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Abstract. In the last decade there has been an explosion of interest in mining time series data. Literally 
hundreds of papers have introduced new algorithms to index, classify, cluster and segment time series. In this 
work we make the following claim. Much of this work has very little utility because the contribution made 
(speed in the case of indexing, accuracy in the case of classification and clustering, model accuracy in the case 
of segmentation) offer an amount of “improvement” that would have been completely dwarfed by the variance 
that would have been observed by testing on many real world datasets, or the variance that would have been 
observed by changing minor (unstated) implementation details.    

To illustrate our point, we have undertaken the most exhaustive set of time series experiments ever attempted, 
re-implementing the contribution of more than two dozen papers, and testing them on 50 real world, highly 
diverse datasets. Our empirical results strongly support our assertion, and suggest the need for a set of time 
series benchmarks and more careful empirical evaluation in the data mining community.   
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1.  Introduction 
 
In the last decade there has been an explosion of interest in mining time series data. 
Literally hundreds of papers have introduced new algorithms to index, classify, cluster 
and segment time series. In this work we make the following claim. Much of the work in 
the literature suffers from two types of experimental flaws, implementation bias and data 
bias (defined in detail below). Because of these flaws, much of the work has very little 
generalizability to real world problems.  
In particular, we claim that many of the contributions made (speed in the case of 
indexing, accuracy in the case of classification and clustering, model accuracy in the case 
of segmentation) offer an amount of “improvement” that would have been completely 
dwarfed by the variance that would have been observed by testing on many real world 
datasets, or the variance that would have been observed by changing minor (unstated) 
implementation details. 
 
In order to support our claim we have conducted the most exhaustive set of time series 
experiments ever attempted, re-implementing the contribution of more than 25 papers and 
testing them on 50 real word datasets. Our results strongly support our contention.   



We are anxious that this work should not be taken as been critical of the data mining 
community. We note that several papers by the current first author are among the worst 
offenders in terms of weak experimental evaluation. While preparing the survey we read 
more than 360 data mining papers and we were struck by the originality and diversity of 
approaches that researchers have used to attack very difficult problems. Our goal is 
simply to demonstrate that empirical evaluations in the past have often been inadequate, 
and we hope this work will encourage more extensive experimental evaluations in the 
future.  
For concreteness we begin by defining the various tasks that occupy the attention of most 
time series data mining research. 
• Indexing (Query by Content): Given a query time series Q, and some 

similarity/dissimilarity measure D(Q,C), find the nearest  matching time series in 
database DB. 

• Clustering: Find natural groupings of the time series in database DB under some 
similarity/dissimilarity measure D(Q,C). 

• Classification: Given an unlabeled time series Q, assign it to one of two or more 
predefined classes. 

• Segmentation:  Given a time series Q containing n datapoints, construct a model Q , 
from K piecewise segments (K << n) such that Q  closely approximates Q. 

Note that segmentation has two major uses. It may be performed in order to determine 
when the underlying model that created the time series has changed (Gavrilov et al., 
2000, Ge and Smyth, 2000), or segmentation may simply be performed to created a high 
level representation of the time series that supports indexing, clustering and classification 
(Ge and Smyth, 2000, Keogh and Pazzani, 1998, Keogh and Smyth, 1997, Lavrenko et 
al., 2000, Li et al., 1998, Park et al., 2001, Polly and Wong, 2001, Pratt and Fink, 2002, 
Qu et al., 1998, Shatkay and Zdonik, 1996, Wang and Wang, 2000b). 

As mentioned above, our experiments were conducted on 50 real world, highly diverse 
datasets. Space limitations prevent us from describing all 50 datasets in detail, so we 
simply note the following. The data represents the many areas in which time series data 
miners have investigated, including finance, medicine, biometrics, chemistry, astronomy, 
robotics, networking and industry. We also note that all data and code used in this paper 
is available for free by emailing the first author. 

The rest of this paper is organized as follows. In Section 2 we survey the literature on 
time series data mining, and summarize some statistics about the empirical evaluations. 
In Section 3, we consider the indexing problem, and demonstrate with extensive 
experiments that many of the published results do not generalized to real world problems. 
Section 4 considers the problem of evaluating time series classification and clustering 
algorithms. In Section 5 we show that similar problems occur for evaluation of 
segmentation algorithms. Finally in Section 6 we summarize our findings and offer 
concrete suggestions to improve the quality of evaluation of time series data mining 
algorithms.   
 



2.  Survey 
 
In order to assess the quality of empirical evaluation in the time series data mining 
community we begin by surveying the literature. Although we reviewed more than 360 
papers, we only included the subset of 57 papers actually referenced in this work when 
assessing statistics about the number of datasets etc. The subset was chosen based on the 
following (somewhat subjective) criteria. 
• Was the paper ever referenced? Self-citations were not counted. The rule was relaxed 

for paper published in the last year because of publishing delays. We used 
ResearchIndex (http://citeseer.nj.nec.com/cs) to make this determination.  

• Was the paper published in a conference or journal likely to be read by a data miner? 
For example, several interesting time series data mining papers have appeared in 
medical and signal processing conferences, but are unlikely to come to the attention 
of the data mining community. 

