

On the Need for Time Series Data Mining Benchmarks:
A Survey and Empirical Demonstration

EAMONN KEOGH eamonn@cs.ucr.edu
SHRUTI KASETTY skasetty@cs.ucr.edu
University of California, Riverside

Editors: Hand, Ng and Keim

Abstract. In the last decade there has been an explosion of interest in mining time series data. Literally
hundreds of papers have introduced new algorithms to index, classify, cluster and segment time series. In this
work we make the following claim. Much of this work has very little utility because the contribution made
(speed in the case of indexing, accuracy in the case of classification and clustering, model accuracy in the case
of segmentation) offer an amount of “improvement” that would have been completely dwarfed by the variance
that would have been observed by testing on many real world datasets, or the variance that would have been
observed by changing minor (unstated) implementation details.

To illustrate our point, we have undertaken the most exhaustive set of time series experiments ever attempted,
re-implementing the contribution of more than two dozen papers, and testing them on 50 real world, highly
diverse datasets. Our empirical results strongly support our assertion, and suggest the need for a set of time
series benchmarks and more careful empirical evaluation in the data mining community.

Keywords: time series, data mining, experimental evaluation

1. Introduction

In the last decade there has been an explosion of interest in mining time series data.
Literally hundreds of papers have introduced new algorithms to index, classify, cluster
and segment time series. In this work we make the following claim. Much of the work in
the literature suffers from two types of experimental flaws, implementation bias and data
bias (defined in detail below). Because of these flaws, much of the work has very little
generalizability to real world problems.
In particular, we claim that many of the contributions made (speed in the case of
indexing, accuracy in the case of classification and clustering, model accuracy in the case
of segmentation) offer an amount of “improvement” that would have been completely
dwarfed by the variance that would have been observed by testing on many real world
datasets, or the variance that would have been observed by changing minor (unstated)
implementation details.

In order to support our claim we have conducted the most exhaustive set of time series
experiments ever attempted, re-implementing the contribution of more than 25 papers and
testing them on 50 real word datasets. Our results strongly support our contention.

We are anxious that this work should not be taken as been critical of the data mining
community. We note that several papers by the current first author are among the worst
offenders in terms of weak experimental evaluation. While preparing the survey we read
more than 360 data mining papers and we were struck by the originality and diversity of
approaches that researchers have used to attack very difficult problems. Our goal is
simply to demonstrate that empirical evaluations in the past have often been inadequate,
and we hope this work will encourage more extensive experimental evaluations in the
future.
For concreteness we begin by defining the various tasks that occupy the attention of most
time series data mining research.
• Indexing (Query by Content): Given a query time series Q, and some

similarity/dissimilarity measure D(Q,C), find the nearest matching time series in
database DB.

• Clustering: Find natural groupings of the time series in database DB under some
similarity/dissimilarity measure D(Q,C).

• Classification: Given an unlabeled time series Q, assign it to one of two or more
predefined classes.

• Segmentation: Given a time series Q containing n datapoints, construct a model Q ,
from K piecewise segments (K << n) such that Q closely approximates Q.

Note that segmentation has two major uses. It may be performed in order to determine
when the underlying model that created the time series has changed (Gavrilov et al.,
2000, Ge and Smyth, 2000), or segmentation may simply be performed to created a high
level representation of the time series that supports indexing, clustering and classification
(Ge and Smyth, 2000, Keogh and Pazzani, 1998, Keogh and Smyth, 1997, Lavrenko et
al., 2000, Li et al., 1998, Park et al., 2001, Polly and Wong, 2001, Pratt and Fink, 2002,
Qu et al., 1998, Shatkay and Zdonik, 1996, Wang and Wang, 2000b).

As mentioned above, our experiments were conducted on 50 real world, highly diverse
datasets. Space limitations prevent us from describing all 50 datasets in detail, so we
simply note the following. The data represents the many areas in which time series data
miners have investigated, including finance, medicine, biometrics, chemistry, astronomy,
robotics, networking and industry. We also note that all data and code used in this paper
is available for free by emailing the first author.

The rest of this paper is organized as follows. In Section 2 we survey the literature on
time series data mining, and summarize some statistics about the empirical evaluations.
In Section 3, we consider the indexing problem, and demonstrate with extensive
experiments that many of the published results do not generalized to real world problems.
Section 4 considers the problem of evaluating time series classification and clustering
algorithms. In Section 5 we show that similar problems occur for evaluation of
segmentation algorithms. Finally in Section 6 we summarize our findings and offer
concrete suggestions to improve the quality of evaluation of time series data mining
algorithms.

2. Survey

In order to assess the quality of empirical evaluation in the time series data mining
community we begin by surveying the literature. Although we reviewed more than 360
papers, we only included the subset of 57 papers actually referenced in this work when
assessing statistics about the number of datasets etc. The subset was chosen based on the
following (somewhat subjective) criteria.
• Was the paper ever referenced? Self-citations were not counted. The rule was relaxed

for paper published in the last year because of publishing delays. We used
ResearchIndex (http://citeseer.nj.nec.com/cs) to make this determination.

• Was the paper published in a conference or journal likely to be read by a data miner?
For example, several interesting time series data mining papers have appeared in
medical and signal processing conferences, but are unlikely to come to the attention
of the data mining community.

The survey is very comprehensive, but was not intended to be exhaustive. Such a goal
would in any case be subjective (should a paper which introduces a new clustering
algorithm, and mentions that it could be used for time series be included?). In general the
papers come from high quality conferences and journals, including (SIG)KDD (11),
ICDE (11), VLDB (5), SIGMOD/PODS (5), and CIKM (6).
Having obtained the 57 papers, we extracted various statistics (discussed below) from
them about their empirical evaluation. In most cases this was easy, but occasionally a
paper was a little ambiguous in explaining some feature of its empirical evaluation. In
such cases we made an attempt to contact the author for clarification, and failing that,
used our best judgment.
In presenting the results of the survey, we echo the caution of Prechelt, that “while high
numbers resulting from such counting cannot prove that the evaluation has high quality,
low numbers (suggest) that the quality is low” (1995).

2.1. Size of test datasets

We recorded the size of the test dataset for each paper. Where two or more datasets are
used, we considered only the size of the largest.
The results are quite surprising; the median size of the test database was only 10,000
objects. Approximately 89% of the test databases could comfortably fit on a 1.44 Mb
floppy disk.

2.2. Number of rival methods

Another surprising finding of the survey is the relative paucity of rival methods to which
the contribution of the paper is compared. The median number is 1 (The average is 0.91),
but this number includes very unrealistic strawman. For example many papers (including
one by the current first author (Keogh and Smyth, 1997)) compare times for an indexing
method to sequential scan where both are preformed in main memory. However, it is well
understood sequential scan enjoys a tenfold speed up when performed on disk because

any indexing technique must perform costly random access, whereas sequential scan can
take advantage of an optimized linear traverse of the disk (Keogh et al., 2001).
The limited number of rival methods is particularly troubling for papers that introduce a
novel similarity measure. Although 29 of the papers surveyed introduce a novel similarity
measure, only 12 of them compare the new measure to any strawman. The average
number of rival similarity measures considered is only 0.97.

