results in a spare segment, which we assign to the
newly arrived point of the time series. Once again we have
to compute the approximation error when merging this seg-
ment with its neighbor, and update the heap� . A high-level
description of the algorithm is depicted in Figure 6.

1 let� be a min-priority queue on the approximation errors resulting from
merging each pair of consecutive segments;

2 let�� � � be a time-event queue;
3 procedureGrAp-R ()
4 when a new point,� ���, of the time series arrives at time��
5 pick the minimum element from�, and merge the corresponding

segments,�� and����, into a new segment������;
6 update� with the errors of merging������ with its two

neighboring segments;
7 assign a new segment,�� ���, to the newly arrived point,� ���;
8 update� with the error of merging�� ��� with its neighboring

segment;
9 ManageEvents(��, �� , ��, ����, ������);
10 return;

Figure 6. The skeleton of theGrAp-R algorithm

The GrAp-R algorithm also makes use of a time-event
queue	�. This structure keeps track of the way that the de-
pendencies among the segments used for the approximation
change as a result of the amnesic function. The procedure
that manages these dependencies isManageEvents(), and we
describe it in more detail in the next paragraphs.

In the following subsections we elaborate on the way the
framework of theGrAp-R algorithm described above changes
when we consider the different classes of amnesic functions.
We discuss the specific details of each case, and present the
time and space complexities of the solutions we propose.

4.1.3 Piecewise Constant Amnesic Functions

When the amnesic function belongs to the class of piecewise
constant functions, a change to the relative ordering of the pair
of segments that should be merged during the next step of the
algorithm only happens when a segment crosses a discontinu-
ity between two sections of the amnesic function.

Example 1 Assume we have the amnesic function 	���� � �� � �
� � �� and 	���� � �� � � ��. Let 
��� and 
��� be two pairs
of segments, candidates for merging, that, at the current time, are
at positions � � � and � � 	, and have errors ��
���� � � and
��
���� � 	, respectively (Figure 7(a)). Then, their relative errors
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are ��
�����	���� � � and ��
�����	��	� � 	, which means
that 
��� is the first candidate for merging. However, after three time
instances, when 
��� first gets to the point � � ��, its error becomes
��
�����	����� � � � ��
�����	��
� � 	 (Figure 7(b)). Thus,

��� is now the candidate pair for merging.

(b)(a)

s1,2s3,4

2 7 10

1

4

s1,2s3,4

10

1

4

50 0

Figure 7. Event example for piecewise constant.

In order to keep track of these changes, we need to main-
tain the heap� , and, in addition, a time-event queue	�. The
heap� determines the next pair of segments that should be
merged. The queue	� flags the times at which the segments
cross a discontinuity in the amnesic function (remember that
during these computations we assume that each segment is
represented by its most recent point). When this happens, we
update the position of the segment in the heap, and we com-
pute the next time that it will cross a discontinuity. Figure 8
shows theManageEvents() procedure for the case of piece-
wise constant amnesic functions. TheGrAp-R algorithm re-
mains as discussed earlier.

1 procManageEvents(queue��, time �, segments��, ����, ������)
2 remove from�� any events corresponding to segments�� and����;
3 if (next event� in �� is scheduled for time� � �� � �� �)
4 remove�, related to segments���� and����, from��;
5 update in� the position of the pair���� and����;
6 compute the new time when the pair���� and���� will cross a

discontinuity;
7 insert in�� the new event (if any);
8 insert in�� any new dependencies identified concerning������;
9 return;

Figure 8. The ManageEvents() procedure for piecewise
constant amnesic functions.

The following theorem states the space and time complex-
ity of the algorithm.

Theorem 3 The space complexity of GrAp-R with a piece-
wise constant amnesic function is 
	�
, and the time com-
plexity to process each new point is 
	�
��
.