The survey is very comprehensive, but was not intended to be exhaustive. Such a goal 
would in any case be subjective (should a paper which introduces a new clustering 
algorithm, and mentions that it could be used for time series be included?). In general the 
papers come from high quality conferences and journals, including (SIG)KDD (11), 
ICDE (11), VLDB (5), SIGMOD/PODS (5), and CIKM (6). 
Having obtained the 57 papers, we extracted various statistics (discussed below) from 
them about their empirical evaluation. In most cases this was easy, but occasionally a 
paper was a little ambiguous in explaining some feature of its empirical evaluation. In 
such cases we made an attempt to contact the author for clarification, and failing that, 
used our best judgment.  
In presenting the results of the survey, we echo the caution of Prechelt, that “while high 
numbers resulting from such counting cannot prove that the evaluation has high quality, 
low numbers (suggest) that the quality is low” (1995). 
 
2.1. Size of test datasets 
 
We recorded the size of the test dataset for each paper. Where two or more datasets are 
used, we considered only the size of the largest.  
The results are quite surprising; the median size of the test database was only 10,000 
objects. Approximately 89% of the test databases could comfortably fit on a 1.44 Mb 
floppy disk. 
 
2.2. Number of rival methods  
 
Another surprising finding of the survey is the relative paucity of rival methods to which 
the contribution of the paper is compared. The median number is 1 (The average is 0.91), 
but this number includes very unrealistic strawman. For example many papers (including 
one by the current first author (Keogh and Smyth, 1997)) compare times for an indexing 
method to sequential scan where both are preformed in main memory. However, it is well 
understood sequential scan enjoys a tenfold speed up when performed on disk because 



any indexing technique must perform costly random access, whereas sequential scan can 
take advantage of an optimized linear traverse of the disk (Keogh et al., 2001). 
The limited number of rival methods is particularly troubling for papers that introduce a 
novel similarity measure. Although 29 of the papers surveyed introduce a novel similarity 
measure, only 12 of them compare the new measure to any strawman. The average 
number of rival similarity measures considered is only 0.97.  
            
2.3. Number of different test datasets  
 
Although the small sizes of the test databases and the relatively scarcity of comparisons 
with rival methods is by itself troublesome, the most interesting finding concerns the 
number of datasets used in the experimental evaluation. On average, each contribution is 
tested on 1.85 datasets (1.26 real and 0.59 synthetic). This numbers are astonishingly low 
when you consider that new machine learning algorithms are typically evaluated on at 
least a dozen datasets (Cohen, 1993, Kibler and Langley, 1988). 
In fact, we feel that the numbers above are optimistic. Of the 30 papers that use two or 
more datasets, a very significant fraction (64%), use both stock market data and random 
walk data. However, we strongly believe these really should be counted as the same 
dataset. It is well known that random walk data can perfectly model stock market data is 
terms of all statistical properties, including variance, autocorrelation, stationarity etc 
(Faloutsos et al., 1994, Simon, 1994).  
Work by the late Julian L. Simon suggested that humans find it impossible to 
differentiate between the two (1994). To confirm this finding we asked 12 professors at 
UCRs Anderson Graduate School of Management to look at Figure 1 and determine 
which three sequences are random walk, and which three are real S&P500 stocks. The 
confusion matrix is show in Table 1. 

 

Figure 1. Six time series, three are random walk data, and three are real S&P500 stocks. Experiments 
suggest that humans cannot tell real and synthetic stock data apart (all the sequences on the right are real).  

Table 1. The confusion matrix for human experts in attempting to differentiate between random walk data 
and stock market data. 

Predicted 
 

S&P Stock Random Walk 
S&P Stock 20 16 

Actual 
Random Walk 16 20 

 



The accuracy of the humans was 55.6%, which does not differ significantly from random 
guessing. 
Given the above, if we consider stock market and random walk data to be the same, each 
paper in the survey is tested on average on only 1.28 different datasets. This number 
might be reasonable if the contribution had being claimed for only a single type of data 
(Gavrilov et al., 2000, Lavrenko et al., 2000), or it had been shown that the choice of 
dataset has little influence on the outcome. However, the choice of dataset has a huge 
effect on the performance of time series algorithms. We will demonstrate this fact in the 
next 3 sections of this work.  
 
3.  Indexing (Query by Content) 
 
Similarity search in time series databases has emerged as an area of active interest since 
the classic first paper by Agrawal et al. (1993). More than 68% of the indexing 
approaches surveyed here use the original GEMINI framework (Faloutsos et al., 1994), 
but suggest a different approach to the dimensionality reduction stage. The proposed 
representations include the Discrete Fourier Transform (DFT) (Agrawal et al., 1993, Chu 
and Wong, 1999, Faloutsos et al., 1997, Kahveci et al., 2002, Rafiei and Mendelzon, 
1998, Rafiei, 1999), several kinds of Wavelets (DWT) (Chan and Fu, 1999, Kahveci and 
Singh, 2001, Popivanov and Miller, 2002, Shahabi et al., 2000, Wang and Wang, 2000b, 
Wu et al., 2000b), Singular Value Decomposition (Keogh et al., 2001, Korn et al., 1997), 
Adaptive Piecewise Constant Approximation (Keogh et al., 2001), Inner Products 
(Ferhatosmanoglu et al., 2001) and Piecewise Aggregate Approximation (PAA) (Yi and 
Faloutsos, 2000). The majority of work has focused solely on performance issues, 
however some authors have also considered other issues such as supporting non 
Euclidean distance measures (Keogh et al., 2001, Rafiei, 1999, Yi and Faloutsos, 2000) 
and allowing queries of arbitrary length (Keogh et al., 2001, Loh et al., 2000, Yi and 
Faloutsos, 2000). 
    