2.3. Number of different test datasets

Although the small sizes of the test databases and the relatively scarcity of comparisons
with rival methods is by itself troublesome, the most interesting finding concerns the
number of datasets used in the experimental evaluation. On average, each contribution is
tested on 1.85 datasets (1.26 real and 0.59 synthetic). This numbers are astonishingly low
when you consider that new machine learning algorithms are typically evaluated on at
least a dozen datasets (Cohen, 1993, Kibler and Langley, 1988).
In fact, we feel that the numbers above are optimistic. Of the 30 papers that use two or
more datasets, a very significant fraction (64%), use both stock market data and random
walk data. However, we strongly believe these really should be counted as the same
dataset. It is well known that random walk data can perfectly model stock market data is
terms of all statistical properties, including variance, autocorrelation, stationarity etc
(Faloutsos et al., 1994, Simon, 1994).
Work by the late Julian L. Simon suggested that humans find it impossible to
differentiate between the two (1994). To confirm this finding we asked 12 professors at
UCRs Anderson Graduate School of Management to look at Figure 1 and determine
which three sequences are random walk, and which three are real S&P500 stocks. The
confusion matrix is show in Table 1.

Figure 1. Six time series, three are random walk data, and three are real S&P500 stocks. Experiments
suggest that humans cannot tell real and synthetic stock data apart (all the sequences on the right are real).

Table 1. The confusion matrix for human experts in attempting to differentiate between random walk data
and stock market data.

Predicted

S&P Stock Random Walk
S&P Stock 20 16

Actual
Random Walk 16 20

The accuracy of the humans was 55.6%, which does not differ significantly from random
guessing.
Given the above, if we consider stock market and random walk data to be the same, each
paper in the survey is tested on average on only 1.28 different datasets. This number
might be reasonable if the contribution had being claimed for only a single type of data
(Gavrilov et al., 2000, Lavrenko et al., 2000), or it had been shown that the choice of
dataset has little influence on the outcome. However, the choice of dataset has a huge
effect on the performance of time series algorithms. We will demonstrate this fact in the
next 3 sections of this work.

3. Indexing (Query by Content)

Similarity search in time series databases has emerged as an area of active interest since
the classic first paper by Agrawal et al. (1993). More than 68% of the indexing
approaches surveyed here use the original GEMINI framework (Faloutsos et al., 1994),
but suggest a different approach to the dimensionality reduction stage. The proposed
representations include the Discrete Fourier Transform (DFT) (Agrawal et al., 1993, Chu
and Wong, 1999, Faloutsos et al., 1997, Kahveci et al., 2002, Rafiei and Mendelzon,
1998, Rafiei, 1999), several kinds of Wavelets (DWT) (Chan and Fu, 1999, Kahveci and
Singh, 2001, Popivanov and Miller, 2002, Shahabi et al., 2000, Wang and Wang, 2000b,
Wu et al., 2000b), Singular Value Decomposition (Keogh et al., 2001, Korn et al., 1997),
Adaptive Piecewise Constant Approximation (Keogh et al., 2001), Inner Products
(Ferhatosmanoglu et al., 2001) and Piecewise Aggregate Approximation (PAA) (Yi and
Faloutsos, 2000). The majority of work has focused solely on performance issues,
however some authors have also considered other issues such as supporting non
Euclidean distance measures (Keogh et al., 2001, Rafiei, 1999, Yi and Faloutsos, 2000)
and allowing queries of arbitrary length (Keogh et al., 2001, Loh et al., 2000, Yi and
Faloutsos, 2000).

3.1. Implementation bias

Since most time series indexing techniques use the same indexing framework, and
achieve the claimed speedup solely with the choice of representation, it is important to
compare techniques in a manner that is free of implementation bias.

Definition: Implementation bias is the conscious or unconscious disparity in the
quality of implementation of a proposed approach, vs. the quality of implementation
of the competing approaches.

Implementing fairly complex indexing techniques allows many opportunities for
implementation bias. For example, suppose you hope to demonstrate that DWT is
superior to DFT. With shift-normalized data (Chu and Wong, 1999, Kahveci et al., 2002)
the first DWT coefficient is zero so you could take advantage of that fact by indexing the
2nd to N+1th coefficients, rather than the 1st to Nth coefficients. However, you might
neglect doing a similar optimization for DFT, whose first real coefficient is also zero for
normalized data. Another possibility is that you might use the simple O(n2) DFT
algorithm rather than spend the time to code the more complex O(nLogn) radix 2

algorithm (Keogh et al., 2001). In both these cases DFT’s performance would be
artificially deflated relative to DWT.
One possible solution to the problem of implementation bias is extremely conscientious
implementations of all approaches, combined with diligent explanations of the
experimental process. Another possibility, which we explain below, is to design
experiments that are free from the possibility of implementation bias.
Since all the exact indexing techniques use the same basic framework, the efficiency of
indexing depends only on how well the dimensionality-reduced approximation can model
the distances between the original objects. We can measure this by calculating the
tightness of the lower bounds for any given representation.

Definition: The tightness of the lower bound (denoted T) for any given
representation is the ratio of the estimated distance between two sequences under that
representation, over the true distance between the same two sequences.

Note that T is in the range [0,1]. A value of 1 would allow a constant time search
algorithm, and a value of 0 would force the indexing structure to degrade to sequence
scan. In fact, because sequential scan can take advantage of a linear traverse of the disk,
whereas any indexing scheme must make wasteful random disk accesses, it is well
understood that T must be significantly greater than 0 if we are to use the representation
to beat sequential scan (Keogh et al., 2001). Since one can always create artificial data for
any representation that will give an arbitrary value of T, it should be estimated for a
particular dataset by random sampling. Note that the value of T for any given
dimensionality reduction technique depends only on the data and is independent of any
implementation choices such as page size, buffer size, computer language, hardware
platform, seek time etc. A handful of papers in the survey already make use of a similar
measure to compare the quality of representations (Chan and Fu, 1999, Keogh et al.,
2001).
This idea of an implementation free evaluation of performance is by no means new. In
artificial intelligence, researchers often compare search algorithms by reporting the
number of nodes expanded, rather than the CPU times (Kibler and Langley, 1988). The
problem of implementation bias is also well understood in other computer science
domains, including parallel processing (Bailey, 1991).

3.2. Data bias

As mentioned above, the tightness of the lower bound can be estimated by random
sampling of a dataset. However we have not yet addressed the importance of which
dataset(s) are sampled. The indexing papers included in this survey tested their approach
on a median of 1 datasets. This would be reasonable if the utility of the approach was
only being claimed for a single type of data, for example “More Efficient Indexing of
ECG Time Series” or “A New Approach to Indexing Stock Market Data”. However, none
of the papers make such a limited claim. The papers are implicitly or explicitly claiming
to be improvements over the state of the art on any time series data. In fact, the choice of
test data has a great effect on the experimental results, and virtually all papers surveyed
suffer from data bias.

Definition: Data bias is the conscious or unconscious use of a particular set of
testing data to confirm a desired finding.

There does not appear to be a simple cure for data bias. One possibility is to limit the
scope of the claim for a new approach to that which has actually been demonstrated, e.g
“Faster indexing of Stock Market Data”. Another possibility, which we favor, is to test
the algorithms on a large, heterogeneous set of time series. Ideally this set should include
data that covers the spectrum of time series properties; stationarity/ non-stationarity,
noisy/ smooth, cyclical/ non-cyclical, symmetric/ asymmetric, etc.