Proof: The algorithm needs
	�
 space to store the� seg-
ments used in the approximation. A heap structure is used to
determine the pair of segments that will be merged at each
step of the algorithm. The heap requires
	�
 space to store
the� � � adjacent pairs of segments. Finally, we must keep
track of the times when segments cross a discontinuity of the
amnesic step function. At each point in time we only need
to maintain in the time-event queue one such event for every
segment. Therefore, the queue has a worst space complexity

of 
	�
, and
	�
 is the overall space complexity of the
algorithm as well.

At each time unit, the algorithm can pick from the heap
the pair of segments to merge, and identify in the time-event
queue the segments that cross a discontinuity, in
	�
 time.
The time to merge two segments is constant, because of the
Theorems 1 and 2, and Lemma 1. The time to update the
heap is
	�
��
, and, since the size of the time-event queue
is
	�
, the time to insert or delete an event from the queue
is 
	�
��
 (when the queue is implemented using skiplists
[24], or any other equivalent data structure that offers loga-
rithmic search times). Thus, the overall time complexity for
each iteration is
	�
��
. �

Both the procedureManageEvents() and Theorem 3 as-
sume that only a single segment is crossing a discontinuity
at each time step. The extension of the algorithm to handle
multiple segments is straightforward. However, note that the
above situation does not arise often, especially when more
than a few segments are involved. Hence, its impact on the
performance is very small. The same arguments hold for all
the algorithms described in the rest of this section.

4.1.4 Linear Amnesic Functions

In the case of linear amnesic functions, each event in	�
specifies the time at which the relative ordering of the merging
error of two pairs of segments changes. It turns out that, if we
know the approximation error of each segment and the closed
formula of the amnesic function, we can compute the times at
which these changes will occur. We refer to those times as the
crosspoints.

Example 2 Assume we have the amnesic function 	���� � � �
�� � � �. Let 
��� and 
��� be two pairs of segments, candi-
dates for merging, that were created at the current time, at posi-
tions � � � and � � 	, and have errors ��
���� � 	� and
��
���� � �	, respectively (Figure 9(a)). Then, their relative errors
are ��
�����	���� � ��� and ��
�����	��	� � �, which means
that 
��� is the first candidate for merging. However, after four time
instances, when 
��� first gets to the point � � ��, its error becomes
��
�����	����� � 	�	 
 ��
�����	���� � ��� (Figure 9(b)).
Thus, 
��� is now the candidate pair for merging.

(b)(a)

10

3,4s 1,2s

62

1

s3,4

1

6

1,2s

0 0

Figure 9. Event example for piecewise constant.

Consider the general case, where we have a linear relative
amnesic function,��	�
 � ����, and we want to compute
the time when the relative ordering of segments�� and�� will
change. (In fact, each one of�� and�� represents the merge
of a pair of segments.) Let		��
 and		��
 be the approxi-
mation errors for�� and��, respectively. Finally, assume that
��� is the time when�� was created. This time is defined as
the time when the most recent point of�� arrived. We define
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��� in a similar way. Then, their crosspoint,�
, is given by the
following equation.

��
��

� � ��� � ���� � �
�

��
��

� � ��� � ���� � �
, or

�� �
�� � ��� � �� � ��
��� �� � ��� � �� � ��
��

���
�����
��� � �
� (1)

We only consider the positive solutions of this equation.
Note that it may be the case that their relative ordering never
changes, that is, there is no positive solution. Furthermore,
we do not need to compute the crosspoint of each segment
with all the others. It suffices to consider only the segments
stored in neighboring nodes in the heap� , and maintain these
dependencies up to date as the heap changes. We now give
upper bounds on the number of crosspoint computations that
we have to perform as a result of changes in� . All these
computations can be performed in constant time according to
Equation 1.

Lemma 2 Assume we have processed a crosspoint, and the
heap has been updated. The possible crosspoints we have to
compute are no more than �.

Lemma 3 Assume two segments have merged, and the heap
has been updated. The possible crosspoints we have to com-
pute are no more than ��
���� �.