3.1. Implementation bias   
 
Since most time series indexing techniques use the same indexing framework, and 
achieve the claimed speedup solely with the choice of representation, it is important to 
compare techniques in a manner that is free of implementation bias.  

Definition:  Implementation bias is the conscious or unconscious disparity in the 
quality of implementation of a proposed approach, vs. the quality of implementation 
of the competing approaches. 

Implementing fairly complex indexing techniques allows many opportunities for 
implementation bias. For example, suppose you hope to demonstrate that DWT is 
superior to DFT. With shift-normalized data (Chu and Wong, 1999, Kahveci et al., 2002) 
the first DWT coefficient is zero so you could take advantage of that fact by indexing the 
2nd to N+1th coefficients, rather than the 1st to Nth coefficients. However, you might 
neglect doing a similar optimization for DFT, whose first real coefficient is also zero for 
normalized data. Another possibility is that you might use the simple O(n2) DFT 
algorithm rather than spend the time to code the more complex O(nLogn) radix 2 



algorithm (Keogh et al., 2001). In both these cases DFT’s performance would be 
artificially deflated relative to DWT. 
One possible solution to the problem of implementation bias is extremely conscientious 
implementations of all approaches, combined with diligent explanations of the 
experimental process.  Another possibility, which we explain below, is to design 
experiments that are free from the possibility of implementation bias.  
Since all the exact indexing techniques use the same basic framework, the efficiency of 
indexing depends only on how well the dimensionality-reduced approximation can model 
the distances between the original objects. We can measure this by calculating the 
tightness of the lower bounds for any given representation. 

Definition: The tightness of the lower bound (denoted T ) for any given 
representation is the ratio of the estimated distance between two sequences under that 
representation, over the true distance between the same two sequences.   

Note that T is in the range [0,1]. A value of 1 would allow a constant time search 
algorithm, and a value of 0 would force the indexing structure to degrade to sequence 
scan. In fact, because sequential scan can take advantage of a linear traverse of the disk, 
whereas any indexing scheme must make wasteful random disk accesses, it is well 
understood that T must be significantly greater than 0 if we are to use the representation 
to beat sequential scan (Keogh et al., 2001). Since one can always create artificial data for 
any representation that will give an arbitrary value of T, it should be estimated for a 
particular dataset by random sampling. Note that the value of T for any given 
dimensionality reduction technique depends only on the data and is independent of any 
implementation choices such as page size, buffer size, computer language, hardware 
platform, seek time etc. A handful of papers in the survey already make use of a similar 
measure to compare the quality of representations (Chan and Fu, 1999, Keogh et al., 
2001). 
This idea of an implementation free evaluation of performance is by no means new. In 
artificial intelligence, researchers often compare search algorithms by reporting the 
number of nodes expanded, rather than the CPU times (Kibler and Langley, 1988). The 
problem of implementation bias is also well understood in other computer science 
domains, including parallel processing (Bailey, 1991).  
 
3.2. Data bias   
 
As mentioned above, the tightness of the lower bound can be estimated by random 
sampling of a dataset. However we have not yet addressed the importance of which 
dataset(s) are sampled. The indexing papers included in this survey tested their approach 
on a median of 1 datasets. This would be reasonable if the utility of the approach was 
only being claimed for a single type of data, for example “More Efficient Indexing of 
ECG Time Series” or “A New Approach to Indexing Stock Market Data”. However, none 
of the papers make such a limited claim. The papers are implicitly or explicitly claiming 
to be improvements over the state of the art on any time series data. In fact, the choice of 
test data has a great effect on the experimental results, and virtually all papers surveyed 
suffer from data bias. 



Definition:  Data bias is the conscious or unconscious use of a particular set of 
testing data to confirm a desired finding. 

There does not appear to be a simple cure for data bias. One possibility is to limit the 
scope of the claim for a new approach to that which has actually been demonstrated, e.g 
“Faster indexing of Stock Market Data”. Another possibility, which we favor, is to test 
the algorithms on a large, heterogeneous set of time series. Ideally this set should include 
data that covers the spectrum of time series properties; stationarity/ non-stationarity, 
noisy/ smooth, cyclical/ non-cyclical, symmetric/ asymmetric, etc. 
 
3.3. Empirical demonstration of implementation and data Bias   
 
To demonstrate the need for an implementation-free measure of the quality of indexing 
technique, and the absolute necessity of testing new algorithms on several datasets, 
consider the following contradictory claims made with regard the relative indexing 
abilities of DFT and DWT (wavelets): 
• “Several wavelets outperform the Haar wavelet (and DFT)” (Popivanov and Miller, 

2002).  
• “DFT-based and DWT-based techniques yield comparable results in similarity 

search” (Wu et al., 2000b).  
• “Haar wavelets perform slightly better that DFT” (Kahveci and Singh, 2001).  
• “DFT filtering performance is superior to DWT” (Kawagoe and Ueda, 2002) 
Which, if any, of these statements are we to believe?  Because of the problems of 
implementation bias and the limited number of test datasets we feel little credence can be 
given to any of the claims. To demonstrate this we have performed a comprehensive 
series of experiments that show that the variance due to implementation bias and testing 
on different data can far outweigh the improvements claimed in the literature.  
We calculated the value of T for both DFT and DWT. To ensure that we obtained good 
estimates we averaged over 100,000 randomly chosen subsequences from each dataset. 
For fairness we used the same 100,000 subsequences for each approach. To ensure 
randomness in our sampling technique we used true random numbers that were created 
by a quantum mechanical process (Walker, 2001).  
 
