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ABSTRACT 

In domains as diverse as entomology and sports medicine, 
analysts are routinely required to label large amounts of time 
series data. In rare cases, this can be done automatically with a 
classification algorithm. However, in many domains, complex, 
noisy, and polymorphic data can defeat state-of-the-art 
classifiers, yet easily yield to human inspection and annotation. 
This is especially true if the human can access auxiliary 
information and previous annotations. This labeling task can be 
a significant bottleneck in scientific progress. For example, an 
entomology lab may produce several days’ worth of time series, 
each day. In this work, we introduce an algorithm that greatly 
reduces the human effort required. Our interactive algorithm 
groups subsequences and invites the user to label a group’s 
prototype, brushing the label to all members of the group. Thus, 
our task reduces to optimizing the grouping(s), to allow our 
system to ask the fewest questions of the user. As we shall 
show, in a deployed system for entomologists, we can reduce 
the human effort by at least an order of magnitude, with no 
decrease in accuracy.  
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1. Introduction 
A common problem for data analysts across many domains and 
disciplines is the annotation of long sections of time series data 
[17]. In some cases, this can be done automatically, using a time 
series classification algorithm [4][8]. However, in many 
circumstances, the performance of even the state-of-the-art 
algorithms can be significantly worse than a human expert. 
Consider for example the three snippets of insect behavior 
shown in Figure 1. To an expert in phytophagous (plant eating) 
insects with piercing-sucking mouthparts, these are obviously 
all examples of the same probing-pathway phase 

behavior. However, this data shows high levels of noise, and 
significant variability. This variability may be due to individual 
characteristics of the insects, or the vagaries of the sensing 
apparatus. In either case, no off-the-shelf time series 
classification system we are aware of would work well here. 
This is because extracting and reformatting such data is itself a 
much harder problem than the classification, and this 
preprocessing step cannot (in general) be done automatically 
[8] (See Appendix A). 

Annotating such time series data necessitates human 
inspection; requiring the expensive services of a domain 
expert. Moreover, it can be significantly outpaced by the rate at 
which the time series data is generated. For example, a recent 
paper by an international team of animal movement ecologists 
bemoans the fact that annotating time series data is “time 

consuming and error-prone for the domain expert and is now the 
limiting factor for realizing the value of [the time series]” [17]. 

To prevent confusion, we refer to the task of annotating 
time series data as “labeling”. While we could use the more 
familiar term “classification”, that term is more typically used 
to describe the vast body of research that considers the special 
(and, as [8] and others argue, often unrealistic) problem, in 
which the time series has been contrived into a relational data 
format [8][13]. 

 

Figure 1: Examples of probing-pathway phase behavior for 
whiteflies (Bemisia tabaci). Note that this behavior has 
significant variability, some attributable to intrinsic 
variability of the insects, and some due to variability of the 
recording apparatus, which must be very sensitive, given 
the insects size. 

Our problem setup, which we will formalize in Section 3, is 
as follows. Assume we are given a long time series, T. Some 
fraction (possibly all) of T is comprised of well-defined 
behaviors from a finite set of possibilities S which may or may 
not be known in advance.  We assume a human domain expert 
can correctly identify any snippet of the time series 
representing any of the well-defined discrete behaviors in 𝑆, if 
given the opportunity to view it. Note that the human annotator 
may have the possibility to consider additional, auxiliary 
information. For example, the time series may be accompanied 
by video or audio recordings. For any time series snippets that 
are uncertain or ambiguous in the time-series-only view, the 
human labeler may expend the extra effort to review the 
parallel multimedia data. 

Given this model, the human could label all the data. 
However, suppose that she labels one-second chunks at a time. 
For the whitefly problem introduced in Figure 1, entomologists 
often run eight parallel twelve-hour experiments each day, that 
would total 345,600 one-second snippets to classify daily. Even 
if our entomologist could label ten behaviors a second, during 
an eight-hour shift, she still could not keep up with the daily 
production rate. 

Our task-at-hand seems to invite automation by use of a 
time series classifier [17]; however, there are many 
circumstances in which even a state-of-the-art time series 
classifier will not produce human competitive results. For 
example: 

 



 

 

• A physiologist may need to label activities from participants 
in a study. However, while the activities may be visually 
obvious to the physiologist, variability caused by even minor 
differences in sensor placement, can confound time series 
classifiers [2]. Moreover, the physiologist may have insights 
and intuitions she can use, that would not be easily available 
to an algorithm. For example, if a noisy time series snippet 
appears equally likely to be whisking-food or swimming, 

but the surrounding time series was clearly chopping-

food, she could use this context to resolve the ambiguity.  

• Entomologists routinely use an apparatus called an Electrical 
Penetration Graph (EPG) to produce recordings of 
insect/plant interactions by insects with piercing-sucking 
mouthparts [16]. Some of these insects, such as the whitefly 
shown in Figure 1 are smaller than this dot ⚫ [7]. Naturally 
recording such tiny insects requires a very sensitive 
apparatus. This sensitivity means the signal, while 
interpretable to a trained entomologist, has variability 
caused by vibration, air currents, etc., all of which conspire to 
make it difficult for automatic classification [1][16]. 
Moreover, entomologists have insights and intuitions into the 
behavioral patterns of piercing-sucking insects which may be 
difficult to encode into algorithms, the classic “I know when I 
see it” skills. For example, a path-phase must always 

precede a phloem-phase since the Asian citrus psyllid must 

first puncture the plant with its piercing-sucking mouthparts 
before beginning sap ingestion [16]. 

