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Abstract

The problem of finding unusual time series has recently
attracted much attention, and several promising methods
are now in the literature. However, virtually all proposed
methods assume that the data reside in main memory. For
many real-world problems this is not be the case. For ex-
ample, in astronomy, multi-terabyte time series datasets are
the norm. Most current algorithms faced with data which
cannot fit in main memory resort to multiple scans of the
disk/tape and are thus intractable. In this work we show
how one particular definition of unusual time series, the
time series discord, can be discovered with a disk aware al-
gorithm. The proposed algorithm is exact and requires only
two linear scans of the disk with a tiny buffer of main mem-
ory. Furthermore, it is very simple to implement. We use the
algorithm to provide further evidence of the effectiveness of
the discord definition in areas as diverse as astronomy, web
query mining, video surveillance, etc., and show the effi-
ciency of our method on datasets which are many orders of
magnitude larger than anything else attempted in the liter-
ature.

1. Introduction
The problem of finding unusual (abnormal, novel, de-

viant, anomalous) time series has recently attracted much
attention. Areas that commonly explore such unusual time
series are, for example, fault diagnostics, intrusion detec-
tion, and data cleansing. There, however, are other more
uncommon yet interesting applications too. For example, a
recent paper suggests that finding unusual time series in fi-
nancial datasets could be used to allow diversification of an
investment portfolio, which in turn is essential for reducing
portfolio volatility [33].

Despite its importance, the detection of unusual time se-
ries remains relatively unstudied when data reside on ex-
ternal storage. Most existing approaches demonstrate effi-
cient detection of anomalous examples, assuming that the

time series at hand can fit in main memory. However, for
many applications this is not be the case. For example,
multi-terabyte time series datasets are the norm in astron-
omy [23], while the daily volume of web queries logged
by search engines is even larger. Confronted with data of
such scale current algorithms resort to numerous scans of
the external media and are thus intractable. In this work, we
present an effective and efficient disk aware algorithm for
mining unusual time series. The algorithm is exact and re-
quires only two linear scans of the disk with a tiny buffer of
main memory. Furthermore, it is simple to implement and
does not require tuning of multiple unintuitive parameters.
The introduced method is used to provide further evidence
of the utility of one particular definition of unusual time se-
ries, namely, the time series discords. The effectiveness of
the discord definition is demonstrated for areas as diverse
as astronomy, web query mining, video surveillance, etc.
Finally, we show the efficiency of the proposed algorithm
on datasets which are many orders of magnitude larger than
anything else attempted in the literature. In particular we
show that our algorithm can tackle multi-gigabyte data sets
containing tens of millions of time series in just a few hours.

2. Related Work And Background
The time series discord definition was introduced in [20].

Since then, it has attracted considerable interest and follow-
up work. For example, [11] provide independent confir-
mation of the utility of discords for discovering abnormal
heartbeats, in [4] the authors apply discord discovery to
electricity consumption data, and in [34] the authors modify
the definition slightly to discover unusual shapes.

However, all discord discovery algorithms, and indeed
virtually all algorithms for discovering unusual time series
under any definition, assume that the entire dataset can be
loaded in main memory. While main memory size has been
rapidly increasing, it has not kept pace with our ability to
collect and store data.

There are only a handful of works in the literature that
have addressed anomaly detection in datasets of anything



like the scale considered in this work. In [12] the authors
consider an astronomical data set taken from the Sloan Digi-
tal Sky Survey, with 111,456 records and 68 variables. They
find anomalies by building a Bayesian network and then
looking for objects with a low log-likelihood. Because the
dimensionality is relatively small and they only used 10,000
out of the 111,456 records to build the model, all items
could be placed in main memory. They report 3 hours of
CPU time (with a 400MHz machine). For the secondary
storage case they would also require at least two scans, one
to build the model, and one to create anomaly scores. In
addition, this approach requires the setting of many param-
eters, including choices for discretization of real variables, a
maximum number of iterations for EM (a sub-routine), the
number of mixture components, etc.

In a sequence of papers Otey and colleagues [16] intro-
duce a series of algorithms for mining distance based out-
liers. Their approach has many advantages, including the
ability to handle both real-valued and discrete data. Further-
more, like our approach, their approach also requires only
two passes over the data, one to build a model and one to
find the outliers. However, it also requires significant CPU
time, being linear in the size of the dataset but quadratic
in the dimensionality of the examples. For instance, for
two million objects with a dimensionality of 128 they report
needing 12.5 hours of CPU time (on a 2.4GHz machine). In
contrast, we can handle a dataset of size two million objects
with dimensionality 512 in less than an hour, most of which
is I/O time.

Distance based outliers are also the problem of study in
Knorr et al. [21] and Tao et al. [31]. Both works discuss
a quadratic (in the dataset size) nested loop algorithm for
outlier detection and subsequently suggest ways for its im-
provement. Knorr et al. [21] propose an algorithm that per-
forms three scans through the database and also requires
significant amount of main memory. The algorithm fur-
ther uses a partitioning scheme, whose performance dete-
riorates in higher dimensions. Tao and colleagues sample
the data space to build a set of partitions which they later
use to prune non-outlier examples. They explicitly require
that the distance function used be a metric, but for time se-
ries data non-metric functions have been demonstrated to
be often superior [35]. The method again is intended for a
lower dimensional data and is demonstrated to require two
linear scans of the disk.

Another method that scales to large disk resident
datasets, requiring only two linear scans of the disk, was
recently proposed by Angiulli and colleagues [6]. An ex-
tension of the method for online detection of distance based
outliers from streaming data [5] has also been presented by
the same authors. To perform faster range queries, the al-
gorithm again builds an index in main memory, based on
the concept of pivot points. Apart of the already pointed

problems of degrading efficiency in higher dimensions and
the requirement of metric distance function, using pivots for
indexing poses additional challenges too. For example, se-
lecting good pivot points might itself require to first detect a
set of outliers. This is so, because as Shapiro [28] suggests
good pivots tend to be points that are far from any dense
region in the data.

