
Data Editing Techniques to Allow the Application
of Distance-Based Outlier Detection to Streams

Vit Niennattrakul
Dept. of Computer Engineering

Chulalongkorn University
Bangkok 10330, Thailand

g49vnn@cp.eng.chula.ac.th

Eamonn Keogh
Dept. of Computer Science & Engineering

University of California, Riverside
Riverside, CA 92502, USA

eamonn@cs.ucr.edu

Chotirat Ann Ratanamahatana
Dept. of Computer Engineering

Chulalongkorn University
Bangkok 10330, Thailand
ann@cp.eng.chula.ac.th

Abstract— The problem of finding outliers in data has broad
applications in areas as diverse as data cleaning, fraud
detection, network monitoring, invasive species monitoring,
etc. While there are dozens of techniques that have been
proposed to solve this problem for static data collections, very
simple distance-based outlier detection methods are known to
be competitive or superior to more complex methods.
However, distance-based methods have time and space
complexities that make them impractical for streaming data
and/or resource limited sensors. In this work, we show that
simple data-editing techniques can make distance-based outlier
detection practical for very fast streams and resource limited
sensors. Our technique generalizes to produce two algorithms,
which, relative to the original algorithm, can guarantee to
produce no false positives, or guarantee to produce no false
negatives. Our methods are independent of both data type and
distance measure, and are thus broadly applicable.

Keywords - Data editing; Anomaly detection; Data stream

I. INTRODUCTION
Finding outliers in data has broad applications in areas as

diverse as data cleaning, fraud detection, telemedicine,
invasive species monitoring, etc. Given the ubiquity of this
problem, there have been a significant number of solutions
proposed, particularly in static data collections. However,
there is an increasing appreciation of the need to detect
outliers in real time on data streams. For the static case, it is
well known that very simple distance-based outlier detection
methods can be competitive or superior to more complex
methods [3]. For example, just in the context of time series
data, a recent extensive empirical study compared nine
different methods on nineteen different problems, and found
that “[distance-based outlier detection] is the best overall
technique among all techniques” [5]. Furthermore, distance-
based methods typically do not require careful settings of
many parameters, a notable weakness of many of the more
complex or domain specific solutions. Unfortunately,
however, distance-based methods have time and space
complexities that make them impractical for direct
application to streaming data and/or resource limited sensors.

In this work, we show that simple data-editing techniques
that were introduced in the context of classification can make
distance based outlier methods traceable, both in terms of

time and space, for streaming and resource limited
applications. To help the reader understand distance-based
outlier detection and our modifications to it, consider the
simple dataset in Figure 1.

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

2

1

3

4

5

6 7

Dataset D
 X Y t

d1 2 2 0.9

d2 2.5 2.5 0.9

d3 6.5 4 0.9
d4 8 6 0.9

d5 7 7 0.9

d6 6 8 0.9

d7 7 8 0.9

Figure 1. A small dataset D containing 7 items. Note that the ordering
of points in the database is arbitrary. The variable t refers to the
threshold, the radius of the circles.

In this toy example, we have been given a database of 7
normal objects and a single parameter, the threshold of 0.9.
If we are asked if a new data point Q is normal or an outlier,
then we simply scan the database to see if the new object is
within 0.9 unit of at least one object in the dataset. Once Q
encounters a near enough object, we say that Q has been
dismissed. Visually, this corresponds to asking if the new
point falls within one or more circles shown in Figure 1.
While this algorithm is very simple, and, apart from the
threshold value, is completely parameter free. It is
surprisingly effective, as previous works (with minor
differences [5][16]) and later experiments will show.

In this work, we introduce a solution to this problem
using a data editing technique [9]. A simple search-based
technique uses some heuristic functions to reduce the size of
a database, thereby guaranteeing that when elements from a
stream are examined with this edited database, the result will
be returned to users within a guaranteed time. The penalty
we must pay for this guarantee is either (our choice) slightly
increasing the false positive rate or slightly increasing the
false negative rate. In this work, we show that a simple
heuristic, iteratively removing one of the current nearest

neighbor pairs, produces excellent results across a wide
variety of domains.