Our proposed solution to this problem is the Like-Behaviors 
Labeling Routine (LBLR). The LBLR system greatly reduces the 
need for human annotation, by showing the user “clustered” 
snippets from the time series and brushing the given label to all 
the elements of the cluster. By using the Minimum Description 
Length (MDL) [9][11], to carefully reasoning about which 
snippets, and in which order to show the user, we can typically 
reduce the burden of human time by one to two orders of 
magnitude, with little or no loss of accuracy. 

2. Related Work and Notation  
We begin with a brief review of related work before 
introducing the notation needed to understand our framework. 

2.1 Related Work 
While the literature on time series classification is vast, see [17] 
and the references therein, there is very little on time series 
labeling [6]. Our proposed algorithm is superficially like active 
learning [13]; however, there are enough differences that the 
large active learning literature is of little help. In particular:  

• In active learning, the unlabeled data points are typically 
shown to the user (teacher/oracle) one object at a time1. In 
contrast, by exploiting the ability to “overplot” time series 
(see Figure 2.right) we propose to show the user collections 
of objects, exploiting the human ability to “batch process”.  

• In active learning, the goal is typically to build a more 
accurate classifier. In contrast, we are only interested in 
annotating data to allow downstream analytics. Thus, active 

                                                                 
1 There is research on batch mode active learning. However, here the unlabeled 

examples are extracted in batches to reduce computation effort in retraining a 
classification model.  

learners exploit unlabeled data until the model accuracy 
plateaus. In contrast, we annotate unlabeled data, until it is 
all labeled, or the annotator prematurely terminates the 
labeling procedure. 

 

Figure 2: (left) A snippet of insect EPG data from an Asian 
citrus psyllid (Diaphorina citri) [18]. Rather than label 
each pattern one-by-one in this view, we propose to group 
related patterns (right) to label multiple patterns at once 
with a single interaction. 

A recent paper introduces a new shapelet-based 
informativeness metric for time series active learning [13]. 
However, they assume that all the data has been perfectly 
segmented and arranged into a relational format. As [8] points 
out, partitioning a long time series stream into this format is 
much harder than the classification or labeling task that follows. 
Moreover, [13] assumes that all snippets belong to some well-
defined class, and that all possible classes are known ahead of 
time. As we shall show below, these are unrealistic 
assumptions for real-world problems. 

2.2 Notation  
We begin by defining the data type of interest, the time series: 

Definition 1: A time series 𝑇 ∈ ℝ𝑛 is a sequence of real-
valued numbers 𝑡𝑖 ∈ ℝ ∶ 𝑇 =  [𝑡1, 𝑡2, . . . , 𝑡𝑛] where 𝑛 is the 
length of 𝑇. 

We are typically not interested in the global properties of a 
time series, but in the local regions known as subsequences: 

Definition 2: A subsequence 𝑇𝑖,𝑚 ∈ ℝ𝑚 of a time series 𝑇 ∈

ℝ𝑛 is a contiguous proper subset of the values from 𝑇 of 
length 𝑚 starting from position 𝑖. Formally, 𝑇𝑖,𝑚  =

[𝑡𝑖 , 𝑡𝑖+1, … , 𝑡𝑖+(m−1)] where 𝑚 < 𝑛. 

We plan to increase labeling efficiency by grouping similar 
subsequences together, these are known as time series motifs: 

Definition 3: A time series motif is the most “similar” 
subsequence pair of a time series. Let 𝑇𝑎,𝑚 and 𝑇𝑏,𝑚 for some 

𝑎, 𝑏 ∈ [1,2, … , 𝑛 − 𝑚 + 1] and 𝑎 ≠ 𝑏 be two distinct 
subsequences of 𝑇.  𝑇𝑎,𝑚 and 𝑇𝑏,𝑚 is a motif pair iff 

𝑑𝑖𝑠𝑡(𝑇𝑎,𝑚, 𝑇𝑏,𝑚) ≤ 𝑑𝑖𝑠𝑡(𝑇𝑖,𝑚, 𝑇𝑗,𝑚) ∀𝑖, 𝑗 ∈ [1, 2, … , 𝑛 − 𝑚 + 1] 

where 𝑖 ≠ 𝑗 and 𝑑𝑖𝑠𝑡 is a function that computes the z-
normalized Euclidean distance between 𝑎 and 𝑏 [20][21]. 

One of the most efficient ways to locate time series motifs is 
to compute the matrix profile [20] of 𝑇. 

Definition 4: A matrix profile 𝑃 ∈ ℝ𝑛−𝑚+1 of a time series 𝑇 
is a meta time series that stores the z-normalized Euclidean 
distance between each subsequence and its nearest neighbor 
where 𝑛 is the length of 𝑇 and 𝑚 is the given subsequence 
length. The top-1 motif can be found by simply locating the 

 



 

 

two lowest values in 𝑃. The remaining motifs can be extracted 
by finding the next lowest values in the matrix profile.  