The problem of outliers detection in higher dimensional
spaces was target in an influential paper by Jagadish et
al. [18]. They propose to find unusual time series (which
they call deviants) with a dynamic programming approach.
Again this method is quadratic in the length of the time
series, and thus it is only demonstrated on kilobyte sized
datasets.

The discord introducing work [20] suggests a fast heuris-
tic technique (termed HOTSAX) for pruning quickly the
data space and focusing only on the potential discords. The
authors obtain a lower dimensional representation for the
time series at hand and then build a trie in main memory to
index these lower dimensional sequences. A drawback of
the approach is that choosing a very small dimensionality
size results in a large number of discord candidates, which
makes the algorithm essentially quadratic, while choosing
a more accurate representation increases the index structure
exponentially. The datasets used in that evaluation are also
assumed to fit in main memory.

In order to discover discords in massive datasets we must
design special purpose algorithms. The main memory algo-
rithms achieve speed-up in a variety of ways, but all require
random access to the data. Random access and linear search
have essentially the same time requirements in main mem-
ory, but on disk resident datasets, random access is expen-
sive and should be avoided where possible. As a general
rule of thumb in the database community it is said that ran-
dom access to just 10% of a disk resident dataset takes about
the same time as a linear search over the entire data. In fact,
recent studies suggest that this gap is widening. For exam-
ple, [27] notes that the internal data rate of IBM’s hard disks
improved from about 4 MB/sec to more than 60 MB/sec. In
the same time period, the positioning time only improved
from about 18 msec to 9 msec. This implies that sequential
disk access has become about 15 times faster, while random
access has only improved by a factor of two.

Given the above, efficient algorithms for disk resident
datasets should strive to do only a few sequential scans of
the data.

3. Notation
Let a time series T = t1, . . . , tm, be defined as an or-

dered set of scalar or multivariate observations ti measured
at equal intervals in time. When m is very large, look-
ing at the time series as a whole does not reveal much
useful information. Instead, one might be more interested



in subsequences C = tp, . . . , tp+n−1 of T with length
n << m (here p is an arbitrary position, such that 1 ≤
p ≤ m− n + 1).

Working with time series databases there are usually two
scenarios in which the examples in the database might have
been generated. In one of them the time series are gener-
ated from short distinct events, e.g. a set of astronomical
observations (see Section 6.1.1). In the second scenario, the
database simply consists of all possible subsequences ex-
tracted from the time series of a long ongoing process, e.g.
the yearly recordings of a meteorological sensor. Knowing
whether the database is populated with subsequences of the
same process is essential when performing pattern recogni-
tion tasks. The reason for this is that two subsequences C
and M extracted from close positions p1 and p2 are very
likely to be similar to one another. This might falsely lead
to a conclusion that the subsequence C is not a rare example
in the database. In these cases, when p1 and p2 are not “sig-
nificantly” different, the subsequences C and M are called
trivial matches [10]. The positions p1 and p2 are signifi-
cantly different with respect to a distance function Dist, if
there exists a subsequence Q starting at position p3, such
that p1 < p3 < p2 and Dist(C,M) < Dist(C,Q).

With the above notation in hand, we can now present the
formal definition of time series discords:

Definition 1. Time Series Discord: Given a database S, the
time series C ∈ S is called the most significant discord in
S if the distance to its nearest neighbor (or its nearest non-
trivial match in case of subsequence databases) is largest.
I.e. for an arbitrary time series M ∈ S the following holds:
min(Dist(C,Q)) ≥ min(Dist(M,P )), where Q,P ∈ S
(and Q,P are non-trivial matches of C and M in case of
subsequence databases).

Similarly, one could define the second-most significant
or higher order discords in the database. To capture the case
of a small group of examples in the space that are close to
each other but far from all other examples, we might want
to generalize Definition 1 so that the distance to the k-th
instead of the first nearest neighbor is considered:

Definition 2. Kth Time Series Discord: Given a database
S, the time series C ∈ S is called the most significant k-
th discord in S if the distance to its k-th nearest neighbor
(or its k-th nearest non-trivial match in case of subsequence
databases) is largest.

The generalized view of discords (Definition 2) is equiv-
alent to another notion of unusual time series that is fre-
quently encountered in the literature, i.e. the distance based
outliers [21]. The definition can be generalized further to
compute the average distance to all k nearest neighbors,
which is in fact the non-parametric density estimation ap-
proach [29]. The algorithm proposed in this work can easily

be adapted with any of these outlier definitions. We use Def-
inition 1 because of its intuitive interpretation. Our choice
is further justified by the effectiveness of the discord defini-
tion demonstrated in Section 6.1.

Unless otherwise specified we will use as a distance mea-
sure the Euclidean distance, still the derived algorithm can
be utilized with any distance function which may not nec-
essarily be a metric. In computing Dist(C,M) we expect
that the arguments have been normalized to have mean zero
and a standard deviation of one. Throughout the empirical
evaluation we assume that all subsequences are stored in the
database in the above normalized form. This requirement is
imposed so that the nearest neighbor search is invariant to
transformations, such as shifting or scaling [19].

4. Finding Discords In Secondary Storage
So far we have introduced the notion of time series dis-

cords, which is the focus of the current work. Here, we are
going to present an efficient algorithm for detecting the top
discords in a dataset. Firstly, the simpler problem of detect-
ing what we call range discords is addressed, i.e. given a
range r the presented method efficiently finds all discords
at distance at least r from their nearest neighbor. As provid-
ing r may require some domain knowledge, the next section
will demonstrate a sampling procedure that will solve the
more general problem of detecting the top dataset discords
without knowing the range parameter.