3.3.1. demonstration of data bias 
 
The three papers listed above experimented on a maximum of 3 datasets. If we use that 
number of datasets we can demonstrate essentially any finding we wish. For example, by 
working with the Powerplant, Infrasound and Attas datasets we can find that DFT 
outperforms the Haar wavelet, as shown in Figure 2. 
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Figure 2. Experiments on the Powerplant, Infrasound and Attas datasets “demonstrate” that DFT outperforms 
DWT-Haar for indexing time series. 

In contrast if we worked with the Network, ERPdata and Fetal EEG datasets we could 
conclude that there is no real difference between DFT and Haar, as suggested by Figure 
3. 
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Figure 3. Experiments on the Network, EPRdata and Fetal EEG datasets “demonstrate” that DFT and DWT-
Haar have the same performance for indexing time series. 

Finally had we had chosen the Chaotic, Earthquake and Wind datasets we could use the 
graphs in Figure 4 to demonstrate “convincingly” that Haar is superior to DFT. 
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Figure 4. Experiments on the Chaotic, Earthquake and Wind datasets “demonstrate” that DWT-Haar 
outperforms DFT for indexing time series. 



Although we used the value of T to demonstrate the problem, we also confirmed the 
findings on an implemented system, using an R-tree running on AMD Athlon 1.4 GHZ 
processor, with 512 MB of physical memory and 57.2 GB of secondary storage. The 
results were essentially identical, so we omit the graphs for brevity.  
Note that we are not claiming any duplicity by the authors of the excellent papers listed 
above. We are merely demonstrating that the limited number of datasets used in the 
typical indexing paper severely limits the claims one can make.   
 
3.3.2 demonstration of implementation bias 
  
The vast majority of papers on indexing that do use a strawman comparison use the 
simplest possible one, sequential scanning. Here we will demonstrate the potential for 
implementation bias with sequential scanning performed in main memory. 
The Euclidian distance function is shown in Eq. 1. 
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The basic sequential search algorithm is shown in Table 2. 
Table 2. The Sequential Search Algorithm 

Algorithm sequential_scan(data,query) 
best_so_far = inf; 
for every item in the database 
  if euclidian_dist(datai,query) < best_so_far 
     pointer_to_best_match = i; 
     best_so_far = euclidian_dist(datai,query); 
  end; 
end; 

One possibility implementation, which we call Naïve, is to calculate the Euclidian 
distance as shown in Eq. 1 with a loop to accumulate all the partial sums, followed by the 
taking of the square root. A possibility for optimization, which we call Opt1, is to neglect 
taking the square root. Since the square root function is monotonic, the ranking of the 
nearest neighbors will be identical under this scheme (Yi and Faloutsos, 2000). Finally we 
consider another optimization, which we call Opt2, which is simply to keep comparing 
the best_so_far variable to the partial sums at each iteration of the loop. If the partial sum 
ever exceeds the value of best_so_far we can admissibly abandon that calculation, since 
the partial distance can never decrease. To test the effect of these minor implementation 
details we performed 1-nearest neighbor searches in a random walk dataset, with a query 
length of 512 for increasingly larger datasets. The results are shown in Figure 5. 
It is obvious that these very minor implementation details can produce large differences. 
If we are comparing a novel algorithm to sequential scan, and omit details of sequential 
scan implementation, it would be very hard to gauge the merit of our contribution. Note 
that for simplicity we only considered a main memory search. If we consider a disk-based 
search, there are a myriad of other implementation details that could effect the 
performance of sequential scan by at least an order of magnitude. 
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Figure 5. The affect of minor implementation details on the performance of sequential scan, for increasing large 
databases. 

It is easy to find examples of data bias in the literature, it is much more difficult to know 
the scale of the problem for implementation bias. By its very nature, it is almost 
impossible to know what fraction of a claimed improvement should be credited to the 
proposed approach, and what fraction may be due to implementation bias. However, 
there are a handful of examples where this is clear. For example, one paper included in 
the survey finds a significant performance gap between the indexing abilities of Haar 
wavelets and Piecewise Aggregate Approximation (PAA) (Popivanov and Miller, 2002). 
However it was proved by two independent groups of researchers that these two 
approaches have exactly the same tightness of lower bounds when the number of 
dimensions is a power of two (and very little difference when the number of dimensions 
is not a power of two) (Keogh et al., 2001, Yi and Faloutsos, 2000). We empirically 
confirmed this fact 4,000,000 times during the experiments in Section 3.3.1. While there 
may be small differences in the CPU time to deal with the two representations, the order 
in which the original sequences are retrieved from disk by the index structure should be 
the same for both approaches, and disk time completely dominates CPU for time series 
indexing under Euclidean distance. We strongly suspect the spurious result reported 
above was the result of implementation bias, so we conducted an experiment to 
demonstrate how a simple implementation detail could produce an effect which is larger 
than the approximately 11% difference claimed.   
We began our experiment by performing a fair comparison of the tightness of lower 
bounds for Haar and PAA on each of our 50 datasets, with a query length of 256 and 8 
dimensions. Rather than estimate T with 100,000 random samples as in Section 3.1.1, we 
averaged over 100 samples as in the paper in question. 
We repeated the experiment once more; this time neglecting to take advantage of the fact 
the first Haar coefficient is zero for normalized data. In other words, we wastefully index 
a value that is a constant zero. Once again we estimated T by averaging over 100 samples 
for each dataset. 
For each dataset we calculated the ratio of the correct implementation’s value of T to the 
poor implementation’s value of T. The 50 results are plotted as a histogram in Figure 6. 
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Figure 6. The distribution of the ratios of the results of correctly implemented experiments to experiments 
that have a slight implementation bias. 