To avoid trivial matches in which a pattern is matched to 
itself, or a pattern that largely overlaps with itself, the matrix 
profile incorporates an “exclusion-zone” concept, which is a 
region before and after the location of a given query that should 
be ignored. The exclusion zone is heuristically set to 𝑚/2 [20]. 

Figure 3 illustrates a matrix profile on a small toy dataset. 
The time complexity to compute a matrix profile 𝑃 is 𝑂(𝑛2). 
This may seem untenable for time series data mining, but 
several factors mitigate this concern. First, note that the time 
complexity is independent of m, the length of the subsequences. 
Thus, unusually for a time series algorithm, the time and space 
complexity do not depend on the length of the subsequences. 

Secondly, the matrix profile can be computed with an 
anytime algorithm, and, in most domains, in as few as 𝑂(𝑛𝑐) 
steps the algorithm converges to what would be the final 
solution [20] (c is a small constant). Finally, the matrix profile 
can be computed with GPUs, cloud computing and other HPC 
environments that make scaling to at least tens of millions of 
data points trivial [20]. Even using standard hardware, all the 
examples in this paper can be computed much faster than real-
time. For example, 30 minutes of EPG sampled at 60Hz takes 
about four minutes to compute using STOMP [20]. If that was 
not fast enough, STAMP can produce a very high-quality 
approximation in under five seconds [20]. 

 
Figure 3: A synthetic time series 𝑻 which has two 
(highlighted) motifs imbedded, and its matrix profile P. 
Note that P minimizes at the location of the motifs. 

2.3 Minimum Description Length 
As we shall show in the next section, a key subroutine in our 
system requires our algorithm to reason about which motifs 
are semantically the same, and which are distinct. To achieve 
this, we plan to exploit MDL to decide which group of 
subsequences are semantically similar and thus can be grouped 
together to receive a single label from a user [9][10][11]. We 
can gain some intuition about this idea by first considering the 
text analogue of time series. 

2.3.1 MDL: Text 
Suppose that “motif” discovery has managed to whittle down 
the character representation of a long text string to just four 
candidates, 𝑇1, 𝑇2, 𝑇3, and 𝑇4 : 

𝑇: scatters shatters swatters syzygies 

                                                                 
2 We wish to disclaim that our model may better be described as MDL-like or 

MDL-inspired. Our goal is to build a practical system and not make any claims 
about MDL model selection. 

Here we see the first three words scatters, shatters and 

swatters as being similar enough to warrant grouping into a 
single class. MDL helps us to realize the appropriate grouping 
by attempting to perform lossless compression on the data by 
exploiting regularities shared among the time series.  

For example, since s-atters is a repeated structure among 
some of the words, we consider the first word scatters and 
think of it as being a potential model or hypotheses for the four 
words. We can use this model to try to “explain” the rest of the 
data, by encoding each word 𝑇𝑖  with the hypothesis 𝐻: 

𝐻 = scatters 

𝑇|𝐻: ········ ·h······ ·w······ ·yzygie· 

where ⋅ indicates a shared character between 𝑇𝑖  and 𝐻. Using 
this encoding, we only need 𝐻 and the differing 
(symbol, position) pair values to reconstruct 𝑇𝑖 . Thus, if 𝐷𝐿(𝑇𝑖) 
is the original description length of 𝑇𝑖 , the reduced description 
length 𝐷𝐿(𝑇𝑖 , 𝐻) is 𝐷𝐿(𝐻) + 𝑛(⌈log2|𝑆|⌉ + ⌈log2|𝐻|⌉) where 𝑛 is 
the number of different (symbol, position) pairs, 𝑆 is the 
number of unique symbols and |𝐻| the length of 𝐻. With 26 
unique symbols (letters of the alphabet) and word lengths of 8, 
we achieve the description lengths depicted in Figure 4. From 
these values, we can see that DL(𝑇𝑖 , 𝐻) < DL(𝐻) + DL(𝑇𝑖) for 
𝑇2 = shatters and 𝑇3 = swatters indicating {scatters, 

shatters, swatters} is a logical group. 

 DL(𝑇𝑖) DL(𝑇𝑖|𝐻) DL(𝑇𝑖 , 𝐻) < DL(𝐻) + DL(𝑇𝑖) 

𝑇1 20 − − − − 

𝑇2 20 8 28 T 40 

𝑇3 20 8 28 T 40 

𝑇4 20 48 68 F 40 
 

Figure 4: The description lengths for the original 
subsequences 𝐃𝐋(𝑻𝒊), the description length of modeling 
𝑻𝒊 given 𝑯 𝐃𝐋(𝑻𝒊|𝑯), and the reduced description length 
𝐃𝐋(𝑻𝒊, 𝑯). Since the reduced description length for 𝑻𝟒 is 
less than its reduced description length, 𝑻𝟒 should not be 
grouped with 𝑯. Conversely, 𝑻𝟐 and 𝑻𝟑 should be grouped 
with 𝑯. 

2.3.2 MDL: Time Series 
While MDL is well defined in the intrinsically discrete space 
(text, DNA etc.), it requires some modifications to work in the 
real-valued time series space2 [10][11]. In particular, we 
quantize our time series 𝑇 using the following discretization 
function. 