The above lemmata guarantee that the work we have to do
every time the heap changes is minimal. TheManageEvents()
procedure for the case of linear amnesic functions is depicted
in Figure 10.

1 procManageEvents(queue��, time �, segments��, ����, ������)
2 remove from�� any events corresponding to segments�� and����;
3 if (next event� in �� is scheduled for time� � �� � �� �)
4 remove�, related to segments���� and����, from�;
5 swap in� the positions of���� and����;
6 compute crosspoints between���� and���� and all their

new neighbors (i.e., parent and children nodes) in�;
7 insert in�� events for any new crosspoints identified;
8 insert in�� any new crosspoints identified concerning������;
9 return;

Figure 10. The ManageEvents() procedure for linear am-
nesic functions.

The problem of keeping track of the crosspoints is remi-
niscent of the work in the area ofkinetic data structures [3],
where bounds are given on the number of crosspoints that
need to be considered. However, the above work examines
only linear motion, and does not apply to our problem. In
practice, the size of	�, �	��, remains small, and does not
affect the performance of our algorithms.

The complexity of the algorithm is as follows.

Theorem 4 The space complexity of GrAp-R with a linear
amnesic function is 
	� � �	��
, and the time complexity to
process each new point is 
	�
�� � �
� �	��
.

Proof: The algorithm requires
	�
 space to store the�
segments and the heap, and
	�	��
 space for the time-event
queue.

At each iteration, the time to find the pair of segments
to merge, and the segment that has reached a crosspoint, is

	�
. We need
	�
��
 time to update the heap after those
changes, and Lemmata 3 and 2 state that there is only a small
constant number of computations that we have to perform. We
also need to update the queue, which takes
	�
� �	��
 time.
Therefore, the overall time complexity for each iteration is

	�
�� � �
� �	��
. �

4.1.5 Piecewise Linear Amnesic Functions
Assume that the amnesic function is comprised of� sections.
Then, we treat each section separately, as in the case of lin-
ear amnesic functions discussed above. We maintain� heaps,
one for each section, and a single time event queue. The time-
event queue, in addition to keeping track of all the crosspoints,
also maintains the times at which a segment moves from one
section to another. The above� heaps carry local informa-
tion, as to which is the best pair of segments to merge within
each section. Then, at each iteration of the algorithm, it is
easy to determine the overall best pair of segments to merge,
either by performing a linear scan of the top element of the�
heaps, or by maintaining a heap of those� elements. For all
practical purposes,� is relatively small, in the order of a few
dozens. Therefore, a linear scan is sufficiently fast, and avoids
the need for maintaining the extra heap structure, which in the
worst case has time complexity
	� �
��
. For the rest of
this work, we only consider the linear scan approach.

The following theorem gives the space and time complex-
ity of the algorithm.

Theorem 5 The space complexity of GrAp-R with a piece-
wise linear amnesic function is 
	� � �	��
, and the time
complexity to process each new point is 
	� � � �
� �

�
�

�
� �	��
.

Proof: We assume that an equal number of segments corre-
sponds to each section of the amnesic function4. The algo-
rithm requires
	�
 space for storing the� segments and
the� heaps (since all the heaps combined store
	�
 values).
The space required by the time-event queue accounts for the
second term in the complexity function. This space is equal to
the number of crosspoints and the number of events related to
segments moving from one section to the next. Therefore, we
need
	� � �	��
 space in total.

In terms of time, the algorithm at each iteration
needs
	�
� �	��
 time to update the time-event queue,

	� �
� �

�

 time to update the� heaps, and
	�
 time to

pick the best pair of segments to merge. �

4This assumption is realistic because of the following observation. The
sections of the amnesic function that refer to the newer values of the time
series will tend to be of finer granularity and encompass a smaller portion of
the time series than the sections referring to the older values. Yet, they will
require a higher ratio of segments per data point, since the requirements for
accuracy in the newer data points is higher than that for the older ones.
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4.1.6 Continuous Amnesic Functions