It is surprising to note that sometimes implementation bias that should favor an approach 
can actually hurt it, as happened 4 times out of the 50 experiments. However we must 
remember that the values of T for each dataset were only estimated from 100 samples, 
and the finding is not statistically significant. What is clear from the experiment however 
is that a simple minor implementation detail can produce effects that are as large as the 
claimed improvement of the proposed approach. 

3.3.3 A real world case study illustrating the problems of implementation and data bias 
  
In this section we will carefully deconstruct a recent paper to illustrate how data bias and 
implementation bias can render the contribution of a paper nil. We will consider a paper 
by Kim et al. (2001). Note that we chose this paper simply because the clear writing 
makes it easy to deconstruct and the detailed exposition of the method allows exact 
reimplementation. We do not mean to imply anything about the quality of the generally 
excellent work by these authors. Indeed the paper in question should be commended for 
including a rigorous proof of the proposed method, a rarity in the data mining literature. 
Once again, our point is simply to illustrate that even experienced researchers can be 
mislead by data and implementation bias to make extravagant and unwarranted claims. In 
particular the claim made is that the proposed technique can allow similarity search under 
Dynamic Time Warping (DTW) that is up to 720 times faster than sequential search. As 
we shall show, the correct claim for the approach is that it can produce meaningless 
results quickly, or meaningful results very slowly (slower than sequential scan), but it 
cannot produce meaningful results quickly. 

The paper is concerned with the laudable idea of indexing DTW. It has been forcibly 
demonstrated that in some domains the Euclidean distance is a brittle distance measure, 
because it is very sensitive to small distortions in the time axis (Keogh 2002, Berndt and 
Clifford, 1996, Yi et al. 1998). Dynamic Time Warping is a technique that measures the 
distance between two time series after first aligning them in the time axis. The drawback 
of DTW from a practical point of view is that it is O(n2), where n is the length of the time 
series of interest, in addition it cannot be indexed by standard spatial access methods 
which require the distance measure to be a metric. By contrast, Euclidean distance is 
merely O(n), and is trivially indexable (Agrawal et al., 1993). The core contribution of 
the paper by Kim et al. (2001) is to introduce a novel linear time lower bounding 
technique for DTW. The lower bounding technique allows faster linear search, by 



allowing one to prune off a fraction of the database by noting that the lower bound 
estimate of the distance to a candidate sequence is greater than the currently known best-
so-far match. However, an additional claimed feature of the lower bounding estimate is 
that it is indexable, thus allowing one to retrieve candidate sequences in “most promising 
first” order. While a complete explanation of the technique is too detailed to present here, 
we have included a visual intuition of the lower bounding function in Figure 7 for 
completeness (See the original paper or Keogh, 2002. for a more detailed explanation). 
The lower bounding function works by extracting a 4-tuple-feature vector from each 
sequence. The features are the first and last elements of the sequence, together with the 
maximum and minimum values. The maximum squared difference of corresponding 
features is reported as the lower bound. 
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Figure 7. A visual intuition of the lower bounding measure introduced by Kim et al. The maximum of the 
squared difference between the two sequence’s first (A), last (D), minimum (B) and maximum points (C) is 
returned as the lower bound. 

Before detailing the problems with the contribution, we must review an important 
preprocessing step that is necessary before attempting to match two time series under 
Euclidean distance, Dynamic Time Warping or any other distance measure. Consider the 
two time series shown in Figure 8. Although they appear to have similar shapes, they 
occur at different offsets in the Y-Axis. The Euclidean distance between the two 
sequences is proportional to the length of the gray hatch lines. We can see that shifting 
the two sequences to the same offset will greatly reduce the reported distance and reveal 
the true similarity between the sequences. The optimal shifting can be quickly achieved 
by simply subtracting the mean of a sequence from the entire sequence. This step is 
known as “normalizing” the data1. Note that although the Euclidean distance is shown 
here for simplicity, identical remarks apply to DTW or any other distance measure. 

 

                                                 
1 There are some other steps that may be included in the normalizing step, such as rescaling the 

time series and removing linear trend. We will ignore these steps for simplicity, since they don’t 
affect the argument that follows. 
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Figure 8. A visual intuition of the necessity to normalize time series before measuring the distance between 
them. The two sequences Q and C, on the left appear to have approximately the same shape, but have different 
offsets in the Y-Axis. The Euclidean distance between two sequences is proportional to the length of the gray 
hatch lines shown connecting the two sequences in the two graphics on the right. In the first case the data is 
unnormalized, and the reported distance greatly overstates the subjective dissimilarity. Normalizing the data 
reveals the true similarity of the two time series. 