This paper is organized as follows. Related work,
background material, and the necessary notation are
provided in Section II. In Section III, we introduce our main
idea, a cost-based editing algorithm, which can efficiently
reduce the size of the database while guaranteeing either no
false negatives or no false positives. Section IV demonstrates
the utility of our proposed technique for various domains.
Finally, we offer conclusions and directions for future work
in Section V.

II. RELATED WORK AND BACKGROUND
Outlier detection (deviation detection, exception mining,

novelty detection, etc.) is an important problem that has
attracted wide interest and numerous solutions. These
solutions can be broadly classified into several major ideas:

• Model-Based [2]: An explicit model of the domain is
built (i.e., a model of the heart, or of an oil refinery),
and objects that do not fit the model are flagged.

• Connectedness [11]: In domains where objects are
linked (social networks, biological networks), objects
with few links are considered potential anomalies.

• Density-Based [4]: Objects in low-density regions of
space are flagged.

• Classification-Based [10]: Many classification
algorithms can be cast as one-class classifiers, which
return a binary decision that recognizes the object as
either belonging to the same set as the (single-class)
training dataset or not.

• Distance-Based [1]: Given any distance measure,
objects that have distances to their nearest neighbors
that exceed a specific threshold are considered
potential anomalies.

Model-based methods require the building of a model,
which is often an expensive and difficult enterprise,
requiring the input of a domain expert. Connectedness
approaches are only defined for datasets with linkage
information. Density based models require the careful
settings of several parameters, have quadratic time
complexity, and may have difficulties in datasets that have
localized pockets with differing densities.

A. Background on Numerosity Reduction
Numerosity Reduction refers to any technique that

reduces the number of instances in a database while retaining
some essential properties [15]. It is also called various other
names, including prototype selection [9], instance
pruning [13], condensing, and data editing. Virtually all
numerosity reduction techniques have been proposed in the
context of nearest-neighbor classification, not on anomaly
detection. The objective functions of these two tasks are
different, i.e., maximizing training accuracy for nearest-
neighbor classification and maximizing coverage areas for
anomaly detection. In addition, the classification task has
two or more defined classes, so we just need to define a
decision boundary, whereas in anomaly detection we
typically have just one type of data annotation, “normal

data,” and we need to define a decision area. Unfortunately,
the goal of maintaining the best decision area is not
computable in polynomial time, because this problem can be
mapped to either the minimum set cover problem or the
maximum coverage problem; both are NP problems [8].

B. Notations
Table I summarizes the notation used in this paper; we

expand on the definitions below.

TABLE I. SYMBOL TABLE

Symbol Explanation
D A reference/training database consisting only of normal objects
di The ith data object in the training database D
N The size of the database D, i.e., N = |D|

S A reduced-size training database consisting of some data
objects in the database D

s A data object in the reduced-size database S
q A query object from a data stream
K The size of the database S, i.e., K = |S|

di.t The threshold for ith data object in the training database D

si.t
The threshold for ith data object in the reduced-size training
database S

b A user-defined parameter for sensitivity adjustment between
having no false negatives and no false positives

disto1,o2 The distance between two data objects o1 and o2

We begin by defining the key terms in this paper. Note
that all outliers must be outlying with reference to some
model or example of normal data:

Definition 1: A Reference/Training Database D is a
collection of N objects which are assumed to be normal. A
threshold di.t is associated with each data object di in D. The
initial value of the threshold di.t is defined by the user or
learned directly from the training database.

As noted above, D may be too large to handle streaming
data at the required rate, so we need to reduce its size.

Definition 2: A Reduced-Size Training Database S is a
collection of K objects which are all assumed to be normal.
All members of the reduced-size database are from the
reference database. However, the thresholds di.t of data
objects in the reduced-size database can be different.

Our hope is that the reduced-size database S maintains
the properties of the training database D with the greatest
possible fidelity. The most important property to us is the
region implicitly defined as normal.

Definition 3: A Normal Region is a volume of space in
which all data objects are implicitly assumed to be normal.
The normal region contains any data objects which have
nearest neighbor distances to objects in the training database
less than or equal to thresholds di.t.