When the amnesic function is continuous, we identify two
cases. First, the amnesic function has a closed form formula.
In this case, we can compute the crosspoints of the segments,
and we proceed as with the linear amnesic functions. Sec-
ond, when the amnesic function does not have a closed form
formula, we replace the continuous function with a piecewise
linear approximation using� sections. Then, we proceed as
with the piecewise linear amnesic functions. We construct
� heaps, and search in those for the best pair of segment to
merge. Since the resulting amnesic function is an approxima-
tion of the original function, instead of examining only the top
element from each heap, we consider the top-� elements. We
calculate the exact error (i.e., based on the continuous amnesic
function) of those elements, and pick the best pair of segments
among them. This technique proves to work very well, even
for small�. We defer further discussion to the full version of
this paper.

The following theorem gives the space and time complex-
ity of the algorithm (the proof is similar to the case of piece-
wise linear amnesic functions).

Theorem 6 Assume we approximate a continuous amnesic
function with � piecewise linear sections. Further, assume
that we consider the top-� elements of each heap in order to
identify the best pair of segments to merge. Then, the space
complexity of GrAp-R with a continuous amnesic function is

	� � �	��
, and the time complexity to process each new
point is 
	��� � �
� �

�
� �
� �	��
.

4.2 Sliding Windows With Relative Amnesic

In this section we discuss algorithms that solve the online
amnesic approximation problem for a sliding window of a
streaming time series. Assume a sliding window of size� ,
and that we usePLA to build a build an approximation model
� with � segments. We refer to the side of the sliding win-
dow from which new points enter the window as thestart of
the sliding window. We callend of the sliding window the
side from where points exit, andlast segment, the segment of
� that approximates the points of the series at the end of the
sliding window.

The skeleton of the algorithms for the sliding windows case
is the same as the one presented in the previous section, for
the amnesic approximation of time series in an unrestricted
window. The only difference is that we now have to adjust
the approximation such that there is no segment that refers to
data points beyond the end of the sliding window. In order to
achieve this goal, we simply discard the last segment as soon
as it gets entirely out of the sliding window, and we reuse it
at the start of the window. Observe though, that the amnesic
function is more tolerable to the approximation error towards
the end of the sliding window. Then, a question that arises
naturally is whether it is possible for the last segment to con-
tinue growing by merging with the second to last segment,

and consequently never fall out of the boundaries of the slid-
ing window. The following lemma addresses this question.

Lemma 4 The last segment of model � will never grow to
represent the entire set of points beyond the end of the sliding
window.

The above lemma guarantees that a sliding window am-
nesic approximation will never degenerate to an unrestricted
window approximation of the time series, but does not give us
a bound on the size of the last segment. In Section 5 we ex-
perimentally show that the size of the last segment is always
relatively small.

4.3 Algorithms for Absolute Amnesic Functions

When we use absolute amnesic functions, there is no re-
striction in the number of segments that we may use for the ap-
proximation. Furthermore, we can calculate the time when a
neighboring pair of segments will be eligible to merge. Hence,
in this case we do not have to keep track of the segments
whose merge will result in the least additional error, and sub-
sequently, there is no need to maintain a heap structure on the
adjacent pairs of segments, as we did for the case of the rela-
tive amnesic functions.

The algorithms for theUAA andSAA problems are based
on the corresponding algorithms presented for the relative am-
nesic functions. The only difference, as discussed above, is
that there is no need for a priority queue structure. We do not
discuss these algorithms any further, due to lack of space.

5 Experimental Evaluation

We implemented our algorithms and conducted a series
of experiments to evaluate their efficiency. We also imple-
mented the optimal algorithm, using dynamic programming,
and the traditionalBottomUp algorithm forPLA [18], to com-
pare against our techniques.