What would happen if we didn’t normalize the time series before measuring the 
similarity? We can illustrate by clustering some Space Shuttle telemetry data with and 
without normalization as in Figure 9. 
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Figure 9. A visual explanation of the need to normalize time series before measuring their similarity. A) Seven 
time series obtained from inertial sensors on board Space Shuttle mission STS-57. B) The clustering obtained 
when we first normalize the signals, the clustering appears very natural and subjectively correct. C) The 
clustering obtained if we do not normalize the signals, the clustering appears essentially random. 

The results are quite startling, without normalization time series similarity has essentially 
no meaning. More concretely, very small changes in offset rapidly dwarf any information 
about the shape of the two time series in question. For example, if we clustered just the 
mean values of the time series, the resulting dendrogram would be almost 
indistinguishable from the one shown in Figure 9.C. It is important to realize that 
although Figure 9 shows time series with greatly differing offsets for clarity, even 



relatively small differences in offset, a tiny fraction of the variance of the signals, is 
enough to render the measurement of similarity meaningless. 

Having reviewed the need for normalization, we are now in a position to demonstrate our 
earlier claim that the work of Kim et al. (2001) cannot produce meaningful results 
quickly. The authors report only experiments with no normalization (Park 2001). If the 
dataset used was already normalized, or had extremely low variance in offset this might 
not matter, however, this is not the case; the variance of offsets is greater than that shown 
in Figure 9, and the similarity measurements are equally meaningless (although it 
depends on the length of the query, we found that the variance of offsets is typically 
orders of magnitude larger than the variance of the signals on the dataset in question). 

An obvious reaction is “so what”, can’t we just normalize the data and still get the 3 
orders of magnitude speedup claimed? The answer is no! If we normalize the data the 
lower bound becomes extremely weak, a tiny fraction of the true distance, and thus the 
pruning power of the lower bound is greatly reduced. In essence the problem is this, the 
lower bounding function is mostly measuring information about how far apart the two 
time series are, and not measuring information about shape. If the time series are far 
apart, the lower bound is very tight (although the similarity is meaningless), but when the 
time series are normalized, the lower bound is so weak and only a small handful of 
candidate time series can be pruned, certainly not enough to justify the computational 
overhead. 

To demonstrate our claim we tested the approach on 33 different datasets, using query 
lengths of 256, 512 and 1,042. In keeping with the author’s experiments, we compared 
the approach to sequential scan. We measured the normalized CPU cost (Keogh et al., 
2001), which takes into account the fact that sequential scan enjoys a tenfold speed up 
when performed on disk. 

Definition: The Normalized CPU cost: The ratio of average CPU time to execute a 
query using the index to the average CPU time required to perform a linear 
(sequential) scan. The normalized cost of linear scan is 1.0. 

The justification being that any indexing technique must perform costly random access, 
whereas sequential scan can take advantage of an optimized linear traverse of the disk. 
Rather than summarize all the results with graphs, we will simply note that the technique 
never once beat sequential scan on any one of our 111,375 test queries.  

Once again we must restate that we are not singling out this work for criticism. Only 57% 
of the papers in the survey explicitly state their normalization policy. For the papers that 
do not, we cannot be sure if their results are meaningful. The point of this section is to 
show that implementation bias, (the lack of normalization which helps the proposed 
technique while not affecting sequential scan), combined with data bias, (choosing a 
dataset with large offset variance), can result in work which appears to give dramatic 
speedup, but is actually worse that doing nothing at all. 

4.  Classification and Clustering 
 



Classification and clustering problems have been the subject of active research for 
decades (Cohen, 1993, Kibler and Langley, 1988). However the unique structure of time 
series means that most classic machine learning algorithms to not work well for time 
series. In particular the high dimensionality, very high feature correlation, and the 
(typically) large amounts noise that characterize time series data have been viewed as an 
interesting research challenge. Most of the contributions focus on providing a new 
similarity measure as a subroutine to an existing classification or clustering algorithm, so 
for simplicity we shall only consider the contribution of the suggested similarity measure. 
How well do these similarity measures capture the true similarity of time series? There 
are two ways to answer this question, subjectively and objectively, we consider both 
below.  
 
4.1 Subjective evaluation of similarity   
 

Since a goal of data mining is often to find patterns that map onto human intuition, one 
possible way to judge the utility of a similarity measure is to show examples of time 
series that the proposed measure found to be similar/dissimilar. Surprisingly, many of the 
papers included in the survey, whose main contribution was to introduce a new similarity 
measure, fail to show even one example of a matching pair of time series (André-Jönsson 
and Badal, 1997, Bozkaya et al., 1997, Gavrilov et al., 2000, Goldin and Kanellakis, 
1995, Huang and Yu, 1999, Indyk et al., 2000, Kim et al., 2000, Lam and Wong, 1998, 
Lee et al., 2000, Park et al., 2001, Park et al., 1999, Qu et al., 1998, Wang and Wang, 
2000b). Moreover, showing some examples of matching time series is of little utility 
unless some strawman comparison is used. Many papers ask us to consider the quality of 
their proposed similarity measure without a single comparison to another technique 
(Agrawal et al., 1995b, André-Jönsson and Badal, 1997, Bozkaya et al., 1997, Huang and 
Yu, 1999, Keogh and Smyth, 1997, Lee et al., 2000, Li et al., 1998, Park et al., 2000, 
Park et al., 2001, Pratt and Fink, 2002, Wang and Wang, 2000b). This is particularly 
surprising since the most obvious strawman, Euclidian distance, is trivial to implement 
(For example, in the Matlab programming language it requires only 19 characters:    
sqrt(sum((q-c).^2))   ). 
We believe that one of the best (subjective) ways to evaluate a proposed similarity 
measure is to use it to create a dendrogram of several time series from the domain of 
interest (Keogh and Pazzani, 1998).  
Additional dendrograms can be created using other measures then plotted side by side 
with the propose approach. Figure 10 shows an example. 
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Figure 10. Dendrograms can be used to visually assess the usefulness of a similarity measure. Above a dataset 
of 8 objects is clustered using the single linkage method, with 3 different distance measures. Euclidean distance 
is a decade old strawman. The other two approaches have recently been proposed in data mining papers. 