Definition 4: An Anomalous Region is an area in which
any data objects in this area are considered anomalous. An
anomalous region contains any data objects which have
distances to all objects in the training database greater than
its threshold di.t. In set notation, it is the complement of the
normal region in the Universe.

Definition 5: Sensitivity is the measurement of
performance in a binary test. It is the number of true

positives, over the sum of the number of true positives and
the number of false negatives.

C. Problem Definition
Recall our basic scenario: we have a training set and we

learned or were given a threshold T. We are completely
satisfied with our anomaly detection system, except that we
cannot use it if the data arrives too quickly. More formally:

Given a training database D, a computational time α
(seconds) for calculating the distance between a pair of
objects in our domain, and an arrival rate β (data objects per
second) of a data stream, we find a reduced database S which
allows us to handle this arrival rate, and: Option 1)
guarantees no false negatives and minimizes false positives,
or Option 2) guarantees no false positives and minimizes
false negatives. The size K of the reduced database S can be
determined by the following equation K = 1/(α ⋅ β).

Having defined the problem, all we need to do is create
an algorithm to reduce the set of objects in D to the set of
objects in S, adjusting the thresholds when necessary. This is
the topic of the next section.

III. COST-BASED EDITING ALGORITHM
We will begin by showing a simple obvious greedy

algorithm for data reduction. This algorithm, unfortunately,
is too slow for some of the larger datasets we wish to
consider. This motivates us to consider a much faster
approximation algorithm in Section III(B). As we will show
empirically, the faster algorithm produces near identical
results.

A. Simple Obvious Greedy Algorithm
Recall that our task is to take as input a dataset D, and the

desired final size of K, and produce as output a dataset S. We
begin by showing Option 1: guaranteeing no false negatives
and minimizing false positives.

As shown in Table II, we iteratively remove objects from
D until it reaches the desired size and then relabel it S.
Rather than deleting randomly, we delete one object, dA,
which has the smallest nearest neighbor distance, as found in
line 3.

TABLE II. SIMPLE OBVIOUS GREEDY ALGORITHM

[S] = SimpleObviousGreedyAlgorithm_Option_1 (D, K)
1
2
3
4
5
6

while sizeof(D) > K
 [dA, dB, distdA,dB] = Find_the_Smallest-NN-Dist_Pair in D;
 Delete dA from D;
 // dB.t = distdA,dB + dA.t; only if all regions of dA are not in dB
end
S = D;

The Option 2 version of the algorithm is also simple; we

just uncomment line 4 in Table II. Instead of just deleting dA,
we expand the threshold of its nearest neighbor (dB) (line 3)
just enough so that it completely envelopes the region
formally enclosed by the deleted item. Therefore, a threshold
of dB is only reassigned when all regions of dA are not in dB;
otherwise the threshold of dB remains the same.

The Find_the_Smallest-NN-Distance_Pair subroutine in
line 2 is the most costly part of the algorithm, requiring in
the worst case time quadratic in N. We can attempt to
mitigate this by using an index of some kind to achieve
O(NlogN), but for high-dimensional data, the constants
hidden in this are large, and the overall algorithm is too slow
to be practical. For example, the Robotics experiment shown
in Section III(C) would require 16 hours to reduce the dataset
to one-quarter of its size. In the next section, we show an
algorithm that can give almost identical solutions, but is
orders of magnitude faster.

B. A Faster Greedy Algorithm
We propose to mitigate the costs of the greedy editing

algorithm by reducing the search space. The intuition of our
idea is very simple to state. Instead of starting with the whole
database D and using a search to pare it down to database S,
we randomly take a subset of K+1 items from D to create a
temporary version of S. This temporary version of S is too
large, being of size K+1. So we use the Find_the_Smallest-
NN-Distance_Pair subroutine to find one object to remove.
Note that running this quadratic subroutine is much faster on
S than it is with D. At this point, we are not done; we
randomly take another item from D and place it into S, once
again making S slightly too large, and once again pruning it
down by deleting one of the closest pairs. We continue doing
this until we have exhausted all objects from D.

Table III formalizes these ideas. We move the first K+1
data objects of the database D to the database S (line 1-3).
For each iteration, we find the closest pair in S by running a
subroutine Find_a_Smallest-NN-Distance_Pair, delete the
smallest nearest-neighbor-distance object (sA), and then
replace the deleted object with another data object from the
database D. The algorithm will terminate when no data
object is left in the database D.