Definition 6: The Discretization function is used to map a 
real-valued time series 𝑇 into (𝑏 − 𝑎) + 1 discrete values in 
the range [𝑎, 𝑏] and is defined as:  

Discretizatio𝑛(𝑎,𝑏)(𝑇) = round ((𝑏 − 𝑎) × (
𝑇−min

max−min
) + 𝑎)  

where 𝑚𝑖𝑛 and 𝑚𝑎𝑥 are the minimum and maximum values 
of 𝑇 respectively if 𝑇 is not constant3. 

Since a time series is a sequence of real-valued numbers, 
the discretization of 𝑇 results in a reduction of precision. 

3 In this work we consider the range [1,24] → [1,16] yielding 

𝐷𝑖𝑐𝑟𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑇) = round ((16 − 1) × (
𝑇−min

max−min
) + 1). 
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However, it has been shown that this reduction in precision 
does not result in a significant reduction in classification 
accuracy [9], suggesting that little or no useful information is 
lost in the process. Note that as we are working with z-
normalized times series, in practice all subsequences have very 
similar max and min values. Figure 5 shows the effects of 
discretization on four insect data snippets.  

For any discretized time series 𝑇, we are interested in 
approximating how many bits it takes to represent it or its 
description length:  

Definition 7: The description length 𝐷𝐿 of a time series 𝑇 is 
the total number of bits required to represent it. When 
Huffman Coding is used to compress the time series, the 
description length of time series 𝑇 is defined by: 

DL(𝑇) = |HuffmanCoding(𝑇)| 

One of the key steps in finding clusters of semantically 
similar subsequences is identifying a subsequence, or 
hypothesis, which exemplifies a common substructure. Using 
this hypothesis, we calculate the reduced description length of a 
time series: 

Definition 9: A reduced description length of a time series 𝑇 
given hypothesis 𝐻 is the number of bits used to encode 𝑇, 
exploiting information in 𝐻. The reduced description length 
of 𝑇 using 𝐻 is defined as: 

DL(𝑇, 𝐻) = DL(𝐻) + DL(𝑇|𝐻) 

The first term DL(𝐻) is the model cost or the number of bits 
required to store the hypothesis 𝐻 while the second term 
DL(𝑇|𝐻), the correction cost, is the number of bits required to 
rebuild the entire time series 𝑇 from 𝐻. Storing the difference 
vector 𝐻 − 𝑇, we can easily regenerate 𝑇; thus, 𝐷𝐿(𝑇|𝐻) =
DL(𝐻 − 𝑇) [9].  

The following example offers a visual intuition of these 
ideas. In Figure 5.left we show four time series from an insect 
EPG dataset [5] and their corresponding discretizations. In 
Figure 6 we use the first time series 𝐻 as our hypothesis and 
model the remaining three time series 𝐻 − 𝑇𝑖 . Lastly, the 
results in Figure 7 indicate {𝐻, 𝑇1, 𝑇2} is a logical cluster. As we 
shall explain in Section 4. The effectiveness of our labeling 
algorithms hinges on the ability of the algorithm to decide 
which patterns should be grouped together and presented to 
the user as a single entity deserving of a single label.  

 

Figure 5: Given four z-normalized time series of insect 
dataset [5]. To avail MDL, we must discretize each time 
series (left) into their 4-bit representations (right).  

The first three patterns, 𝐻, 𝑇1, and 𝑇2 in Figure 5.left are the 
same semantic behavior, but the fourth 𝑇3 is a different 
behavior and should not be included in the grouping. One might 
imagine that one could learn a Euclidean distance “radius” that 
covers all members of the same class, at least within a given 
domain. However, this in impractical for several reasons; more 
complex shapes tend to need a much greater radius that 
simpler shapes (i.e. complexity bias [4]). Even if you could learn 
a good radius for a given length, the best radius for different 
lengths can scale non-linearly (indeed, non-monotonically for z-
normalized time series). 

MDL allows us to bypass these issues. As we show in Figure 
6, we can treat one time series 𝐻, as the hypotheses and then 
encode 𝑇𝑖  using 𝐻 by calculating the difference vector 𝐻 − 𝑇𝑖  
(right). Comparing DL(𝐻) + DL(𝑇𝑖) to DL(𝑇𝑖 , 𝐻), we can then 
judge if 𝑇𝑖  should be grouped with 𝐻, that is to say, we ask if 
DL(𝑇𝑖 , 𝐻) < DL(𝐻) + DL(𝑇𝑖). 

 

Figure 6: left) The hypotheses overlaid with three 
candidate time series. right) Subtracting the time series 
from the hypotheses produces a difference vector, the 
“simplicity” of which is suggestive of similarity of the two 
signals.  

In our experiments, 𝐷𝐿(𝐻) + 𝐷𝐿(𝑇𝑖) proved to be too 
conservative of an upperbound for 𝐷𝐿(𝑇𝑖 , 𝐻) bound while 
𝐷𝐿(𝑇𝑖) proved to be too liberal. Giving the annotator the 
functionality to easily add or remove subsequences gives us the 
ability to be slightly conservative or slightly liberal when 
proposing candidate groupings to the annotator. 