Dendrograms are particularly attractive since a clustering of M objects summarizes O(M) 
measurements, however other possibilities of visualizing the quality of a similarity 
measure included projecting the time series into 2 dimensional space  (via MDS or SOMs 
for example (Debregeas and Hebrail, 1998)).  
 
4.2. Objective evaluation of similarity   
 
Given a database of labeled time series, objective measurements of the quality of a 
proposed similarity measure can be readily obtained by running simple classification 
experiments. Although a few such databases do exist, very few advocates of a new 
similarity measure have chosen to demonstrate their contribution in this manner. The 
work by Geurts is a notable exception (2001). To repair this omission, we have 
undertaken an experimental comparison of many of the techniques included in the 
survey. We tested on two publicly available datasets:  
• Cylinder-Bell-Funnel: This synthetic dataset has been in the literature for 8 years, 

and has been cited at least a dozen times (Geurts, 2001). It is a 3-class problem; we 
create 128 examples of each class for these experiments. 

• Control-Chart: This synthetic dataset has been freely available for the UCI Data 
Archive since June 1998 (Bay, 1999). It is a 6-class problem, with 100 examples of 
each class.  

Note that for both problems, informal experiments suggest humans can achieve an error 
rate of zero. For simplicity we use the 1-Nearest Neighbor algorithm, evaluated using 
“leaving-one-out”. We compare the proposed methods to the simplest strawman, 
Euclidean distance. This measure is well-known (Agrawal et al., 1993, Chan and Fu, 
1999, Chu and Wong, 1999, Das et al., 1997, Das et al., 1998, Faloutsos et al., 1997, 
Faloutsos et al., 1994, Ferhatosmanoglu et al., 2001, Kahveci and Singh, 2001, Keogh et 
al., 2001, Korn et al., 1997, Lam and Wong, 1998, Loh et al., 2000, Popivanov and 
Miller, 2002, Rafiei and Mendelzon, 1998, Rafiei, 1999, Wu et al., 2000b, Yi and 



Faloutsos, 2000, Yi et al., 1998), parameterless, trivial to implement and predates data 
mining by several decades.  
We originally intended to implement every proposed similarity measure in our survey, 
but several of the papers do not include a detailed enough description to allow 
reimplementation (Li et al., 1998, Qu et al., 1998). We contented ourselves with 
reimplementing 11 measures. Some of the measures require the user to set some 
parameters. In these cases we wrapped the classification algorithm in a loop for each 
parameter, searched over all possible parameters and reported only the best result.   
Table 3 summarized the results. 

Table 3. The error rates for various similarity measures 

Approach Cylinder-Bell-Funnel Control-Chart 
Euclidean Distance 0.003 0.013 
Aligned Subsequence [Park et al. 2001] 0.451 0.623 
Piecewise Normalization [Indyk et al. 2002] 0.130 0.321 
Autocorrelation Functions [Wang & Wang 2000b] 0.380 0.116 
Cepstrum [Kalpakis et. al. 2001] 0.570 0.458 
String (Suffix Tree) [Huang & Yu 1999] 0.206 0.578 
Important Points [Pratt & Fink 2002] 0.387 0.478 
Edit Distance [Bozkaya et al.1997] 0.603 0.622 
String Signature [Jonsson & Badal 1997] 0.444 0.695 
Cosine Wavelets [Huntala et al. 1999] 0.130 0.371 
Hölder [Struzik & Siebes] 0.331 0.593 
Piecewise Probabilistic  [Keogh & Smyth 1997] 0.202 0.321 

 
The results are quite surprising. None of the proposed techniques can beat the simple 
strawman. Their error rates are an order of magnitude worse than Euclidean distance. 
Several of the techniques have error rates close to the default rate (i.e. the same error you 
would get randomly guessing). Although the inability to perform well on these two 
objective tests does not necessarily mean the similarity measures in question are without 
any merit (there may exist datasets on which they have reasonable accuracy), one has to 
wonder about the contribution of a new similarity measure which fails to demonstrate its 
utility on any objective or subjective test2.  
 
5.  Segmentation  
 
A large fraction of the papers in the survey either introduce a segmentation algorithm as 
their main contribution, or utilize a segmentation algorithm as a subroutine. Although the 
segments created could be polynomials of an arbitrary degree, the most common 
representation of the segments are linear functions. Intuitively a Piecewise Linear 

                                                 
2 Once again we wish to note that the current first author introduced one of the poorly performing 

measures. 