The discussion is limited to the case where the database
S contains |S| separate time series of length n. If instead
the database is populated with subsequences from a long
time series the fundamental algorithm remains unchanged,
with some additional minor bookkeeping to discount trivial
matches.

4.1. Discord Refinement Phase
The range discord detection algorithm has two phases:

a candidate selection phase (phase1), and a discord refine-
ment phase (phase2). For clarity of exposition we first out-
line the second phase of the algorithm.

The discord refinement phase accepts as an input a sub-
set C ⊂ S (built in phase1), which is assumed to contain
all discords Cj at distance C.distj ≥ r from their nearest
neighbor in S, and possibly some other time series from S.
If this is case, then the following simple algorithm can be
used to prune the set C to retain only the true discords with
respect to the range r:

Although all discords are assumed to be in C, prior to
starting Algorithm1 it is unknown which items in C are true
discords, and what their actual discord distances are. Ini-
tially, all these distance are set to infinity (line 2). The above
algorithm simply scans the disk resident database, compar-
ing the list of candidates to each item on disk. The actual
distance is computed with an optimized procedure which
uses an upper bound for early termination [20] (line 9). For



Algorithm 1 Discord Refinement Phase
procedure [C,C.dist]=DC Refinement(S, C, r)
in: S: disk resident dataset of time series

C: discord candidates set
r: discord defining range

out: C: list of discords
C.dist: list of NN distances to the discords

1: for j = 1 to |C| do
2: C.distj = ∞
3: end for
4: for ∀Si ∈ S do
5: for ∀Cj ∈ C do
6: if Si == Cj then
7: continue
8: end if
9: d = EarlyAbandon(Si, Cj , C.distj)

10: if (d < r) then
11: C = C \ Cj

12: C.dist = C.dist \ C.distj
13: else
14: C.distj = min(C.distj , d)
15: end if
16: end for
17: end for

example, in the case of Euclidean distance, the EarlyAban-
don procedure will stop the summation Dist(Si, Cj) =∑n

k=1

√
(sik − cjk)2 if it reaches k = p, such that 1 ≤

p ≤ n for which
∑p

k=1(sik − cik)2 ≥ C.dist2j . If this
happens then the new item Si obviously cannot improve on
the current nearest neighbor distance C.distj , and thus the
summation may be abandoned.

Based on the distance calculations, for each Si there are
three situations:

1. The distance between the discord candidate in C and
the item on disk is greater than the current value of
C.distj . If this is true we do nothing.

2. The distance between the discord candidate in C and
the item on disk is less that r. If this happens it means
that the discord candidate can not be a discord, it is a
false positive. We can permanently remove it from the
set C (line 11 and line 12).

3. The distance between the discord candidate in C and
the item on disk is less than the current value of
C.distj (but still greater than r, otherwise we would
have removed it). If this is true we simply update the
current distance to the nearest neighbor (line 14).

It is straightforward to see that upon completion of
Algorithm1 the subset C contains only the true discords at
range at least r, and that no such discord has been deleted

from C, provided that it has already been in it. The time
complexity for the algorithm depends critically on the size
of the subset size |C|. In the pathological case where
|C| = |S|, it becomes a brute force search, quadratic in the
size |S|. Obviously, such candidate set could be produced
if the range parameter r is equal to 0. If, however, the can-
didate set C contains just one item, the algorithm becomes
essentially a linear scan over the disk for the nearest neigh-
bor to that one item. A very interesting observation is that
if the candidate set C contains two or three items instead of
one, this will most likely not change the time for the algo-
rithm to run. This is so, because for a very small |C| the
CPU required calculations will execute faster than the disk
reading operations, and thus the running time for the algo-
rithm is just the time taken for a linear scan of the disk data.
To summarize, the efficiency of Algorithm1 depends on the
two critical assumptions that:

1. For a given value of r, we can efficiently build a set
C which contains all the discords with a discord dis-
tance greater than or equal to r. This set may also con-
tain some non-discords, but the number of these “false
positives” must be relatively small.

2. We can provide a “good” value for r which allows us
to do ‘1’ above. If we choose too low of a value, then
the size of set C will be very large, and our algorithm
will become slow, and even worse, the set C might no
longer fit in main memory. In contrast, if we choose
too large a value for r, we may discover that after run-
ning the algorithm above the set C is empty. This will
be the correct result; there are simply no discords with
a distance of that value. However, we probably wanted
to find a handful of discords.

4.2. Candidates Selection Phase

In this section we address the first of the above assump-
tions, i.e. given a threshold r we present an efficient algo-
rithm for building a compact set C with a small number of
false positives. A formal description of this candidate selec-
tion phase is given as Algorithm2.

The algorithm performs one linear scan through the
database and for each time series Si it validates the possibil-
ity for the candidates already in C to be discords (line 5). If
a candidate fails the validation, then it is removed from this
set. In the end, the new Si is either added to the candidates
list (line 11), if it is likely to be a discord, or it is omit-
ted. To show the correctness of this procedure, and hence
of the overall discord detection algorithm, we first point out
an observation that holds for an arbitrary distance function:

Proposition 1. Global Invariant. Let Si be a time series in
the dataset S and dsi

be the distance from Si to its nearest
neighbor in S. For any subset C ⊂ S the distance dci

from



Algorithm 2 Candidates Selection Phase
procedure [C]=DC Selection(S, r)
in: S: disk resident data set of time series

r: discord defining range
out: C: list of discord candidates

1: C = {S1}
2: for i = 2 to |S| do
3: isCandidate = true
4: for ∀Cj ∈ C do
5: if (Dist(Si, Cj) < r) then
6: C = C \ Cj

7: isCandidate = false
8: end if
9: end for

10: if (isCandidate) then
11: C = C ∪ Si

12: end if
13: end for

Si to its nearest neighbor in C is larger or equal to dsi , i.e.
dci

≥ dsi
.

Indeed, if the nearest neighbor of Si is part of C then dsi
=

dci . Otherwise, as C does not contain elements outside of
S, the distance dci should be larger than dsi .