3.3. Empirical demonstration of implementation and data Bias

To demonstrate the need for an implementation-free measure of the quality of indexing
technique, and the absolute necessity of testing new algorithms on several datasets,
consider the following contradictory claims made with regard the relative indexing
abilities of DFT and DWT (wavelets):
• “Several wavelets outperform the Haar wavelet (and DFT)” (Popivanov and Miller,

2002).
• “DFT-based and DWT-based techniques yield comparable results in similarity

search” (Wu et al., 2000b).
• “Haar wavelets perform slightly better that DFT” (Kahveci and Singh, 2001).
• “DFT filtering performance is superior to DWT” (Kawagoe and Ueda, 2002)
Which, if any, of these statements are we to believe? Because of the problems of
implementation bias and the limited number of test datasets we feel little credence can be
given to any of the claims. To demonstrate this we have performed a comprehensive
series of experiments that show that the variance due to implementation bias and testing
on different data can far outweigh the improvements claimed in the literature.
We calculated the value of T for both DFT and DWT. To ensure that we obtained good
estimates we averaged over 100,000 randomly chosen subsequences from each dataset.
For fairness we used the same 100,000 subsequences for each approach. To ensure
randomness in our sampling technique we used true random numbers that were created
by a quantum mechanical process (Walker, 2001).

3.3.1. demonstration of data bias

The three papers listed above experimented on a maximum of 3 datasets. If we use that
number of datasets we can demonstrate essentially any finding we wish. For example, by
working with the Powerplant, Infrasound and Attas datasets we can find that DFT
outperforms the Haar wavelet, as shown in Figure 2.

Powerplant Infrasound Attas (Aerospace)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

DFT
HAAR

Figure 2. Experiments on the Powerplant, Infrasound and Attas datasets “demonstrate” that DFT outperforms
DWT-Haar for indexing time series.

In contrast if we worked with the Network, ERPdata and Fetal EEG datasets we could
conclude that there is no real difference between DFT and Haar, as suggested by Figure
3.

Network EPRdata Fetal EEG

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

DFT
HAAR

Figure 3. Experiments on the Network, EPRdata and Fetal EEG datasets “demonstrate” that DFT and DWT-
Haar have the same performance for indexing time series.

Finally had we had chosen the Chaotic, Earthquake and Wind datasets we could use the
graphs in Figure 4 to demonstrate “convincingly” that Haar is superior to DFT.

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

Chaotic Earthquake Wind (3)

DFT
HAAR

Figure 4. Experiments on the Chaotic, Earthquake and Wind datasets “demonstrate” that DWT-Haar
outperforms DFT for indexing time series.

Although we used the value of T to demonstrate the problem, we also confirmed the
findings on an implemented system, using an R-tree running on AMD Athlon 1.4 GHZ
processor, with 512 MB of physical memory and 57.2 GB of secondary storage. The
results were essentially identical, so we omit the graphs for brevity.
Note that we are not claiming any duplicity by the authors of the excellent papers listed
above. We are merely demonstrating that the limited number of datasets used in the
typical indexing paper severely limits the claims one can make.

3.3.2 demonstration of implementation bias

The vast majority of papers on indexing that do use a strawman comparison use the
simplest possible one, sequential scanning. Here we will demonstrate the potential for
implementation bias with sequential scanning performed in main memory.
The Euclidian distance function is shown in Eq. 1.

 () ()∑ −≡
=

n

i
ii cqCQD

1

2, (1)

The basic sequential search algorithm is shown in Table 2.
Table 2. The Sequential Search Algorithm

Algorithm sequential_scan(data,query)
best_so_far = inf;
for every item in the database
 if euclidian_dist(datai,query) < best_so_far
 pointer_to_best_match = i;
 best_so_far = euclidian_dist(datai,query);
 end;
end;

One possibility implementation, which we call Naïve, is to calculate the Euclidian
distance as shown in Eq. 1 with a loop to accumulate all the partial sums, followed by the
taking of the square root. A possibility for optimization, which we call Opt1, is to neglect
taking the square root. Since the square root function is monotonic, the ranking of the
nearest neighbors will be identical under this scheme (Yi and Faloutsos, 2000). Finally we
consider another optimization, which we call Opt2, which is simply to keep comparing
the best_so_far variable to the partial sums at each iteration of the loop. If the partial sum
ever exceeds the value of best_so_far we can admissibly abandon that calculation, since
the partial distance can never decrease. To test the effect of these minor implementation
details we performed 1-nearest neighbor searches in a random walk dataset, with a query
length of 512 for increasingly larger datasets. The results are shown in Figure 5.
It is obvious that these very minor implementation details can produce large differences.
If we are comparing a novel algorithm to sequential scan, and omit details of sequential
scan implementation, it would be very hard to gauge the merit of our contribution. Note
that for simplicity we only considered a main memory search. If we consider a disk-based
search, there are a myriad of other implementation details that could effect the
performance of sequential scan by at least an order of magnitude.

Number of Objects

Se
co

nd
s

0

1

2

3

4

5

1 0 ,00 0 50,000 100,000

Euclid
Opt1
Opt2

Figure 5. The affect of minor implementation details on the performance of sequential scan, for increasing large
databases.

It is easy to find examples of data bias in the literature, it is much more difficult to know
the scale of the problem for implementation bias. By its very nature, it is almost
impossible to know what fraction of a claimed improvement should be credited to the
proposed approach, and what fraction may be due to implementation bias. However,
there are a handful of examples where this is clear. For example, one paper included in
the survey finds a significant performance gap between the indexing abilities of Haar
wavelets and Piecewise Aggregate Approximation (PAA) (Popivanov and Miller, 2002).
However it was proved by two independent groups of researchers that these two
approaches have exactly the same tightness of lower bounds when the number of
dimensions is a power of two (and very little difference when the number of dimensions
is not a power of two) (Keogh et al., 2001, Yi and Faloutsos, 2000). We empirically
confirmed this fact 4,000,000 times during the experiments in Section 3.3.1. While there
may be small differences in the CPU time to deal with the two representations, the order
in which the original sequences are retrieved from disk by the index structure should be
the same for both approaches, and disk time completely dominates CPU for time series
indexing under Euclidean distance. We strongly suspect the spurious result reported
above was the result of implementation bias, so we conducted an experiment to
demonstrate how a simple implementation detail could produce an effect which is larger
than the approximately 11% difference claimed.
We began our experiment by performing a fair comparison of the tightness of lower
bounds for Haar and PAA on each of our 50 datasets, with a query length of 256 and 8
dimensions. Rather than estimate T with 100,000 random samples as in Section 3.1.1, we
averaged over 100 samples as in the paper in question.
We repeated the experiment once more; this time neglecting to take advantage of the fact
the first Haar coefficient is zero for normalized data. In other words, we wastefully index
a value that is a constant zero. Once again we estimated T by averaging over 100 samples
for each dataset.
For each dataset we calculated the ratio of the correct implementation’s value of T to the
poor implementation’s value of T. The 50 results are plotted as a histogram in Figure 6.

0.95 1 1.05 1.1 1.15 1.2

2
4
6
8

10

Figure 6. The distribution of the ratios of the results of correctly implemented experiments to experiments
that have a slight implementation bias.

It is surprising to note that sometimes implementation bias that should favor an approach
can actually hurt it, as happened 4 times out of the 50 experiments. However we must
remember that the values of T for each dataset were only estimated from 100 samples,
and the finding is not statistically significant. What is clear from the experiment however
is that a simple minor implementation detail can produce effects that are as large as the
claimed improvement of the proposed approach.