 DL(𝑇𝑖) 𝐷𝐿(𝐻 − 𝑇𝑖) 𝐷𝐿(𝑇𝑖) − 𝐷𝐿(𝐻 − 𝑇𝑖) 

𝑇1 169 156 13 

𝑇2 264 240 24 

𝑇3 220 257 −37 
 

Figure 7: The description lengths for the original 
subsequences 𝐃𝐋(𝑻𝒊), the description length after 
modeling 𝑻𝒊 with 𝑯 𝐃𝐋(𝑯 − 𝑻𝒊), and their difference, or the 
number of bits saved. Since 𝑻𝟏 and 𝑻𝟐 result in a positive 
number of bits saved, they are considered to be 
semantically the same as 𝑯. 

As we can see in our examples from Figure 6, the 
discretizations of 𝐻 and 𝑇1 are so similar, their difference 
vector 𝐻 − 𝑇1 consists mostly of zeros, with just a handful of 
non-zero values, which will require less bits to encode than the 
original raw data. From Figure 7, modeling 𝑇1 and 𝑇2 with 𝐻 
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resulted in a positive number of bits saved or a reduction in the 
number of required bits while modeling 𝑇3 with 𝐻 resulted in a 
negative bitsave; thus, we confidently feel that 𝑇1 and 𝑇2 belong 
in the semantic group as 𝐻 while 𝑇3 does not. Thus, in this 
example, the set of time series {H, T1, T2} would be presented to 
the user as a (tentative) group that can be assigned a label with 
a single interaction, rather than three interactions.  

3. LBLR 
We begin with a concrete statement of the problem we wish to 
address. While this addresses a common task [17], to the best 
of our knowledge, this problem has not been formalized. 

Problem Definition: Time Series Labeling. Given a time 
series 𝑇 of length 𝑛, which is comprised (at least partly) of 
regions that correspond to discrete well-defined behaviors 
(which may or may not be known in advance) and given 
access to an oracle that can label subsequences of 𝑇, into 
these behaviors. We wish to produce 𝐴, an integer vector of 
length n, which correctly annotates 𝑇, while minimizing the 
number of accesses to the oracle.  

This notation is illustrated in Figure 8. 

 
Figure 8: An example illustrating a time series 𝑻, and its 
annotation vector 𝑨. The key to 𝑨 is domain dependent, for 
example, here 1 = normal beat and 2 = ventricular 
contraction.  

Without loss of generality, we assume the oracle always 
produces the correct label. As noted above, the oracle may have 
access to out-of-band information (such as video or audio 
recorded in parallel to the time series), and may be able to label 
even unseen data, based on context. For example, if an oracle 
was asked to label a previously unknown activity, she might 
notice that it happens five times a day, and the file name is 
Ali_Muhammad_02.txt. This would surely allow our oracle 

to suspect that the behavior is connected to the salat, the five 
daily prayers of a Muslim.  

To solve our problem, we envision a system that shows the 
human annotator (hereafter, just annotator) a set of time series 
snippets believed to be in the same class and asks for a label. 
This framework requires us to define the snippet grouping 
policy and the set of annotator operators. For clarity of 
presentation, we discuss these below in reverse order.  

3.1 User Interactions 
Any active-learning interaction system for labeling time series 
must at least allow the following annotator operators during 
each interaction: 

• Label as a Predefined Behaviors: These behaviors are 
previously known to the annotator. For example, predefined 
behaviors for EPG include active sap ingestion, 
intercellular penetration, and intracellular 

puncture [16]. 

• Label as a New Behavior: These behaviors are previously 
unknown to the annotator. For example, a behavior study in 
“youth activity” only expected to see a handful of 
recognizable behaviors such as walking, running, etc. 

However, after inspecting the data an unexpected behavior, 
which was later realized to be skipping was found. 

• Label as an Unknown Behavior: The annotator may label a 
snippet as unknown. These types of behaviors may simply be 

sufficiently unique, or the annotator does not simply have 
enough information to identify the behavior. 

• Label as a Polymorphic Behavior: The identified system 
contains two or more distinct behaviors and should be 
reconsidered using a more conservative grouping. The 
active-learning system may be too aggressive and attempt to 
group behaviors that the annotator considers distinct. Thus, 
the annotator must be able to tell the system to reconsider 
the grouping, and instead present multiple, more 
conservative groupings of the data. Alternatively, the 
annotator may create a new behavior which is an 
amalgamation of the two or more distinct behaviors. For 
example, during our case study, LBLR identified the ending of 
a path-phase and the beginning of a phloem phase in which 
the creation of the behavior path-phloem would have 

accurately labeled the behavior. 
• Temporarily Pass: The annotator chooses to revisit the 

current motif during some future iteration. The annotator 
may be unsure of a label for a snippet. Yet later in the process, 
once they had gained some experience with the data, they 
would be able to classify it. For example, they may be unsure 
if a snippet of gait represents a fast walk or a slow run. But 
later, when they have seen an unambiguous walk section, 
they would realize that the original ambiguous section was 
indeed run.  

• Terminate the Labeling Process: The annotator may 
preemptively end the labeling process after a sufficient 
fraction of the time series has been labeled. The remaining 
snippets may be unknown/unclassifiable, sufficiently unique, 
or unambiguously consistent. 