Using the above global invariant, we can now easily jus-
tify the following proposition:

Proposition 2. Upon completion of Algorithm2, the can-
didates list C contains all discords Si at distance dsi

≥ r
from their nearest neighbors in S.

Proof. Let Si be a discord at distance dsi
≥ r from its

nearest neighbor in S. From the global invariant it follows
that the distance dci

from Si to its nearest neighbor in C is
larger or equal to dsi

. Therefore, the condition on line 5 of
the algorithm will never be satisfied for Si and hence it will
be added to the candidates list (line 11).

Proposition 2 together with the analysis presented for the
refinement phase demonstrate the overall correctness of the
algorithm. More formally, the following proposition holds:

Proposition 3. Correctness. The candidates selection and
the refinement steps detect the discords and only the dis-
cords at distance dsi

≥ r from their nearest neighbor in S.

The time complexity of the presented discord detection
algorithm is upper-bounded by the time necessary to
scan the database twice plus the time necessary to per-
form all distance computations, which has complexity
O(f=max(|C|)|S|). In the experimental evaluation we will
demonstrate that, for a good choice of the range parameter,
the function f is essentially linear in the database size |S|.

5. Finding a Good Range Parameter
The range discord detection algorithm presented in the

previous section is deterministic in the sense suggested by
Proposition 3, i.e. it finishes by either identifying all dis-
cords at range r, or by returning an empty set which indi-
cates that no elements have the required property. Providing
a good value for the threshold parameter, however, may not
be very intuitive. Furthermore, it may also be the case that
the users would like to detect the top k discords regardless
of the distance to their neighbors. In those cases, specifying
a large threshold will result in an empty set, while a very
small range parameter may have high time and space com-
plexity. With this in mind, a reasonable strategy to detect
the top k discords would be to start with a “relatively large”
r and if in the end |C| < k, to restart the algorithm with a
smaller parameter. Such iterative restarts will increase the
number of database scans, yet we argue that with a sampling
procedure we can obtain a good estimate for r that decreases
the probability of having multiple scans of the database. We
further provide a way to reevaluate the range parameter, so
that if a second run of the algorithm is required, the new
value of r with high probability will lead to a solution.

A good estimate for the range parameter can easily be
obtained by studying the nearest neighbor distance distribu-
tion (nndd) of the dataset, and more precisely the number
of elements that fall in its tail. Computing the nndd, how-
ever, is hard, especially in high dimensional spaces as is
the case with time series [8][30]. The available methods
require that random portions of the space are sampled and
the nearest neighbor distances in those portions to be com-
puted. Unfortunately, for a robust estimate, this requires
scanning the entire database once, regardless of whether an
index is available, and also involves some extensive com-
putations [30]. Another drawback of this approach is that
the nndd is also dependent on the number of elements in
the data, which means that if new sequences are added to
the dataset the whole evaluation procedure should be per-
formed again. Consider for example the graphs in Figure 1.

Both graphs show the nndd for a normally distributed
two dimensional dataset S ∈ N (0, 1). Graph A represents
the probability density function when |S| = 103, while
graph B shows the function when |S| = 104. Intuitively,
the mean of the distribution shifts to zero as new points are
added, because for larger percentage of the points their near-
est neighbors are likely to be found in close proximity to
them. For infinite tail data distributions though (as the nor-
mal), increasing the sample size also increases the chance
of having elements sampled from its tail. These elements
will be outliers and are likely to be far from the other exam-
ples. Therefore, their nearest neighbor distances will fall in
the tail of the corresponding distance distribution too.

Using the above intuition, rather than sampling from the
distance distribution, we perform the less expensive sam-



Figure 1: Points sampled from the same normal distribution pro-
duce different nearest neighbor distance distributions. The mean
and the volume of the tail cut by r decrease with adding more data.

pling from the data distribution and compute the nndd of
this sample. The exact steps of the sampling procedure are:

1. Select a uniformly random sample S′ from S. In the
evaluation, for datasets of size |S| ≥ 106 we choose
|S′| = 104. For the smaller datasets we use |S′| = 103.

2. If the user requires that k discords are detected in their
data, then using a fast memory based discord detection
method (e.g. [34]) detect the top k discords in S′. Or-
der the nearest neighbor distances di, i = 1..k for these
discords in S′. I.e. we have d1 ≥ d2 ≥ . . . ≥ dk.

3. Set r = dk.

Note that S′ is an unbiased sample from the data and it
can be used if new examples generated by the same under-
lying process are added to the database. This means that we
do not need to run the sampling procedure every time that
the dataset is updated.

It is relatively easy to see that the above procedure is
unlikely to overflow the available memory, regardless of
the data distribution. To demonstrate this, consider for ex-
ample the case when |S| = 106 and |S′| = 104. The
probability that none of the top 103 discords fall in S′ is
p̂ =

(
106−103

104

)
/
(
106

104

)
, which using Stirling’s approximation

gives p̂ ∼ e−10. This implies that S′ almost certainly con-
tains one of the top 103 discords. If that discord is Si, from
the global invariant in Section 4.2 it follows that its nearest
neighbor distance ds′

i
in S′ is larger or equal to its nearest

neighbor distance dsi
in S. But we also have that d1 ≥ ds′

i
,

which leads to d1 ≥ dsi
. This means that if we set r to d1

(or equivalently to dk, for small k), it is very likely that r
will be larger than the nearest neighbor distance of the 103-
th discord in S. As will be demonstrated in the experimental
evaluation, the majority of the time series that are not dis-
cords and enter C during the candidate selection phase get

removed from the list very quickly which restricts its max-
imum size to at most several orders of magnitude the size
of the final discord set. Therefore, for the above example
the maximum amount of memory required will be linear in
the amount of memory necessary to store 103 time series.
Slightly relaxed, but still reasonable, upper bounds can be
demonstrated even when S contains an order of 108 exam-
ples.