TABLE III. FASTER GREEDY ALGORITHM

[S] = FasterAlgorithm_Option_1 (D, K)
1
2
3
4
5
6
7
8
9
10

for 1 to K+1
 Randomly move a data object in D to S;
end
while true
 [sA, sB, distsA,sB] = Find_a_Smallest-NN-Dist_Pair in S;
 Delete sA from S;
 // sB.t = distsA,sB + sA.t; only if all regions of sA are not in sB
 if D is empty then break; end
 Randomly move another data object in D to S;
end

As before, the Option 2 version of this algorithm is easy

to extend from the Option 1 version, i.e., by just
uncommenting line 7.

The threshold sB.t will be updated with the distance
between the data sA and the data sB, plus the threshold sA.t if
all regions of the data sA are not in sB; otherwise, the
threshold sB.t remains the same.

Calling the subroutine Find_a_Smallest-NN-Dist_Pair
once in the database S consumes much less time than in D,
i.e., only O(K2) (or O(KlogK) if some indexing techniques
can be implemented). Concretely, the algorithm shown

in Table II requires O(N) distance calculations in the first
iteration, O(N-1) in the next, etc. Its total time complexity is
therefore O(N3). In contrast, the algorithm in Table III
requires a O(K2) distance calculation to be performed N-K
times, and its total time complexity is therefore O((N-K)K2).
When K << N, which is the situation we are interested in,
this difference can be on the scale of orders of magnitude.

Obviously, this approximation algorithm is ordering
dependent. Therefore, in the experimental evaluation, we
will demonstrate that this faster algorithm achieves near
identical results compared with the simple, but much slower
algorithm.

C. Extended Variable Sensitivity Algorithm
Since Option 1 and Option 2 are for editing the database

with no false negatives and with no false positives,
respectively, in this section we propose an extension of the
faster greedy algorithm, Option 3, which allows the user to
trade off between false negatives and some false positives by
using a sensitivity parameter b.

The difference is that a threshold sB.t is adjusted
according to a sensitivity parameter b, where b is a real
number between 0 and 1. If b is close to 0, this means a little
false negative is tolerated; otherwise, if b is close to 1, this
means a little false positive is tolerated. Therefore, the
parameter b is used to adjust how large the threshold sB.t
should be. We demonstrate the influence of the parameter b
in Figure 2, when different b values, 0, 0.5, and 1, are
applied.

B
A

B

B

B

(a) (b) (c) (d)
Figure 2. An object A is removed from (a) an original database, and
an object B is object A’s nearest neighbor, where different parameters
b, i.e., (b) 0, (c) 0.5, and (d) 1, lead the difference in false positive
(light yellow) and false negative (dark green) areas.

Specifically, the new threshold sB.t ranges from the
original sB.t in Figure 2b) to the maximum threshold
covering all regions of sA in Figure 2d), which is distsA,sB +
sA.t. As shown in Table IV, in line 7, the parameter b is used
to determine the new threshold. However, this new threshold
sB.t will be updated only if all regions of sA are not in sB;
otherwise, no change will occur in the threshold sB.t.

TABLE IV. VARIABLE SENSITIVITY GREEDY ALGORITHM

[S] = VariableSensitivityAlgorithm (D, K, b)
1
2
3
4
5
6
7
8
9
10

for 1 to K+1
 Randomly move a data object in D to S;
end
while true
 [sA, sB, distsA,sB] = Find_a_Smallest-NN-Dist_Pair in S;
 Delete sA from S;
 sB.t=sB.t+(distsA,sB +sA.t-sB.t)*b; if all regions of sA are not in sB
 if D is empty then break; end
 Randomly move another data object in D to S;
end

IV. EXPERIMENTAL EVALUATION
We begin by stating our experimental philosophy. To

ensure that our experiments are easily reproducible, we have
built a website which contains all data and code [17]. In
addition, this website contains additional experiments that
are omitted here for brevity. Nevertheless, we note that this
paper is self-contained.