In order to evaluate our algorithms, we used an exten-
sive set of real-world datasets. These are�� datasets coming
from diverse fields, including finance, medicine, biometrics,
chemistry, astronomy, robotics, networking and industry, and
covering the complete spectrum of stationary/non-stationary,
noisy/smooth, cyclical/non-cyclical, symmetric/asymmetric,
etc. [1]. When not explicitly mentioned, the results reported
are averages over all�� datasets. Some of the datasets used in
our experiments are illustrated in Figure 11. For all the exper-
iments shown here, we employed a piecewise linear amnesic
function. The results for other amnesic functions are similar.

5.1 Comparison toBottomUp

In the first set of experiments, we compare the performance
of GrAp-R to BottomUp, which is essentially a comparison
between an online and the corresponding offline algorithm.
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Figure 11. Some of the datasets used in our experiments.
Figure 12 depicts the approximation error and computa-

tion time forGrAp-R andBottomUp, for a single dataset. (We
get similar graphs for all the datasets we used in our experi-
ments.) We use the unrestricted window model and�� seg-
ments, and we report the error and time as a function of the
window size. Our online algorithm consistently provides ap-
proximations that are very close to those found by the offline
algorithm. At the same time our algorithm is much faster,
requiring only constant time for processing every new point
(actually, as we discussed in Section 4, the time is logarithmic
to �, but independent of� ). On the other hand,BottomUp
has time complexity
	� �
��
.
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Figure 12. Typical progression of error (top) and time
(bottom) for GrAp-R and BottomUp, for a single dataset
(unrestricted window).
In the next set of experiments, we quantify the differences

in the performance of the two algorithms. We report the cu-
mulative relative error,��	, which measures the relative in-
crease in the cumulative error when usingGrAp-R.

�	� � ��� �

��

	��
��
��
���� 
������ ���������
�� 
���������

	��
��������
�� 
������

The second measure of interest is the speedup, which mea-
sures hom many times fasterGrAp-R is when compared to
BottomUp.

������� �

��

	��
� ����������
�� 
��������

	��
� ���
��
���� 
������

In Figure 13, we depict��	 as a function of� and� , for
the unrestricted window model. Using�� segments, our algo-
rithm performs within��� ��� of the offline algorithm, for
streams of length����� ���� points (Figure 13(a)). Though,
for increasing� we observe a very slow build-up of the rel-
ative error. In the experiment of Figure 13(b), the number of
segments we use is��, ��, and�� of� . In this case, where
the ratio��� remains fixed,��	 remains relatively stable
as we increase� . In both cases, our algorithm performs better
as the number of segments increases.
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Figure 13. Comparison of the approximation error be-
tweenGrAp-R and BottomUp (unrestricted window).

Figure 14 shows the speedup that our algorithm achieves,
which translates to one or two orders of magnitude faster exe-
cution than the offline algorithm (for the experiments we ran).
We observe that the speedup increases significantly for de-
creasing�. This is because the amount of work thatGrAp-R
does remains almost constant (depends on�
��), while Bot-
tomUp requires lots of extra effort for smaller values of�. As
expected, the speedup gets larger when we increase� .

We also run the same experiments for the sliding window
model. Figure 15 illustrates the results for the speedup, which
in this case is mainly a function of the window size (� does
not seem to affect the speedup in this case, because of the
particular choices of� and the window size). TheGrAp-R
algorithm is��� �� times faster thanBottomUp. The results
for the error are similar to those for the unrestricted window
model, and are omitted due to space restrictions.

The trends for the error and time remain the same as we in-
crease� and� . All the above results show that the online al-
gorithm achieves considerable benefits in terms of speed while
losing little in approximation accuracy, when compared to the
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Figure 14. Speedup ofGrAp-R againstBottomUp (unre-
stricted window).
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Figure 15. Speedup ofGrAp-R againstBottomUp (sliding
window).

offline algorithm.
With the next experiment, we address a question that was

raised in light of Lemma 4. In the sliding window model,
we temporarily allow the last segment of the approximation
model to grow beyond the end of the window, until it com-
pletely falls out of the boundaries of the window and we dis-
card it. Figure 16 depicts the average number of points outside
the sliding window that are represented by the last segment,
as a percentage of the window size. In all the cases we tested,
this number ranges between���� ���, and therefore, is not
a restricting factor for our representation.
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Figure 16. Number of excess points represented by
GrAp-R (sliding window).