The more challenging case is the one when at the end of
the discord detection algorithm we have |C| < k. In this sit-
uation we will need to restart the whole algorithm, yet this
time a better estimate for the threshold r can be computed,
so that no other restarts are necessary. For the purpose, prior
to running the algorithm, a second sample S′′ of size 100 is
drawn uniformly at random from S′. During the candidates
selection phase, for every element Si in the database, apart
of updating the candidates list C, we also update the near-
est neighbor distances S′′.distq, q = 1..100. As the size of
S′′ is relatively small, this will not increase significantly the
computational time of the overall algorithm. At the same
time, the list S′′.dist will now contain an unbiased estimate
of the true nearest neighbor distance distribution. Selecting
a threshold r′ = maxq=1..100(S′′.distq) will lead to C hav-
ing on average 1% of the examples. Finally, if k is much
smaller than 1% the size of S, but still larger than the size
|C| obtained for the initial parameter r, we might further
consider an intermediate value r′′, such that r′ < r′′ < r
and one that will increase sufficiently the initial size |C|.

6. Empirical Evaluation
In this section we conduct two kinds of experiments. Al-

though the utility of discords has been noted before, e.g.
in [4][11][15][20][34], we first provide additional examples
of its usefulness for areas where large time series databases
are traditionally encountered. Then we empirically demon-
strate the scalability of our algorithm.

6.1. The Utility of Time Series Discords

6.1.1 Star Light-Curve Data

Globally there are myriads of telescopes covering the entire
sky and constantly recording massive amounts of valuable
astronomical data. Having humans to supervise all observa-
tions is practically impossible [23].

The goal for this evaluation was to see to what extent
the notion of discords, as specified in Definition 1, agrees
with the notion of astronomical anomalies as suggested by
methods used in the field. The data used in the evaluation
are light-curve time series from the Optical Gravitational
Lensing Experiment [1]. A light-curve is a real-valued time
series of light magnitude measurements. The series are de-
rived from telescopic images of the night sky taken over
time. Astronomers identify each star in the image and con-
vert the star’s manifestation of light into a light magnitude



measurement. The set of measurements from all images for
a given star results in a light-curve. The light-curves that
we obtained for this study are pre-processed (containing a
uniform number of points) by domain experts.

The entire dataset contains 9236 light-curves of length
1024 points. The curves are produced by three classes
of star objects: Eclipsed Binaries - EB (2580 examples);
Cepheids - Ceph (1329), and RR Lyrae variables - RRL
(5326) (see Figure 2). Both Ceph and RRL stars have very
similar pulsing pattern which explains the similarity in their
light-curve shape.

Figure 2: Typical examples from the three classes of lightcurves:
Left) Eclipsed Binary, Right Top) Cepheid, Bottom) RR Lyrae.

For each of the three classes we also compute the rank-
ing of their examples for being anomalous. For instance,
the topmost anomaly in every class has ranking 0, the sec-
ond anomaly has ranking 1, and so on. This ordering is
based on the results of the first method presented in [26].
The method is an O(n2) algorithm that exhaustively com-
putes the similarity (via cross correlation) between each pair
of light-curves. The anomaly score for each light-curve is
simply the weighted average of its n− 1 similarity scores.

We further compute the top ten discords in each of the
three classes and compare them with the top ten anomalies
inferred with the above ranking. The sampling procedure
described in Section 5 is performed with a set S′ of size
103 elements and the threshold r is selected so that at least
ten elements from each class fall in the tail of the distance
distribution computed on S′ (we obtained r = 6.22 using
Euclidean distance). Running the discord finding algorithm
produces a discord set C of size 1161. Figure 3 shows sev-
eral examples of the most significant discords in each class.

One of the top ten EB discords is also among the top
ten EB anomalies, three of the top ten RRL discords are
among the top ten RRL anomalies and six of the CEPH dis-
cords are among the corresponding anomalies. The poor
consensus between the one nearest neighbor discords and
the anomalies for the EB class results from the fact that
the Euclidean distance does not account well for the small
amount of warping that is present between the two mag-
nitude spikes. Substituting the Euclidean distance with a
phase invariant or a dynamic time warping distance function

Figure 3: Top light-curve discords in each class. For each
time series on the top right corner are indicated its discord rank
: anomaly rank.

may improve on this problem. For the other two classes the
discord definition is more consistent with the expert opinion
on the outliers. Even for elements where they disagree sig-
nificantly, the discord algorithm still returns some intuitive
results. For example, the second most significant RRL dis-
cord (see Figure 3, bottom right) deviates greatly from the
expected RRL shape.

6.1.2 Web Query Data

Another domain where large scale time series datasets are
observed daily are the search engines query logs. For ex-
ample, we studied a dataset consisting of MSN web queries
made in 2002. A casual inspection reveals that most web
query logs seem to fall into a handful of patterns. Most
have a ”background” periodicity of seven days, which re-
flects the fact that many people only have access to the web
during the workweek. This background weekly pattern is
sometimes augmented by seasonal effects or bursts due to
news stories. The two curves labeled ”Stock Market” and
”Germany” in Figure 4 are such examples. Another com-
mon type of pattern we call the anticipated burst; it consists
of a gradual build up, a climax and a fall off. This is com-
monly seen for seasonally related items (”Easter”, ”Tour de
France”, ”Hanukkah”) and for movie releases as in ”Spider-
man” and ”Star Wars”.

Also common is the unanticipated burst, which is seen
after an unexpected event, such as the death of a celebrity.
This pattern is characterized by a near instantaneous burst,
followed by a tapering off. Given that both anticipated and
unanticipated bursts can happen at any point in the year, we
use phase invariant Euclidian distance as discord distance
measure. The number one discord is shown in Figure 5.