3.3.3 A real world case study illustrating the problems of implementation and data bias

In this section we will carefully deconstruct a recent paper to illustrate how data bias and
implementation bias can render the contribution of a paper nil. We will consider a paper
by Kim et al. (2001). Note that we chose this paper simply because the clear writing
makes it easy to deconstruct and the detailed exposition of the method allows exact
reimplementation. We do not mean to imply anything about the quality of the generally
excellent work by these authors. Indeed the paper in question should be commended for
including a rigorous proof of the proposed method, a rarity in the data mining literature.
Once again, our point is simply to illustrate that even experienced researchers can be
mislead by data and implementation bias to make extravagant and unwarranted claims. In
particular the claim made is that the proposed technique can allow similarity search under
Dynamic Time Warping (DTW) that is up to 720 times faster than sequential search. As
we shall show, the correct claim for the approach is that it can produce meaningless
results quickly, or meaningful results very slowly (slower than sequential scan), but it
cannot produce meaningful results quickly.

The paper is concerned with the laudable idea of indexing DTW. It has been forcibly
demonstrated that in some domains the Euclidean distance is a brittle distance measure,
because it is very sensitive to small distortions in the time axis (Keogh 2002, Berndt and
Clifford, 1996, Yi et al. 1998). Dynamic Time Warping is a technique that measures the
distance between two time series after first aligning them in the time axis. The drawback
of DTW from a practical point of view is that it is O(n2), where n is the length of the time
series of interest, in addition it cannot be indexed by standard spatial access methods
which require the distance measure to be a metric. By contrast, Euclidean distance is
merely O(n), and is trivially indexable (Agrawal et al., 1993). The core contribution of
the paper by Kim et al. (2001) is to introduce a novel linear time lower bounding
technique for DTW. The lower bounding technique allows faster linear search, by

allowing one to prune off a fraction of the database by noting that the lower bound
estimate of the distance to a candidate sequence is greater than the currently known best-
so-far match. However, an additional claimed feature of the lower bounding estimate is
that it is indexable, thus allowing one to retrieve candidate sequences in “most promising
first” order. While a complete explanation of the technique is too detailed to present here,
we have included a visual intuition of the lower bounding function in Figure 7 for
completeness (See the original paper or Keogh, 2002. for a more detailed explanation).
The lower bounding function works by extracting a 4-tuple-feature vector from each
sequence. The features are the first and last elements of the sequence, together with the
maximum and minimum values. The maximum squared difference of corresponding
features is reported as the lower bound.

0 5 10 15 20 25 30 35 40

A

B

C

D

Figure 7. A visual intuition of the lower bounding measure introduced by Kim et al. The maximum of the
squared difference between the two sequence’s first (A), last (D), minimum (B) and maximum points (C) is
returned as the lower bound.

Before detailing the problems with the contribution, we must review an important
preprocessing step that is necessary before attempting to match two time series under
Euclidean distance, Dynamic Time Warping or any other distance measure. Consider the
two time series shown in Figure 8. Although they appear to have similar shapes, they
occur at different offsets in the Y-Axis. The Euclidean distance between the two
sequences is proportional to the length of the gray hatch lines. We can see that shifting
the two sequences to the same offset will greatly reduce the reported distance and reveal
the true similarity between the sequences. The optimal shifting can be quickly achieved
by simply subtracting the mean of a sequence from the entire sequence. This step is
known as “normalizing” the data1. Note that although the Euclidean distance is shown
here for simplicity, identical remarks apply to DTW or any other distance measure.

1 There are some other steps that may be included in the normalizing step, such as rescaling the

time series and removing linear trend. We will ignore these steps for simplicity, since they don’t
affect the argument that follows.

 Unnormalized Normalized

Q

C

0 20 40 60 80 100 120 1400

0.5

1

1.5

2

2.5

Figure 8. A visual intuition of the necessity to normalize time series before measuring the distance between
them. The two sequences Q and C, on the left appear to have approximately the same shape, but have different
offsets in the Y-Axis. The Euclidean distance between two sequences is proportional to the length of the gray
hatch lines shown connecting the two sequences in the two graphics on the right. In the first case the data is
unnormalized, and the reported distance greatly overstates the subjective dissimilarity. Normalizing the data
reveals the true similarity of the two time series.

What would happen if we didn’t normalize the time series before measuring the
similarity? We can illustrate by clustering some Space Shuttle telemetry data with and
without normalization as in Figure 9.

1

5

2

7

3

4

6

1

2

3

4

5

6

7

1

5

2

6

4

7

3

A B C

Figure 9. A visual explanation of the need to normalize time series before measuring their similarity. A) Seven
time series obtained from inertial sensors on board Space Shuttle mission STS-57. B) The clustering obtained
when we first normalize the signals, the clustering appears very natural and subjectively correct. C) The
clustering obtained if we do not normalize the signals, the clustering appears essentially random.

The results are quite startling, without normalization time series similarity has essentially
no meaning. More concretely, very small changes in offset rapidly dwarf any information
about the shape of the two time series in question. For example, if we clustered just the
mean values of the time series, the resulting dendrogram would be almost
indistinguishable from the one shown in Figure 9.C. It is important to realize that
although Figure 9 shows time series with greatly differing offsets for clarity, even

relatively small differences in offset, a tiny fraction of the variance of the signals, is
enough to render the measurement of similarity meaningless.

Having reviewed the need for normalization, we are now in a position to demonstrate our
earlier claim that the work of Kim et al. (2001) cannot produce meaningful results
quickly. The authors report only experiments with no normalization (Park 2001). If the
dataset used was already normalized, or had extremely low variance in offset this might
not matter, however, this is not the case; the variance of offsets is greater than that shown
in Figure 9, and the similarity measurements are equally meaningless (although it
depends on the length of the query, we found that the variance of offsets is typically
orders of magnitude larger than the variance of the signals on the dataset in question).

An obvious reaction is “so what”, can’t we just normalize the data and still get the 3
orders of magnitude speedup claimed? The answer is no! If we normalize the data the
lower bound becomes extremely weak, a tiny fraction of the true distance, and thus the
pruning power of the lower bound is greatly reduced. In essence the problem is this, the
lower bounding function is mostly measuring information about how far apart the two
time series are, and not measuring information about shape. If the time series are far
apart, the lower bound is very tight (although the similarity is meaningless), but when the
time series are normalized, the lower bound is so weak and only a small handful of
candidate time series can be pruned, certainly not enough to justify the computational
overhead.

To demonstrate our claim we tested the approach on 33 different datasets, using query
lengths of 256, 512 and 1,042. In keeping with the author’s experiments, we compared
the approach to sequential scan. We measured the normalized CPU cost (Keogh et al.,
2001), which takes into account the fact that sequential scan enjoys a tenfold speed up
when performed on disk.

Definition: The Normalized CPU cost: The ratio of average CPU time to execute a
query using the index to the average CPU time required to perform a linear
(sequential) scan. The normalized cost of linear scan is 1.0.

The justification being that any indexing technique must perform costly random access,
whereas sequential scan can take advantage of an optimized linear traverse of the disk.
Rather than summarize all the results with graphs, we will simply note that the technique
never once beat sequential scan on any one of our 111,375 test queries.