Representation (PLR) refers to the approximation of a time series Q, of length n, with K 
straight lines. Figure 8 contains an example. 

 

Figure 11. An example of a time series with its piecewise linear representation.  

Because K is typically much smaller that n, this representation makes the storage, 
transmission and computation of the data more efficient. Specifically, in the context of 
data mining, piecewise linear representation has been used to: 
• Support novel distance measures for time series, including “fuzzy queries” (Shatkay 

and Zdonik, 1996), weighted queries (Keogh and Pazzani, 1998), multiresolution 
queries (Li et al., 1998, Qu et al., 1998), dynamic time warping (Park et al., 2001, 
Pratt and Fink, 2002), autocorrelation queries (Wang and Wang, 2000b) and 
relevance feedback (Keogh and Pazzani, 1998). 

• Support concurrent mining of text and time series (Lavrenko et al., 2000). 
• Support novel clustering and classification algorithms (Keogh and Pazzani, 1998). 
• Support change point detection (Ge and Smyth, 2000, Guralnik and Srivastava, 

1999). 
Surprisingly, in spite of the ubiquity of this representation, with the exception of the work 
by Shatkay and Zdonik, (1996), there has been little attempt to understand and compare 
the algorithms that produce it. 
Although appearing under different names and with slightly different implementation 
details, most time series segmentation algorithms can be grouped into one of the 
following three categories. 
• Sliding-Windows (SW): A segment is grown until it exceeds some error bound. The 

process repeats with the next data point not included in the newly approximated 
segment. 

• Top-Down (TD): The time series is recursively partitioned until some stopping 
criteria is met. 

• Bottom-Up (BU): Starting from the finest possible approximation, segments are 
merged until some stopping criteria is met.   

We can measure the quality of a segmentation algorithm in several ways, the most 
obvious of which is to measure the reconstruction error for a fixed number of segments. 
The reconstruction error is simply the Euclidean distance between the original data and 
the segmented representation. 



 
5.1 Data bias in segmentation 
 
Given that we have 3 algorithms to produce a segmented version of a time series, it is 
natural to ask which is best. The papers in the survey that use a segmentation algorithm 
test on a median of 1 dataset. However, if we use only one dataset we can demonstrate 
any finding we wish! There are 3 different algorithms, therefore 3! = 6 possible rankings. 
We tested the algorithms on our 50 fifty datasets, asking each algorithm to reduce a 1,024 
datapoint time series to 64 segments. Amazingly, we found every possible ranking of the 
3 algorithms as shown in Table 4. 
 
Table 4. The 3 algorithms under consideration, ranked by reconstruction error (shown in brackets), on 6 datasets 

Dataset Best Algorithm Second-Best Algorithm Third-Best Algorithm 

Soiltemp TD (522.6) SW (538.0) BU (538.1) 
Darwin TD (575.2) BU (821.0) SW (833.9) 
pHdata SW (3.590) TD (4.013) BU (4.037) 
Winding SW (6.883) BU (113.0) TD (117.6) 
Balloon BU (168.1) TD (224.5) SW (234.1) 
Network BU  (11.02) SW (13.62) TD (891.4) 

 
Note that the fact that we could easily find datasets to demonstrate any ranking we wish 
does not preclude us from making a meaningful evaluation of the algorithms. In fact the 
Bottom-Up algorithm is significantly better than the other two approaches3. Our point, 
once again, is simply that little credence can be given to experimental results obtained 
from testing on a single dataset. 
 
6.  Conclusions and Recommendations  
 
In this work we have conducted a comprehensive survey of recent work on time series 
data mining. We have shown that because of several kinds of experimental flaws, in 
particular data bias and implementation bias, many of the results claimed in the literature 
have very little generalizability to real world problems. We have demonstrated our claim 
with the most comprehensive set of time series experiments ever undertaken. 
Once again we would like to note that we view this work as a “call to arms” to the data 
mining community, and not a criticism of the many wonderful and original papers cited 
here. The intended spirit of this paper is similar to the ironically titled work by Bailey, 
“Twelve ways to fool the masses when giving performance results on parallel computers” 
(1991). The author later noted that few, if any researchers set out to deliberately mislead 
the academic community, but unless greater effort is made to meaningfully compare rival 

                                                 
3 Bottom-Up outperformed Top-Down on 47 of 69 datasets, and it outperformed Sliding Windows 

on 58 of 69 datasets. 



approaches, the entire field is in danger of being viewed with suspicion. This current 
work is an echo of that sentiment for the time series data mining community.  
We conclude this paper with concrete suggestions for researchers working on time series 
data mining. 

• Algorithms should be tested on a wide range of datasets, unless the utility of the 
approach is only been claimed for a particular type of data. If possible, one 
subset of the datasets should be used to fine tune the approach, then a different 
subset of the datasets should be used to do that the actual testing. This 
methodology is widely used in the machine learning community to help prevent 
implementation and data bias  (Cohen, 1993).  

• Where possible, experiments should be designed to be free of the possibility of 
implementation bias. Note that this does not preclude the addition of extensive 
implementation testing.  

• Novel similarity measures should be compared to simple strawmen, such as 
Euclidian distance or Dynamic Time Warping. Some subjective visualization, or 
objective experiments should justify their introduction. 

• Where possible, all data and code used in the experiments should be made freely 
available to allow independent duplication of findings (Bay, 1999).   
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