This discord makes perfect sense with a little hindsight.
Unlike weather or cultural events which are intrinsically lo-
cal, the phases of the moon are perhaps the only changing
phenomena that all human beings can observe. While some



Figure 4: Some examples of typical patterns in web query logs in
2002. Most patterns are dominated by a weekly cycle, as in ”stock
market” or ”Germany”, with seasonal deviations and bursts in re-
sponse to news stories. The ”anticipated burst” is seen for movie
releases such as ”Spiderman/Star Wars”, or for seasonal events.

Figure 5: The number one discord in the web query log dataset
is ”Full Moon”. The first full moon of 2002 occurred on January
28th at 22:50 GMT. The periodicity of the subsequent spikes is
about 29.5 days, which is the length of the synodic month.

other queries have a weak periodicity corresponding to cal-
endar months, this query has a strong periodicity of 29.5
days, corresponds to the synodic month.

6.1.3 Population Growth Data

We can further demonstrate the utility of discords by ex-
amining datasets for which we need external sources of
knowledge to evaluate findings. We examined a data set of
population growth rates of 206 countries covering 1965 to
2005. We wanted to know the most dramatic 5-year events
in this data set, so we queried the data for the top 5-year
discords. Figure 6 shows the top two such discords, to-
gether with some other representative counties (Argentina,
Belgium, Cameroon, Canada, Honduras, Hong Kong, Ice-
land, India, Indonesia, Ireland) for contrast.

The dramatic differences shown by the discords have in-
tuitive and poignant explanations [2]. The extreme drop in
population is clearly understood, but why is it followed in
both cases by a spike in growth rate? We conjecture that
this corresponds to refugees that fled during the worst of
the crises later returning to their homelands. Note that in
this case the brute force algorithm would be fast enough to
produce these results in reasonable time.

6.1.4 Trajectory Data

We obtained two trajectory datasets used in [24] and [25]
respectively, which have been purposefully created to test
anomaly detection in video sequences. The time series are
two dimensional (comprised of the x and y coordinates for

Figure 6: The top two 5-year discords discovered in a growth rate
database covering 206 counties over 40 years. Ten other counties
are shown for contrast (thin lines).

each data point), and are further normalized to have the
same length. In both datasets several deliberately anoma-
lous sequences are created to have a ground truth. The
datasets contain 156 [24] and 239 [25] trajectories, with
4 and 2 annotated anomalous sequences respectively. Fig-
ure 7 shows the number one discord (2D version of the Eu-
clidean distance has been used) found in the dataset of [24].
It is one of the labeled anomalies too.

Figure 7: Left) The number one discord found in a trajectory
data (bold line) with 50 trajectories. It is difficult to see why the
discord is singled out unless we cluster all the non-discord trajec-
tories and compare the discord to the clustered sets. Right) When
the discord is shown with the clustered trajectories, its unusual be-
havior becomes apparent (just one cluster is shown here).

On both datasets the discord definition achieves perfect
accuracy, as do the original authors. Since all the data can
easily fit in main memory our algorithm takes much less
than one second. We do not compare efficiency directly
with the original works, but note that [24] requires build-
ing a SOM, which are generally noted for being lethargic,
while [25] is faster, requiring O(m log(m)n) time, with m
being the number of time series and n their dimensionality.
Neither algorithm considers the secondary storage case.

Throughout this paper we have omitted discussion of de-
termining when a discord is truly anomalous/unusual. We
plan to address this issue in a separate work. However,



in Figure 8 we hint at one possible line of research. The
Pokrajac video surveillance dataset [24] is created with two
anomalous trajectories (sequences 225 and 237). If we run
our algorithm to discover the top sixteen discords, we find
that the top two have significantly greater discord distances
than all the rest.

Figure 8: The discord distances for the planted anomalies dif-
fer notably from the discord distances of the rest 14 top discords.
The fact can be used to evaluate the significance of the detected
discords.

6.2. Scalability of the Discord Algorithm

We test the scalability of the method on a large heteroge-
neous dataset of real-world time series and on three synthet-
ically generated datasets of size up to a third of a terabyte.
Two aspects of the algorithm were the focus of this evalua-
tion. Firstly, whether the threshold selection criterion from
Section 5 can be justified empirically (at least for certain un-
derlying distributions) for data of such scale. Secondly, we
were interested on how efficient our algorithm is, provided
that a good threshold is selected. For both, the synthetic
and the real time series datasets, the data are organized in
pages of size 104 examples each. All pages are stored in
text format on an external Seagate FreeAgent hard drive of
size 0.5Tb with 7200 RPM and a USB2.0 connection to a
computer using Pentium D 3.0 GHz processor. Our imple-
mentation of the algorithm loads one page for 5.6 secs.: 0.4
secs. for reading the data and 5.2 secs. for parsing the text
matrices. The algorithm was coded in Java.

6.2.1 Random Walk Data

We generated three datasets with random walk time series.
The datasets contain 106, 107 and 108 examples respec-
tively. The length of the time series is set to 512 points.
Additionally, six non-random walk time series are planted
in each of the datasets (see Figure 9).

To compute the threshold a sample of size |S′| = 104 is
used. We set the threshold to the nearest neighbor distance
of the tenth discord, hoping to detect some of the planted
anomalies among the top ten discords in the entire datasets.
Thus it was obtained r = 21.45. The time series in the
three datasets come from the same distribution and there-
fore, as mentioned in Section 5, the same sample S′ (and
hence the same threshold r) can be used for all of them.
Note that this threshold selection procedure requires less

Figure 9: Planted non-random walk time series with their nearest
neighbors. The top two time series are among the top discords, the
bottom two time series fail the range threshold. |S| = 106

than a minute. After the discord detection algorithm fin-
ishes, the set C contains 24 discords for the dataset of size
106, 40 discords for the dataset of size 107 and 41 discords
for the dataset of size 108. The running time for the three
cases is summarized in Table 1.