Once again we must restate that we are not singling out this work for criticism. Only 57%
of the papers in the survey explicitly state their normalization policy. For the papers that
do not, we cannot be sure if their results are meaningful. The point of this section is to
show that implementation bias, (the lack of normalization which helps the proposed
technique while not affecting sequential scan), combined with data bias, (choosing a
dataset with large offset variance), can result in work which appears to give dramatic
speedup, but is actually worse that doing nothing at all.

4. Classification and Clustering

Classification and clustering problems have been the subject of active research for
decades (Cohen, 1993, Kibler and Langley, 1988). However the unique structure of time
series means that most classic machine learning algorithms to not work well for time
series. In particular the high dimensionality, very high feature correlation, and the
(typically) large amounts noise that characterize time series data have been viewed as an
interesting research challenge. Most of the contributions focus on providing a new
similarity measure as a subroutine to an existing classification or clustering algorithm, so
for simplicity we shall only consider the contribution of the suggested similarity measure.
How well do these similarity measures capture the true similarity of time series? There
are two ways to answer this question, subjectively and objectively, we consider both
below.

4.1 Subjective evaluation of similarity

Since a goal of data mining is often to find patterns that map onto human intuition, one
possible way to judge the utility of a similarity measure is to show examples of time
series that the proposed measure found to be similar/dissimilar. Surprisingly, many of the
papers included in the survey, whose main contribution was to introduce a new similarity
measure, fail to show even one example of a matching pair of time series (André-Jönsson
and Badal, 1997, Bozkaya et al., 1997, Gavrilov et al., 2000, Goldin and Kanellakis,
1995, Huang and Yu, 1999, Indyk et al., 2000, Kim et al., 2000, Lam and Wong, 1998,
Lee et al., 2000, Park et al., 2001, Park et al., 1999, Qu et al., 1998, Wang and Wang,
2000b). Moreover, showing some examples of matching time series is of little utility
unless some strawman comparison is used. Many papers ask us to consider the quality of
their proposed similarity measure without a single comparison to another technique
(Agrawal et al., 1995b, André-Jönsson and Badal, 1997, Bozkaya et al., 1997, Huang and
Yu, 1999, Keogh and Smyth, 1997, Lee et al., 2000, Li et al., 1998, Park et al., 2000,
Park et al., 2001, Pratt and Fink, 2002, Wang and Wang, 2000b). This is particularly
surprising since the most obvious strawman, Euclidian distance, is trivial to implement
(For example, in the Matlab programming language it requires only 19 characters:
sqrt(sum((q-c).^2))).
We believe that one of the best (subjective) ways to evaluate a proposed similarity
measure is to use it to create a dendrogram of several time series from the domain of
interest (Keogh and Pazzani, 1998).
Additional dendrograms can be created using other measures then plotted side by side
with the propose approach. Figure 10 shows an example.

 Euclidean

1
2
3
4
5
7
6
8

Cepstrum Autocorrelation

1
7
2
3
4
5
6
8

1
5
7
2
3
4
6
8

Figure 10. Dendrograms can be used to visually assess the usefulness of a similarity measure. Above a dataset
of 8 objects is clustered using the single linkage method, with 3 different distance measures. Euclidean distance
is a decade old strawman. The other two approaches have recently been proposed in data mining papers.

Dendrograms are particularly attractive since a clustering of M objects summarizes O(M)
measurements, however other possibilities of visualizing the quality of a similarity
measure included projecting the time series into 2 dimensional space (via MDS or SOMs
for example (Debregeas and Hebrail, 1998)).

4.2. Objective evaluation of similarity

Given a database of labeled time series, objective measurements of the quality of a
proposed similarity measure can be readily obtained by running simple classification
experiments. Although a few such databases do exist, very few advocates of a new
similarity measure have chosen to demonstrate their contribution in this manner. The
work by Geurts is a notable exception (2001). To repair this omission, we have
undertaken an experimental comparison of many of the techniques included in the
survey. We tested on two publicly available datasets:
• Cylinder-Bell-Funnel: This synthetic dataset has been in the literature for 8 years,

and has been cited at least a dozen times (Geurts, 2001). It is a 3-class problem; we
create 128 examples of each class for these experiments.

• Control-Chart: This synthetic dataset has been freely available for the UCI Data
Archive since June 1998 (Bay, 1999). It is a 6-class problem, with 100 examples of
each class.

Note that for both problems, informal experiments suggest humans can achieve an error
rate of zero. For simplicity we use the 1-Nearest Neighbor algorithm, evaluated using
“leaving-one-out”. We compare the proposed methods to the simplest strawman,
Euclidean distance. This measure is well-known (Agrawal et al., 1993, Chan and Fu,
1999, Chu and Wong, 1999, Das et al., 1997, Das et al., 1998, Faloutsos et al., 1997,
Faloutsos et al., 1994, Ferhatosmanoglu et al., 2001, Kahveci and Singh, 2001, Keogh et
al., 2001, Korn et al., 1997, Lam and Wong, 1998, Loh et al., 2000, Popivanov and
Miller, 2002, Rafiei and Mendelzon, 1998, Rafiei, 1999, Wu et al., 2000b, Yi and

Faloutsos, 2000, Yi et al., 1998), parameterless, trivial to implement and predates data
mining by several decades.
We originally intended to implement every proposed similarity measure in our survey,
but several of the papers do not include a detailed enough description to allow
reimplementation (Li et al., 1998, Qu et al., 1998). We contented ourselves with
reimplementing 11 measures. Some of the measures require the user to set some
parameters. In these cases we wrapped the classification algorithm in a loop for each
parameter, searched over all possible parameters and reported only the best result.
Table 3 summarized the results.

Table 3. The error rates for various similarity measures

Approach Cylinder-Bell-Funnel Control-Chart
Euclidean Distance 0.003 0.013
Aligned Subsequence [Park et al. 2001] 0.451 0.623
Piecewise Normalization [Indyk et al. 2002] 0.130 0.321
Autocorrelation Functions [Wang & Wang 2000b] 0.380 0.116
Cepstrum [Kalpakis et. al. 2001] 0.570 0.458
String (Suffix Tree) [Huang & Yu 1999] 0.206 0.578
Important Points [Pratt & Fink 2002] 0.387 0.478
Edit Distance [Bozkaya et al.1997] 0.603 0.622
String Signature [Jonsson & Badal 1997] 0.444 0.695
Cosine Wavelets [Huntala et al. 1999] 0.130 0.371
Hölder [Struzik & Siebes] 0.331 0.593
Piecewise Probabilistic [Keogh & Smyth 1997] 0.202 0.321

The results are quite surprising. None of the proposed techniques can beat the simple
strawman. Their error rates are an order of magnitude worse than Euclidean distance.
Several of the techniques have error rates close to the default rate (i.e. the same error you
would get randomly guessing). Although the inability to perform well on these two
objective tests does not necessarily mean the similarity measures in question are without
any merit (there may exist datasets on which they have reasonable accuracy), one has to
wonder about the contribution of a new similarity measure which fails to demonstrate its
utility on any objective or subjective test2.

5. Segmentation

A large fraction of the papers in the survey either introduce a segmentation algorithm as
their main contribution, or utilize a segmentation algorithm as a subroutine. Although the
segments created could be polynomials of an arbitrary degree, the most common
representation of the segments are linear functions. Intuitively a Piecewise Linear

2 Once again we wish to note that the current first author introduced one of the poorly performing

measures.

Representation (PLR) refers to the approximation of a time series Q, of length n, with K
straight lines. Figure 8 contains an example.

Figure 11. An example of a time series with its piecewise linear representation.