Having defined all the possible user interactions, we are finally 
able to introduce our algorithm.  

3.2 The LBLR Algorithm 
In Section 2.3, we considered text and time series toy examples 
and demonstrated how to we can determine whether two 
subsequences are semantically similar. In this section, we will 
describe and then explain our algorithm in detail. Table 1 
outlines a high-level overview of our algorithm for the rapid 
labeling of a time series. 

Table 1: LBLR ALGORITHM 

Input: T :  Time Series,     l : Model length 
Output:  L :  Labels corresponding to 𝑇 
1 
2 
3 
4 
5 
6 
7 

D = DiscreteNormalization16(T) 
while(T has unlabeled data ∧ (user(quits)) 
 M = FindModel(T*,l) 
 S = MDL(D*,M) 
 BrushLabels(S) 
 Cleanup() 
end while 

 

 We begin our algorithm by quantizing a real-value time 
series 𝑇 into a discrete-value time series 𝐷 to accommodate 
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MDL (line 1). Next, we begin the labeling process and continue 
until no unlabeled data remains (lines 2-7). We also allow the 
user to prematurely end after any iteration if they feel enough 
of the data has been annotated or if the remaining data does not 
warrant annotation. 

 Beginning each iteration, our algorithm identifies our 
model 𝑀 as a time series motif of 𝑇∗, the union of unlabeled 
data points of 𝑇 and an inclusion range 𝑚 heuristically set 𝑙/2 
(line 3). Using 𝑀 as our hypothesis, our algorithm produces 𝑆, 
the set of subsequences of the discretized data corresponding 
to 𝑇∗, sorted by their reduced description length (line 4). If left 
unsupervised, LBLR would automatically group together all 
subsequences 𝑆∗ ∈ 𝑆 whose reduced description length is less 
than its original description length, that is, 

DL(𝑆∗, 𝑀) < DL(𝑆∗) 

The user may add or remove subsequences from an overplot of 
the elements in 𝑆 (see Figure 9), if they feel that the MDL-driven 
grouping was too conservative or too liberal (Line 5).  

 
Figure 9: An example of LBLR clustering subsequences 
from an EKG where the hypothesis depicts sustained 
ventricular tachyarrhythmia. LBLR identified 𝟗𝟔 similar 
subsequences of which 𝟖. 𝟑𝟑% were false positives. The 
annotator may easily remove such sequences with 
minimal interaction. 

Lastly, during the cleanup phase, we automatically label any 
unlabeled subsequences with length less than 𝑙. The labels will 
be split between the shared label of the subsequences 
neighboring behaviors if the neighboring behaviors have the 
same label or is shared between the two neighboring behaviors 
if they have different labels (see Figure 10) (line 6). 

 
Figure 10: Two time series snippets of an EPG which 
contain unlabeled sequences with length less than 𝒍 (left) 
and were automatically labeled (right). Subsequence (A) 
indicates a transition between two separate behaviors and 
is thus shared between the two while subsequences (B) 
and (C) share the only available label between their 
neighboring behaviors.  

The basic algorithm can benefit from an optional module 
which we discuss in the next section.  

3.3 Priming Run 
Before LBLR interacts with the user, it can perform and 
optional priming run on the time series data. In this phase, the 
algorithm annotates any “low-hanging fruit” in the data; 
regions that it can confidently classify without human 
intervention. The set of such regions is domain dependent, but 
some examples include: 

• Constant Regions: As Figure 11 hints at, many scientific 
and medical datasets have regions of constant values. They 
are typically the result of a disconnected or faulty sensor, 
or a sensor recording a value that greater/smaller that its 
precision allows. One caveat to note is that some 
disconnected sensors report what is visually a constant 
line, but it may have some tiny variance due to electrical 
noise. As we are working in z-normalized space, the z-
normalization will magnify such data. Thus, we may have 
to set a domain specific threshold to define “constant” in 
our domain. For example, for our EPG example, |Δ𝑉| < 1.0 
mV is only observed when the whitefly is dead, or the wire 
is broken or disconnected from the insect. 

 
Figure 11: Two ten-second snippets of data, EPG from a 
whitefly and ECG data from an anonymous patient. Both 
contain regions of “constant” values due to sensor 
disconnect.  

• Trivially Classifiable Patterns: Many domains produce 
some patterns that are classifiable by simple algorithms, 
although these may not be particularly interesting. Consider 
Figure 12 which shows a near perfect sinusoidal pattern 
imbedded in what is otherwise a typical EGC signal identified 
as interference from an insulin pump. This pattern is 
common, and well conserved, thus worth removing in a 
priming run, rather than wasting an annotator’s time.   

 
Figure 12: A snippet of ECG data that contains an artifact 
from electrical interference from an insulin pump. 

Note that we do not attempt to exclude very noisy regions 
during our priming run, despite their ubiquity. As we have 
explained, our MDL scoring function would in any case 
prioritize these subsequences last. 

4. Experimental Evaluation 
To ensure that our experiments are reproducible, we have built 
a website which contains all data/code/raw spreadsheets for 
the results, in addition to videos of the system in action.  LBLR 
has also been made available for open source distribution. 