Table 1: Randomwalk data. Time efficiency of the algorithm.
Examples Disk Size I/O time Total time
1 million 3.57Gb 19min 28min

10 million 35.7Gb 3h 12min 5h 43min
100 million 0.35Tb 31h 18min 66h 17min

In all cases the list C contains the required number of
10 discords, so no restart is necessary. From the planted
time series three are among the top 10 discords and for the
other three a random walk nearest neighbor is found that is
relatively close (see Figure 9 for examples). This does not
decrease the utility of the discord definition, and is expected
as the random walk time series exhibit some extreme prop-
erties with respect to the discord detection task, i.e. they
cover almost the entire data space that can be occupied by
all possible time series of the specified length.

We further note, that the time necessary to find the near-
est neighbor for an arbitrary example is 8.5 minutes for the
dataset of size one million and approximately 18 hours for
the dataset of size 100 million. This means that our algo-
rithm detects the most significant discords in less than four
times the time necessary to find the nearest neighbor of a
single example only.

Figure 10 demonstrates the size |C| after processing each
database page. The graphs also show how the size varies
when changing the threshold. The plots demonstrate that
with a 2% − 5% change in its values we still detect the re-
quired 10 discords with just two scans, while the maximum
memory and the running time do not increase drastically.
It is interesting to note how quickly the memory drops af-
ter the refinement step is initiated. This implies that most



Figure 10: Randomwalk Data (|S| = 106). Number of examples
in C after processing each of the 100 pages during the two phases
of the algorithm. The method remains stable even if we select a
slightly different threshold r during the sampling procedure.

of the non-discord elements in the candidates list get elimi-
nated after scanning just a few pages of the database. From
this point on the algorithm performs a very limited number
of distance computation to update the nearest neighbor dis-
tances for the remaining candidates in C. Similar behavior
was observed throughout all datasets studied.

6.2.2 Heterogeneous Data

Finally we check the efficiency of the discord detection al-
gorithm on a large dataset of real-world time series coming
from a mixture of distributions. To generate such dataset
we combined three datasets each of size 4x105 (1.2 mil-
lion elements in total). The time series have length of 140
points. The three datasets are: motion capture data, EEG
recordings of a rat, and meteorological data from the Trop-
ical Atmosphere Ocean project (TAO) [3].

Table 2: Heterogeneous data. Time efficiency of the algorithm.
Examples Disk Size Time(Phase1) Time(Phase2)

1.2 mill. 1.17Gb 8min. 45secs. 9min. 15secs.

Table 2 lists the running time of the algorithm on the
heterogeneous dataset. Again we are looking for the top 10
discords in the dataset. On the sample the threshold is esti-
mated as r = 12.86. After the candidate selection phase the
set C contains 690 elements, and at the end of the refine-
ment phase there are 59 elements that meet the threshold r.
No restarts of the algorithm were necessary for this dataset
either. The discords detected are mostly from the TAO class
as its time series exhibit much larger variability compared
to the time series for the other two classes.

6.2.3 Parallelization of the Discord Detection Algo-
rithm

Recently there has been an emerging interest in scaling
some of the best off-the-shelf machine learning algorithms,
through the means of parallelization across grids of multi-
ple computers. A limited number of works target the par-

allel outlier detection problem too. For example, Hung et
al. [17] introduce a parallel version of the quadratic nested
loop algorithm for distance based outliers, discussed in [21].
Lozano et al. [22] propose two algorithms for parallel min-
ing of distance and density based outliers. The distance
based algorithm is a parallel modification of Bay’s random-
ized nested loop algorithm [7], and the density based ver-
sion is a modification of the popular local outlier factor
(LOF) algorithm [9]. Both parallel variants proceed in a
similar fashion: First the data space is partitioned across
different computers and outliers, local for each computer,
are identified. Subsequently, the results from all computers
are merged within a ‘master process’ and a global anomaly
score is assigned to each outlier.

A common problem with many parallel data mining ap-
proaches is that they require implementing specific dis-
tributed architectures, as well as distributed indexing struc-
tures. The technical overhead of this prohibits the adop-
tion of these methods across the global data mining commu-
nity. Recently, however, an intuitive yet extremely scalable
framework for parallel data mining has emerged, namely
the MapReduce framework [13]. MapReduce is quickly
turning into a parallel data mining standard and is already
adopted by large companies, such as Google, Yahoo! and
Microsoft. The framework operates in two steps. All exam-
ples in the data that can be part of the final solution are first
mapped to some corresponding keys. Then a user specified
function is called to reduce the key-value pairs to a set that
contains only the final answer.

We conclude the efficiency and scalability evaluation of
our algorithm by demonstrating that both of its phases can
easily fit into the MapReduce framework, where the over-
head of the parallelization remains relatively small and a
nearly linear (in the number of machines used) speed-up is
achieved.

Figure 11: Parallelization of the disk aware discord detec-
tion algorithm with m computers.

For the experiments, we assume that the input dataset S
is split evenly across m computers as shown in Figure 11.
The candidate selection phase of the discord detection al-
gorithm is then run simultaneously on all computers with



input parameters S = Si and the same threshold parameter
r, producing m distinct candidate sets Ci. This concludes
the mapping function of the first phase, and the reducing
function then simply combines all candidate sets into one
C =

⋃
i=1..m Ci. Note that when constructing Ci we use

only the data from Si, which means that it might introduce
to the union C examples that would be pruned, had we used
a single computer that scans the entire dataset S. Therefore,
the combined candidate set C for m computers is actually
larger than the one that would be obtained with one com-
puter and below we show the overhead introduced by this
increased candidate set size. What is essential at this point,
though, is the fact that Proposition 2 remains valid, i.e. no
false dismissals are introduced by the parallel modification
of the candidate selection phase.