Because K is typically much smaller that n, this representation makes the storage,
transmission and computation of the data more efficient. Specifically, in the context of
data mining, piecewise linear representation has been used to:
• Support novel distance measures for time series, including “fuzzy queries” (Shatkay

and Zdonik, 1996), weighted queries (Keogh and Pazzani, 1998), multiresolution
queries (Li et al., 1998, Qu et al., 1998), dynamic time warping (Park et al., 2001,
Pratt and Fink, 2002), autocorrelation queries (Wang and Wang, 2000b) and
relevance feedback (Keogh and Pazzani, 1998).

• Support concurrent mining of text and time series (Lavrenko et al., 2000).
• Support novel clustering and classification algorithms (Keogh and Pazzani, 1998).
• Support change point detection (Ge and Smyth, 2000, Guralnik and Srivastava,

1999).
Surprisingly, in spite of the ubiquity of this representation, with the exception of the work
by Shatkay and Zdonik, (1996), there has been little attempt to understand and compare
the algorithms that produce it.
Although appearing under different names and with slightly different implementation
details, most time series segmentation algorithms can be grouped into one of the
following three categories.
• Sliding-Windows (SW): A segment is grown until it exceeds some error bound. The

process repeats with the next data point not included in the newly approximated
segment.

• Top-Down (TD): The time series is recursively partitioned until some stopping
criteria is met.

• Bottom-Up (BU): Starting from the finest possible approximation, segments are
merged until some stopping criteria is met.

We can measure the quality of a segmentation algorithm in several ways, the most
obvious of which is to measure the reconstruction error for a fixed number of segments.
The reconstruction error is simply the Euclidean distance between the original data and
the segmented representation.

5.1 Data bias in segmentation

Given that we have 3 algorithms to produce a segmented version of a time series, it is
natural to ask which is best. The papers in the survey that use a segmentation algorithm
test on a median of 1 dataset. However, if we use only one dataset we can demonstrate
any finding we wish! There are 3 different algorithms, therefore 3! = 6 possible rankings.
We tested the algorithms on our 50 fifty datasets, asking each algorithm to reduce a 1,024
datapoint time series to 64 segments. Amazingly, we found every possible ranking of the
3 algorithms as shown in Table 4.

Table 4. The 3 algorithms under consideration, ranked by reconstruction error (shown in brackets), on 6 datasets

Dataset Best Algorithm Second-Best Algorithm Third-Best Algorithm

Soiltemp TD (522.6) SW (538.0) BU (538.1)
Darwin TD (575.2) BU (821.0) SW (833.9)
pHdata SW (3.590) TD (4.013) BU (4.037)
Winding SW (6.883) BU (113.0) TD (117.6)
Balloon BU (168.1) TD (224.5) SW (234.1)
Network BU (11.02) SW (13.62) TD (891.4)

Note that the fact that we could easily find datasets to demonstrate any ranking we wish
does not preclude us from making a meaningful evaluation of the algorithms. In fact the
Bottom-Up algorithm is significantly better than the other two approaches3. Our point,
once again, is simply that little credence can be given to experimental results obtained
from testing on a single dataset.

6. Conclusions and Recommendations

In this work we have conducted a comprehensive survey of recent work on time series
data mining. We have shown that because of several kinds of experimental flaws, in
particular data bias and implementation bias, many of the results claimed in the literature
have very little generalizability to real world problems. We have demonstrated our claim
with the most comprehensive set of time series experiments ever undertaken.
Once again we would like to note that we view this work as a “call to arms” to the data
mining community, and not a criticism of the many wonderful and original papers cited
here. The intended spirit of this paper is similar to the ironically titled work by Bailey,
“Twelve ways to fool the masses when giving performance results on parallel computers”
(1991). The author later noted that few, if any researchers set out to deliberately mislead
the academic community, but unless greater effort is made to meaningfully compare rival

3 Bottom-Up outperformed Top-Down on 47 of 69 datasets, and it outperformed Sliding Windows

on 58 of 69 datasets.

approaches, the entire field is in danger of being viewed with suspicion. This current
work is an echo of that sentiment for the time series data mining community.
We conclude this paper with concrete suggestions for researchers working on time series
data mining.

• Algorithms should be tested on a wide range of datasets, unless the utility of the
approach is only been claimed for a particular type of data. If possible, one
subset of the datasets should be used to fine tune the approach, then a different
subset of the datasets should be used to do that the actual testing. This
methodology is widely used in the machine learning community to help prevent
implementation and data bias (Cohen, 1993).

• Where possible, experiments should be designed to be free of the possibility of
implementation bias. Note that this does not preclude the addition of extensive
implementation testing.

• Novel similarity measures should be compared to simple strawmen, such as
Euclidian distance or Dynamic Time Warping. Some subjective visualization, or
objective experiments should justify their introduction.

• Where possible, all data and code used in the experiments should be made freely
available to allow independent duplication of findings (Bay, 1999).

Acknowledgements

The authors would like to thank Michael Pazzani, Pedro Domingos, Dimitrios Gunopulos
and the anonymous reviewers for their valuable suggestions and comments. We also
thank the many donors of test data.

References

All papers except (Bailey, 1991, Bay, 1999, Cohen, 1993, Keogh 2002, Kibler and Langley, 1988, Prechelt,
1995, Simon, 1994), are included in the survey. The excluded papers contain background information.

Agrawal, R., Faloutsos, C. & Swami, A. (1993). Efficient similarity search in sequence databases. In
proceedings of the 4th Int'l Conference on Foundations of Data Organization and Algorithms. Chicago, IL, Oct
13-15. pp 69-84.
Agrawal, R., Lin, K. I., Sawhney, H. S. & Shim, K. (1995a). Fast similarity search in the presence of noise,
scaling, and translation in time-series databases. In proceedings of the 21st Int'l Conference on Very Large
Databases. Zurich, Switzerland, Sept. pp 490-50.
Agrawal, R., Psaila, G., Wimmers, E. L. & Zait, M. (1995b). Querying shapes of histories. In proceedings of the
21st Int'l Conference on Very Large Databases. Zurich, Switzerland, Sept 11-15. pp 502-514.
André-Jönsson, H. & Badal. D. (1997). Using signature files for querying time-series data. In proceedings of
Principles of Data Mining and Knowledge Discovery, 1st European Symposium. Trondheim, Norway, Jun 24-
27. pp 211-220.
Bailey, D. (1991). Twelve ways to fool the masses when giving performance results on parallel computers.
Supercomputing Review, Aug. 1991, pp. 54-55.
Bay, S. (1999). UCI Repository of Kdd databases [http://kdd.ics.uci.edu/]. Irvine, CA: University of California,
Department of Information and Computer Science
Berndt, D. J. & Clifford, J. (1996). Finding patterns in time series: a dynamic programming approach. Advances
in Knowledge Discovery and Data Mining. AAAI/MIT Press, Menlo Park, CA. pp 229-248.