Note that while this tool was built specially for entomology, 
labeled datasets are hard to find in this domain. Moreover, all 
the labeled datasets we do have access to, where labeled by 
authors of this paper, or their workmates, thus presenting the 
possibility of bias. For that reason, in addition to testing on 
entomology data, we also test on proxy datasets, including 
cardiology and human-activity data. 

4.1 Reproducible Experiments 
In addition to the somewhat anecdotal domain specific case 
studies in later sections, we want to have experiments that can 
not only be reproduced but could be potentially improved on by 
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the community. However, clearly, we cannot make our domain 
experts available in perpetuity. With mild assumptions, we can 
address this issue. 

We have created a diverse collection of completely 
annotated time series we can use to mimic human feedback. 
When labeling clustered subsequences, a collection of 
potentially related time series, instead of showing it to a human 
labeler, we simply use the ground truth annotations to assign 
the group the majority label. This simple scheme does not use 
the full expressiveness of the system, as it does not allow the 
Label as Unknown, Temporarily Pass or Label as Multiple 
Behaviors interactions.  

We created datasets in each of three domains: (1) 
Entomology, (2) Cardiology and (3) Human-activity which each 
exhibit two class behavior. Recall that the Cardiology and 
Human-activity were chosen as plausible proxies for 
entomological data. 

While in principle a two-class dataset could be labeled with 
just two interactions, in practice, most datasets have a 
wandering baseline, noise, drift and polymorphic behaviors 
that make that unlikely. Nevertheless, we would hope the 
system could label most of the data accurately while 
minimizing annotator interactions. To summarize the system’s 
performance, we will use progress plots as illustrated in Figure 
13. 

 

Figure 13: A key to interpreting progress plots for a 
labeling system. In future plots we will omit the dashed 
lines, which are implicit if a line does not terminate at 0 on 
the y-axis. 

Note that these plots do not encode the accuracy of system, 
however this was always greater than 99%. The interested 
reader can visit [22] to see all the original data and a forensic 
step-by-step trace of each experiment.  

Our only inputs into the system are the time series, and a 
suggestion of the subsequence length, after that, the proxy 
system (AutoLBLR) runs without human intervention, until all 
the data is labeled. 

4.1.1 Entomology 
For our first domain of interest, we selected five independent 
snippets of EPG data from an Asian citrus psyllid (Diaphorina 
citri) illustrated in Figure 14. Though each behavior 
(waveform) has characteristics to facilitate identification, the 
waveforms exhibit high variability attributed to the sensitivity 
of the recording apparatus and the intrinsic variability of the 
insect. 

 

Figure 14: Five one-two minute time series snippets of 

insect EPG data from an Asian citrus psyllid (Diaphorina 

citri) each featuring two behaviors. EPG2 exhibits an easily 

identifiable behavior (to the human eye) but exhibits high 

variability which may impede LBLR. 

Specifying each dataset and a fixed subsequence length of 
100 to LBLR, AutoLBLR accurately labeled all datasets with less 
than 50% of the relative human effort (see Figure 15).  

 

Figure 15: Progress plot for the corresponding datasets 

depicted in Figure 14. With less than half the relative 

effort, all datasets were completely labeled. While the 

EPG1 and EPG2 datasets achieved equal results with less 

than a quarter of the relative effort due. 

AutoLBLR was particularly effective at labeling EPG1 and 
EPG2 requiring less than 25% of the human effort. These two 
plots contain a “long fall” which indicate a large grouping of 
subsequences suggesting the variability within the waveforms 
of these two datasets did not impede AutoLBLR’s ability to 
quickly label these datasets. However, despite a few “minor 
successes”, AutoLBLR was essentially labeling a single 
subsequence at a time in EPG5 though we were still able to 
completely label the entire dataset with half the human effort.  

In Section 5, we discuss a few ideas which take advantage 
of the unique characteristics of each waveform to more quickly 
label time series from this domain. 

After performing preliminary waveform analysis on the 
EPG datasets, the suggested subsequence length was not 
obvious since each different waveform can consist of a different 
length and is also dependent on the variability of the insect. We 
repeated each experiment, supplying a different subsequence 
length to LBLR. The effects of these changes on AutoLBLR’s 
progress plots can be seen in Figure 16. AutoLBLR is indeed 
reflective of a change to the subsequence length but is not 
particularly sensitive. 
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Figure 16: Sensitivity of AutoLBLR to the change of 
subsequence length on the EPG1 dataset from Figure 14. 
Though the subsequence length varied by up to 𝟐𝟎%, the 
fraction of relative effort remained in a 𝟐𝟓% range. 

4.1.2 Medicine (as a proxy for entomology) 

We now turn our attention to our second domain where we 
selected five snippets of medical data illustrated in Figure 17. 
The data includes both ECG and APB (Arterial Blood Pressure) 
traces. All data is from humans, except M1 which is from a pig 
used as a proxy for a stabbing victim. Though each behavior is 
well-defined, the difference between each class is very subtle, 
increasing the risk of false positives.  