Once the union operation is performed, the combined
candidate set C is distributed to all computers and the candi-
date refinement phase is run simultaneously on all of them
with input parameters S = Si, C, and r. This can again
be represented by a mapping function that produces refined
sets Ci, i = 1..m. We now make the observation that the
true discords, and only the true discords, with respect to the
range parameter r and the entire dataset S, will be present
in every refined set Ci. Hence, the final result requires that
we reduce the refined candidates Ci by performing an inter-
sect among all of them (see Figure 11). The final discords
are thus given by the set C =

⋂
i=1..m Ci.

Figure 12: Randomwalk Data (|S| = 106). Left: Running time
of the disk aware discord detection algorithm (DDD) with 1, 2, 4
and 8 computers. Rgith: Size of the discord candidates set after
the first phase of the algorithm. Refer to the text for details.

We simulate the above parallel implementation with
m = 1, 2, 4, 8 computers each having the same specifica-
tion as indicated in the beginning of Section 6.2. Figure 12
demonstrates the running time of the entire algorithm and

the candidate set size |C| after the first phase, for the ran-
dom walk dataset with |S| = 106 elements. The running
time (Figure 12, left) is the combined running time for the
slowest computer during the first phase, plus the running
time for the slowest computer during the second phase. The
communication time (broadcasting Ci at the end of each
phase, and distributing C at the beginning of the second
phase) is not included, yet it is negligible as |C| is much
smaller than |S| and also we do not need to broadcast the
entire time series but only their indices. The union and in-
tersect operations can also be ignored. In our implementa-
tion for both of them we used hashing which requires time
linear in the size |C|.

Figure 12 left, shows that with 8 computers the algorithm
finishes in 240 seconds (the same threshold r = 21.45 was
used as in Section 6.2.1). The red curve with diamonds on
the plot shows simply a division of the time for the algo-
rithm on one computer by x (i.e. if we had x computers
and no parallelization overhead). From the plot it is visible
that, for example, with 8 computers this ‘perfect’ running
time would be 180 seconds. This means that the increased
candidate set size contributes for approximately 30% run-
ning time loss when the discord detection algorithm is run
with 8 computers. This is due to the approximately five
times larger candidate size, obtained at the end of the first
phase (see Figure 12 right, the blue curve for 8 comput-
ers). Just for comparison we have also plotted the function
f = |C1| ∗ x, where |C1| is the candidate set size when us-
ing only one computer, to indicate that adding x computers
does not necessarily increase the candidate set size x times.
Overall the main memory requirement remains admissible
for a fairly large number of computers, while the gain in
speed-up is enormous. With a single computer, as indicated
in Section 6.2.1, the total running time is approximately 28
minutes while now with 8 computers it takes only 4 min-
utes.

7. Discussion
In a sense, the approach taken here may appear surpris-

ing. Most data mining algorithms for time series use some
approximation of the data, such as DFT, DWT, SVD etc.
Previous (main memory) algorithms for finding discords
have used SAX [20][34], or Haar wavelets [15]. How-
ever, we are working with just the raw data. It is worth
explaining why. Most time series data mining algorithms
achieve speed-up with the Gemini framework (or some vari-
ation thereof) [14]. The basic idea is to approximate the full
dataset in main memory, approximately solve the problem
at hand, and then make (hopefully few) accesses to the disk
to confirm or adjust the solution. Note that this framework
requires one linear scan just to create the main memory ap-
proximation, and our algorithm requires a total of two lin-
ear scans. So there is at most a factor of two possibility



of improvement. However, it is clear that even this can-
not be achieved. Even if we assume that some algorithm
can be created to approximately solve the problem in main
memory. The algorithm must make some access to disk to
check the raw data. Because such random accesses are ten
times more expensive than sequential accesses [27], if the
algorithm must access more that 10% of the data it can no
longer be competitive. In fact, it is difficult to see how any
algorithm could avoid retrieving 100% of the data in the
second phase. For all time series approximations, it is pos-
sible that two objects appear arbitrarily close in approxima-
tion space, but be arbitrarily far apart in the raw data space.
Most data mining algorithms exploit lower bound pruning
to find the nearest neighbor, but here upper bounds are re-
quired to prune objects that cannot be the furthest nearest
neighbor. While there has been some work on providing up-
per bounds for time series, these bounds tend to be excep-
tionally weak [32]. Intuitively this makes sense, there are
only so many ways two time series can be similar to each
other, hence the ability to tightly lower bound. However,
there is a much larger space of possible ways that two time
series could be different, and an upper bound must some-
how capture all of them. In the same vein, it is worth dis-
cussing why we do not attempt to index the candidate set C
in main memory, to speed up both the phase one and phase
two of our algorithm. The answer is simply that it does not
improve performance. The many time series indexing algo-
rithms that exist [14][32] are designed to reduce the number
of disk accesses, they have little utility when all the data re-
sides in main memory (as with the candidate set C). For
high dimensional time series in main memory it is impos-
sible to beat a linear scan; especially when the linear scan
is highly optimized with early abandoning. Furthermore, in
phase one of our algorithm every object seen in the disk res-
ident data set is either added to the candidate set C or causes
an object to be ejected from C, this overhead in maintaining
the index more than nullifies any possible gain.

8. Conclusions
The work introduced a highly efficient algorithm for

mining range discords in massive time series databases. The
algorithm performs two linear scans through the database
and a limited amount of memory based computations. It is
intuitive and very simple to implement. We further demon-
strated, that with a suitable sampling technique the method
can be adapted to robustly detect the top k discords in the
data. The utility of the discord definition combined with
the efficiency of the method suggest it as a valuable tool
across multiple domains, such as astronomy, surveillance,
web mining, etc. Experimental results from all these areas
have been demonstrated.

We are currently exploring adaptive approaches that al-
low for the efficient detection of statistically significant dis-

cords when the time series are generated by a mixture of
different processes. In these cases alternating the range pa-
rameter according to the distribution of each example turns
out to be essential when looking for the top discords with
respect to the individual classes.
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