Bozkaya, T., Yazdani, N. & Ozsoyoglu, Z. M. (1997). Matching and indexing sequences of different lengths. In
proceedings of the 6th Int'l Conference on Information and Knowledge Management. Las Vegas, NV, Nov 10-
14. pp 128-135.
Caraça-Valente, J. P. & Lopez-Chavarrias, I. (2000). Discovering similar patterns in time series. In proceedings
of the 6th ACM SIGKDD Int'l Conference on Knowledge Discovery and Data mining. Boston, MA, Aug 20-23.
pp 497-505.
Chan, K. & Fu, A. W. (1999). Efficient time series matching by wavelets. In proceedings of the 15th IEEE Int'l
Conference on Data Engineering. Sydney, Australia, Mar 23-26. pp 126-133.
Chu, K. & Wong, M. (1999). Fast time-series searching with scaling and shifting. In proceedings of the 18th
ACM Symposium on Principles of Database Systems. Philadelphia, PA, May 31-Jun 2. pp 237-248.
Cohen, W. (1993). Efficient pruning methods for separate-and-conquer rule learning systems. In proceedings of
the 13th International Joint Conference on Artificial Intelligence, Chambery, France. pp 88-994.
Das, G., Gunopulos, D. & Mannila, H. (1997). Finding similar time series. In proceedings of Principles of Data
Mining and Knowledge Discovery, 1st European Symposium. Trondheim, Norway, Jun 24-27. pp 88-100.
Das, G., Lin, K., Mannila, H., Renganathan, G. & Smyth, P. (1998). Rule discovery from time series. In
proceedings of the 4th Int'l Conference on Knowledge Discovery and Data Mining. New York, NY, Aug 27-31.
pp 16-22.
Debregeas, A. & Hebrail, G. (1998). Interactive interpretation of kohonen maps applied to curves. In
proceedings of the 4th Int'l Conference of Knowledge Discovery and Data Mining. New York, NY, Aug 27-31.
pp 179-183.
Faloutsos, C., Jagadish, H., Mendelzon, A. & Milo, T. (1997). A signature technique for similarity-based
queries. In proceedings of the Int'l Conference on Compression and Complexity of Sequences. Positano-Salerno,
Italy, Jun 11-13.
Faloutsos, C., Ranganathan, M. & Manolopoulos, Y. (1994). Fast subsequence matching in time-series
databases. In proceedings of the ACM SIGMOD Int'l Conference on Management of Data. Minneapolis, MN,
May 25-27. pp 419-429.
Ferhatosmanoglu, H., Tuncel, E., Agrawal, D. & El Abbadi, A. (2001). Approximate nearest neighbor searching
in multimedia databases. In proceedings of the 17th IEEE Int'l Conference on Data Engineering. Heidelberg,
Germany, Apr 2-6. pp 503-511.
Gavrilov, M., Anguelov, D., Indyk, P. & Motwani, R. (2000). Mining the stock market: which measure is best?
In proceedings of the 6th ACM Int'l Conference on Knowledge Discovery and Data Mining. Boston, MA, Aug
20-23. pp 487-496.
Ge, X. & Smyth, P. (2000). Deformable markov model templates for time-series pattern matching. In
proceedings of the 6th ACM SIGKDD Int'l Conference on Knowledge Discovery and Data Mining. Boston, MA,
Aug 20-23. pp 81-90.
Geurts, P. (2001). Pattern extraction for time series classification. In proceedings of Principles of Data Mining
and Knowledge Discovery, 5th European Conference. Freiburg, Germany, Sept 3-5. pp 115-127.
Goldin, D. & Kanellakis, P. (1995) On similarity queries for time-series data: constraint specification and
implementation. In proceedings of the 1st Int'l Conference on the Principles and Practice of Constraint
Programming. Cassis, France, Sept 19-22. pp 137-153.
Guralnik, V. & Srivastava, J. (1999). Event detection from time series data. In proceedings of the 5th ACM
SIGKDD Int'l Conference on Knowledge Discovery and Data Mining. San Diego, CA, Aug 15-18. pp 33-42.
Huang, Y. & Yu, P. S. (1999). Adaptive query processing for time-series data. In proceedings of the 5th Int'l
Conference on Knowledge Discovery and Data Mining. San Diego, CA, Aug 15-18. pp 282-286.
Huhtala, Y., Kärkkäinen, J. & Toivonen, H. (1999). Mining for similarities in aligned time series using
wavelets. Data Mining and Knowledge Discovery: Theory, Tools, and Technology, SPIE Proceedings Series,
Vol. 3695. Orlando, FL, Apr. pp 150-160.
Indyk, P., Koudas, N. & Muthukrishnan,S. (2000). Identifying representative trends in massive time series data
sets using sketches. In proceedings of the 26th Int'l Conference on Very Large Data Bases. Cairo, Egypt, Sept
10-14. pp 363-372.
Kawagoe, K. & Ueda, T. (2002).A similarity search method of time series data with combination of Fourier and
wavelet transforms. In proceedings of 9th International Symposium on Temporal Representation and Reasoning.
Kahveci, T. & Singh, A. (2001). Variable length queries for time series data. In proceedings of the 17th Int'l
Conference on Data Engineering. Heidelberg, Germany, Apr 2-6. pp 273-282.

Kahveci, T., Singh, A. & Gurel, A. (2002). An efficient index structure for shift and scale invariant search of
multi-attribute time sequences. In proceedings of the 18th Int'l Conference on Data Engineering. San Jose, CA,
Feb 26-Mar 1. to appear.
Kalpakis, K., Gada, D. & Puttagunta, V. (2001). Distance measures for effective clustering of ARIMA time-
series. In proceedings of the IEEE Int'l Conference on Data Mining. San Jose, CA, Nov 29-Dec 2. pp 273-280.
Keogh, E. (2002). Exact indexing of dynamic time warping. In proceedings of the 26th Int'l Conference on Very
Large Data Bases. Hong Kong. pp 406-417.
Keogh, E. & Pazzani, M. (1998). An enhanced representation of time series which allows fast and accurate
classification, clustering and relevance feedback. In proceedings of the 4th Int'l Conference on Knowledge
Discovery and Data Mining. New York, NY, Aug 27-31. pp 239-241.
Keogh, E. & Smyth, P. (1997). A probabilistic approach to fast pattern matching in time series databases. In
proceedings of the 3rd Int'l Conference on Knowledge Discovery and Data Mining. Newport Beach, CA, Aug
14-17. pp 24-20.
Keogh, E., Chakrabarti, K., Pazzani, M. & Mehrotra, S. (2001). Locally adaptive dimensionality reduction for
indexing large time series databases. In proceedings of ACM SIGMOD Conference on Management of Data.
Santa Barbara, CA, May 21-24. pp 151-162.
Kibler, D., & Langley, P. (1988). Machine learning as an experimental science. In Proceedings of the 3rd
European Working Session on Learning. pp. 81-92.
Kim, S,. Park, S., & Chu, W. (2001). An Index-based approach for similarity search supporting time warping in
large sequence databases. In Proceedings 17th International Conference on Data Engineering, pp 607-614.
Kim, E., Lam, J. M. & Han, J. (2000). AIM: approximate intelligent matching for time series data. In
proceedings of Data Warehousing and Knowledge Discovery, 2nd Int'l Conference. London, UK, Sep 4-6. pp
347-357.
Korn, F., Jagadish, H. & Faloutsos, C. (1997). Efficiently supporting ad hoc queries in large datasets of time
sequences. In proceedings of the ACM SIGMOD Int'l Conference on Management of Data. Tucson, AZ, May
13-15. pp 289-300.
Lam, S. K. & Wong, M. H. (1998). A fast projection algorithm for sequence data searching. Data & Knowledge
Engineering, Vol. 28(3). pp 321-339.
Lavrenko, V., Schmill, M., Lawrie, D., Ogilvie, P., Jensen, D. & Allan, J. (2000). Mining of concurrent text and
time series. In proceedings of the 6th ACM SIGKDD Int'l Conference on Knowledge Discovery and Data Mining
Workshop on Text Mining. Boston, MA, Aug 20-23. pp 37-44.
Lee, S., Chun, S., Kim, D., Lee, J. & Chung, C. (2000). Similarity search for multidimensional data sequences.
In proceedings of the 16th Int'l Conference on Data Engineering. San Diego, CA, Feb 28-Mar 3. pp 599-608.
Li, C., Yu, P. S. & Castelli, V. (1998). MALM: a framework for mining sequence database at multiple
abstraction levels. In proceedings of the 7th ACM CIKM Int'l Conference on Information and Knowledge
Management. Bethesda, MD, Nov 3-7. pp 267-272.
Loh, W., Kim, S. & Whang, K. (2000). Index interpolation: an approach to subsequence matching supporting
normalization transform in time-series databases. In proceedings of the 9th ACM CIKM Int'l Conference on
Information and Knowledge Management. McLean, VA, Nov 6-11. pp 480-487.
Park, S. (2001). Personal communication.
Park, S., Chu, W. W., Yoon, J. & Hsu, C. (2000). Efficient searches for similar subsequences of different
lengths in sequence databases. In proceedings of the 16th Int'l Conference on Data Engineering. San Diego, CA,
Feb 28-Mar 3. pp 23-32.
Park, S., Kim, S. & Chu, W. W. (2001). Segment-based approach for subsequence searches in sequence
databases. In proceedings of the 16th ACM Symposium on Applied Computing. Las Vegas, NV, Mar 11-14. pp
248-252.
Park, S., Lee, D. & Chu, W. W. (1999). Fast retrieval of similar subsequences in long sequence databases. In
proceedings of the 3rd IEEE Knowledge and Data Engineering Exchange Workshop. Chicago, IL, Nov 7.
Polly, W. P. M. & Wong, M. H. (2001). Efficient and robust feature extraction and pattern matching of time
series by a lattice structure. In proceedings of the 10th ACM CIKM Int'l Conference on Information and
Knowledge Management. Atlanta, GA, Nov 5-10. pp 271-278.
Popivanov, I. & Miller, R. J. (2002). Similarity search over time series data using wavelets. In proceedings of
the 18th Int'l Conference on Data Engineering. San Jose, CA, Feb 26-Mar 1. pp 212-221.
Pratt, K. B. & Fink, E. (2002). Search for patterns in compressed time series. Int'l Journal of Image and
Graphics. to appear.