5.2 Comparison to Optimal
In this section we investigate how our techniques compare

to the optimal algorithm,Opt, implemented with dynamic pro-
gramming. Unfortunately, due to the high time complexity of
the optimal algorithm, this experiment is only possible for rel-
atively small datasets.

We use the same set of�� datasets and perform the exper-
iment as follows. From each dataset, we randomly extract a
subsequence of length���, and segment it into��, ��, and
�� segments, using both algorithms under consideration. We
measure the relative increase in error for theBottomUp algo-
rithm, defined as		�����	
��	���
�	���. A zero value for
the relative error means thatBottomUp has found the optimal
solution. For each dataset, and each number of segments, we
average the results over�� randomly extracted subsequences,
and then average the relative error over all�� datasets. The re-
sults are shown in Table 2. They clearly suggest that we lose
little by usingBottomUp as opposed toOpt, sinceBottomUp
finds solutions very close to optimal. Consequently, based on
the experiments we presented in the previous paragraphs, we
can safely conclude thatGrAp-R performs close to optimal, as
well. Finally, the last column of the table reports how much
slowerOpt executes (more than two orders of magnitude), and
illustrates the inapplicability of the optimal algorithm for an
online environment.

� ���������
 ���
�����
� � ����
��� ����������

16 0.058 112
32 0.051 137
64 0.042 173

Table 2. Comparison betweenBottomUp and optimal.

6 Related Work

There exists an extensive literature in the area of time se-
ries approximation [19]. Some of the representations that have
been proposed include the Fourier transform [10, 25], many
different wavelets [23, 7], piecewise polynomials [28, 6], sin-
gular value decomposition [6] and symbolic approximations
[2]. Many of the above approximation techniques have been
adapted to work in an online fashion. For example, piecewise
constant approximation can be created online with little loss
of accuracy [22], as well asDFT [29]. Most of other time
series representations have been, or could trivially be, calcu-
lated in an incremental fashion [18]. There has also appeared
work on data stream summarization, using wavelets [13] and
histograms [14]. Cohen and Strauss [9] present a framework
for maintaining time-decaying stream aggregates, such as sum
and average.

Chen et al. [8] describe a framework for multi-dimensional
regression analysis of time series with a tilt time frame. Yet,
they do not explicitly tailor their representations to match dif-
ferent amnesic functions. Bulut and Singh proposed using
wavelets to represent ”data streams which are biased towards
the more recent values” [5], and successfully implemented
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their method. Although the bias to more recent values can be
seen as a special case of an amnesic function, the particular
function is dictated by the hierarchical nature of the wavelet
transform. Our work removes all the restrictions inherent in
the above approaches. The framework we propose takes into
account the form of the amnesic function as an integral part of
the problem, and provides an effective and efficient solution
for a much more general class of amnesic functions.

7 Conclusions
We have introduced the first method to allow the online

approximation of streaming time series, which allows arbi-
trary, user-defined reduction of quality with time. This kind
of approximation is of increasing importance in many diverse
application domains, such as mobile and real-time devices.
We justified our choice of representation with extensive com-
parisons to competing techniques, and described how we can
adapt to allow arbitrary amnesic functions for streaming data.
We empirically evaluated our algorithms with extensive exper-
iments on�� different datasets. The results show that our al-
gorithms offer significant performance improvements over the
direct computational approach, while maintaining the quality
of the approximation close to optimal. Possible directions for
future work include supporting indexed similarity search and
other queries on our representation.

Acknowledgements
We would like to thank the anonymous reviewers for their in-
sightful comments.

References
[1] The UCR Time Series Data Mining Archive. University of Cali-

fornia, Riverside, Computer Science and Engineering Department.
http://www.cs.ucr.edu/˜eamonn/TSDMA/, 2002.
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