 

Figure 17: Five snippets of medical data featuring two 
district behaviors, as labeled by medical experts. The 
subject in M1 has undergone a fatal stabbing, M2 survey 
the effects of a tilt table on a subject, M3 and M4 show signs 
of Pulsus Paradoxus while M5 depicts an individual 
undergoing cardiac death. 

Though LBLR has the propensity of being liberal in its 
proposed groupings, relying on an annotator to prune out false 
positives, AutoLBLR accurately labeled each dataset using 
about a quarter of the relative human effort and was 
particularly effective in labeling M2 requiring only three 
iterations, one iteration shy of the optimal possiblity (see 
Figure 18). Furthermore, despite having no behaviors 
detectable to the human eye, AutoLBLR correctly identified 
about half of M5 in just two iterations. 

 

Figure 18: Progress plot for the corresponding datasets 
depicted in Figure 17. With about a quarter of the relative 
effort all datasets were completely labeled. While M2 was 
completely labeled in less than 𝟏% of the relative effort. 

4.2 Case Study: Entomology  

At the time of going to press we have just begun the first human 
trials with  LBLR (see Figure 19) inviting experts in entomology 
to us it to annotate EPG data.  

 

Figure 19: A snapshot of our deployed implementation of 
LBLR. After performing four iterations, the user is in the 
process of brushing the phloem label onto the 
subsequences identified in the bottom cluster. These 
changes will be reflected in the top graph and the user will 
again be shown another candidate cluster of 
subsequences. 

Two such entomologists who are experts in whitefly (B. 
tabaci) waveform analysis used the application to label an EPG 
time series of an Asian citrus psyllid (D. citri). Their results, 
along with the results of the AutoLBLR are shown in Figure 
20.top-panel.  

 
Figure 20: top-panel) LBLR results when used by an 
annotator (bottom) and AutoLBLR (middle) compared to 
the ground truth (top). AutoLBLR mislabeled the 
transition between the two behaviors achieving an 
accuracy of 𝟗𝟗. 𝟖𝟎% while the human annotator 
designated the region as unclassifiable, achieving a 𝟏𝟎𝟎% 
accuracy on the 𝟗𝟓. 𝟖𝟑% of the data he had classified. 
bottom-panel) Comparison of the relative effort required 
to label the data. This result suggests that that AutoLBLR 
proxy for humans was pessimistic, the experiments in the 
previous sections should be considered lower bounds. 

In Figure 20.bottom-panel we compare the relative efforts 
required for the annotator and AutoLBLR to completely label 
the dataset. These results are = good news for us. They suggest 
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that our experiment in Sections 4.1.1 to 4.1.3 might have been 
somewhat pessimistic. Recall that the set of interactions 
available in these human-proxy experiments is a subset of the 
interactions available to actual humans.   

5. Conclusions and Future Work 
In this work we have concretely formulated a task which 
appears to be ubiquitous in science and medicine, yet poorly 
supported, or only supported by limited and very domain 
specific tools [17][18]. In contrast, our LBLR system is domain 
independent and generic. It requires only one input, the 
subsequence length. However that is one parameter that 
domain experts typical have some intuition for.  

While our motivation comes from entomology, we have 
demonstrated the utility of our system on very diverse 
domains. In the best cases, for example the M2 dataset, the 
system can reduce the human effort one-hundred-fold. In other 
cases the reduction of human effort is not as great, however this 
is a real and essentially free improvement. That is to say, there 
is no additional cognitive overhead for using. Even if the system 
“only” eliminates three-quarters of the work this allows the 
entomologists to process four times as much data. 

We see two avenues for improvement. The first is to 
optimize the user experience. To glean the necessary feedback 
to do this, we are currently conducting a user study in multiple 
entomological labs. The second avenue for improvement is in 
further improving the critical snippet grouping strategy 
(Section 2.3.2). It is possible that replacing the Euclidian 
distance with Dynamic Time Warping will help here [4]. 

We have made all code and data freely available to allow the 
community to confirm and extend our ideas. 
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Appendix A: Why not Automatic Classification? 
In the introduction we pointed to Figure 1 and claimed, “no time 
series classification system we are aware of would work here”. 
Given the extraordinary number of papers on time series 
classification (see [3][4] and the references therein) this claim 
may seem surprising, thus we take the time to briefly justify it 
here. It is possible that if we carefully extracted patterns from 
this dataset, and very carefully aligned them to begin and end 
at the same logical point (reinterpolating longer or shorter 
patterns as needed), and applied the appropriate 
smoothing/spike removal, that we could then apply one of the 
more than 100 algorithms that have been applied to the UCR 
archive and get reasonable results. However, this glosses over 
the fact that extracting and reformatting such data, is itself a 
much harder problem that cannot (in general) be solved 
automatically (this point is made in more detail in [8]).  With a 
little introspection, this claim is obviously true. Consider that 
ECGs are possibly the most studied type of time series in human 
history, and they are highly constrained by physics and 
physiology. Yet, even here, ECG beat extraction is still 
considered a very difficult problem [14]. If the reader doubts 
the inadequacy of ECG extraction/classification algorithms, 
consider Figure 12 again. The state-of-the-art classifier used by 
Physionet misclassified the transition from insulin pump 
inference to a normal heartbeat as a Premature Ventricular 
Contraction, a trivial mistake no human would make [12]. 