Prechelt. L. (1995). A quantitative study of neural network learning algorithm evaluation practices. In
proceedings of the 4th Int’l Conference on Artificial Neural Networks. pp. 223-227.
Qu, Y., Wang, C. & Wang, X. S. (1998). Supporting fast search in time series for movement patterns in
multiples scales. In proceedings of the 7th ACM CIKM Int'l Conference on Information and Knowledge
Management. Bethesda, MD, Nov 3-7. pp 251-258.
Rafiei, D. & Mendelzon, A. O. (1998). Efficient retrieval of similar time sequences using DFT. In proceedings
of the 5th Int'l Conference on Foundations of Data Organization and Algorithms. Kobe, Japan, Nov 12-13.
Rafiei, D. (1999). On similarity-based queries for time series data. In proceedings of the 15th IEEE Int'l
Conference on Data Engineering. Sydney, Australia, Mar 23-26. pp 410-417.
Shahabi, C., Tian, X. & Zhao, W. (2000). TSA-tree: a wavelet based approach to improve the efficiency of
multi-level surprise and trend queries. In proceedings of the 12th Int'l Conference on Scientific and Statistical
Database Management. Berlin, Germany, Jul 26-28. pp 55-68.
Shatkay, H. & Zdonik, S. (1996). Approximate queries and representations for large data sequences. In
proceedings of the 12th IEEE Int'l Conference on Data Engineering. New Orleans, LA, Feb 26-Mar 1. pp 536-
545.
Simon, J. L. (1994). What some puzzling problems teach about the theory of simulation and the use of
resampling. The American Statistician, Vol. 48(4). Nov. pp 1-4.
Struzik, Z. & Siebes, A. (1999). The Haar wavelet transform in the time series similarity paradigm. In
proceedings of Principles of Data Mining and Knowledge Discovery, 3rd European Conference. Prague, Czech
Republic, Sept 15-18. pp 12-22.
Walker, J. (2001). HotBits: Genuine random numbers generated by radioactive decay.
www.fourmilab.ch/hotbits/
Wang, C. & Wang, X. S. (2000a). Multilevel filtering for high dimensional nearest neighbor search. In
proceedings of ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery.
Dallas, TX, May 14. pp 37-43.
Wang, C. & Wang, X. S. (2000b). Supporting content-based searches on time series via approximation. In
proceedings of the 12th Int'l Conference on Scientific and Statistical Database Management. Berlin, Germany,
Jul 26-28. pp 69-81.
Wang, C. & Wang, X. S. (2000c). Supporting subseries nearest neighbor search via approximation. In
proceedings of the 9th ACM CIKM Int'l Conference on Information and Knowledge Management. McLean, VA,
Nov 6-11. pp 314-321.
Wu, L., Faloutsos, C., Sycara, K. & Payne, T. R. (2000a). FALCON: feedback adaptive loop for content-based
retrieval. In proceedings of the 26th Int'l Conference on Very Large Data Bases. Cairo, Egypt, Sept 10-14. pp
297-306.
Wu, Y., Agrawal, D. & El Abbadi, A. (2000b). A comparison of DFT and DWT based similarity search in time-
series databases. In proceedings of the 9th ACM CIKM Int'l Conference on Information and Knowledge
Management. McLean, VA, Nov 6-11. pp 488-495.
Yi, B. & Faloutsos, C. (2000). Fast time sequence indexing for arbitrary lp norms. In proceedings of the 26th
Int'l Conference on Very Large Databases. Cairo, Egypt, Sept 10-14. pp 385-394.
Yi, B., Jagadish, H. & Faloutsos, C. (1998). Efficient retrieval of similar time sequences under time warping. In
proceedings of the 14th Int'l Conference on Data Engineering. Orlando, FL, Feb 23-27. pp 201-20.

Eamonn Keogh is an assistant professor at the University of California, Riverside. He received his Ph.D. from
the University of California, Irvine. His research interests include artificial intelligence, data mining and
information retrieval.

Shruti Kasetty was an undergraduate student in Computer Science and Engineering at the University of
California - Riverside, when the original draft of this paper was completed. She is now at the University of
Michigan - Ann Arbor, pursuing her Master’s degree in Computer Science.

	1. Introduction
	2. Survey
	2.1. Size of test datasets
	2.2. Number of rival methods
	2.3. Number of different test datasets
	3. Indexing (Query by Content)
	3.1. Implementation bias
	3.2. Data bias
	3.3. Empirical demonstration of implementation and data Bias
	3.3.1. demonstration of data bias
	3.3.2 demonstration of implementation bias
	3.3.3 A real world case study illustrating the problems of implementation and data bias

	4. Classification and Clustering
	4.1 Subjective evaluation of similarity
	4.2. Objective evaluation of similarity

	5. Segmentation
	5.1 Data bias in segmentation

	6. Conclusions and Recommendations
	Acknowledgements
	References