In this section, we will empirically demonstrate that our
proposed ideas can significantly improve the efficiency of
distance-based outlier detection while maintaining its high
effectiveness. We evaluate our Option 1, which guarantees
no false negatives by varying the reduced size (K). Naturally,
we evaluate by calculating the increase in the false positive
rate as we reduce the size of the dataset, and the proposed
sensitivity parameter b for Option 3 is also evaluated. The
false positive rate and false negative rate of each parameter b
is reported against the reduced-database size.

To measure the effectiveness of our editing heuristics, we
compare our algorithm with a random-based editing
technique. For the random-based editing technique, given a
reduced database size K, K data objects from the database D
are uniformly selected. Note that we do not make
comparisons to other anomaly detection algorithms because
distance based outliers for time series have already been
forcefully shown to be the best for time series in extensive
empirical tests ([5][16]).

For each technique, the mean values of ten runs are
reported. Our algorithm and the rival method are
implemented using Matlab R2010a. All experiments were
conducted on a Windows Vista Ultimate SP1 64-bit desktop
with 2.83 GHz Intel Core 2 Quad CPU, 4 GB of RAM, and
250 GB of Hard Disk.

A. Threshold Initialization
The distance-based anomaly detection method used in

this work requires only one parameter, the initial threshold t
of the training dataset. In some domains, this may be given
by the domain expert, but here we use a simple approach to
determine it for the ground truth of results. The threshold di.t
for each data object di is set to be the nearest neighbor
distance of di itself in the training dataset. With this simple
threshold initialization method, our distance-based anomaly
detection can produce very effective results. Note that this
value t is a parameter of distance-based anomaly detection in
general, not of our extension to it, which requires no
additional parameters. Further note that we are explicitly
avoiding changing parameters after seeing the test data

B. The SmartCane System
The SmartCane system [14] is a device developed by

researchers at UCLA to enable training and monitoring
usages of canes for the elderly and infirm. The goal of this
system is to reduce falls, which are one of the leading causes
of death in the elderly. Specifically, the SmartCane system
records walking behavior from embedded sensors at 300 Hz,
and sends data via Bluetooth back to a personal device such
as a tablet PC or a PDA to record usage activities. This
system allows physicians to review histories of cane usage
and can suggest future customization and training which may

reduce falls. In addition to offline analysis, this system is
general enough to allow for the possibility of real time
anomaly detection, which, in the best case scenario, may
warn that the user is disorientated and at risk of an imminent
fall.

The device, as shown in Figure 3, is embedded with six
sensors, two contact pressure sensors (at the handle and
bottom), three single-axis gyros, and one 3-axis
accelerometer; therefore, eight channels of signals are
simultaneously collected over time. Figure 3 shows an
example subsequence of these eight signals.

Contact pressure sensor

Wireless sensor nodes including
- one 3-axis accelerometer
- three single-axis gyros

Contact pressure sensor

10 20 30 40 500

Figure 3. left) SmartCane right) sample data of all eight channels.

We divide a sequence of length 3244 into two equal
parts, i.e., a training database and a test database. Figure 4
shows the first 500 data points of the two databases. To
achieve our results in this particular domain, we had to set
exactly one free parameter, with the length of the
subsequence to consider. For simplicity, we decided on a
length of 50. However, it is important to note that a change
in this value only very slightly affects results.

0 100 200 300 400 500
3.15

3.2

3.25

3.3
x 10

4

Training database

0 100 200 300 400 500

0

2

4

6
x 10

4

Test database

Anomaly

Figure 4. A time series sequence of Gyro3, where the test database
contains six anomalies.

In Figure 5, we show that we can throw away more than
three-fourths of the data, and still have comparable results to
the approach in [12]. Our cost-based editing techniques can
significantly reduce a large portion of data, while the false
positive rate slightly increases it. In addition, the false
negative rate is guaranteed to not increase since Option 1 has
been applied.

0 200 400 600 800 1000 1200 1400
0

0.5

1

Reduced database size (K)

Fa
ls

e
po

si
tiv

e
ra

te

Simple cost-based
Faster cost-based
Random-based

0 200 400 600 800 1000 1200 1400

0

0.5

1

Reduced database size (K)

Fa
ls

e
ne

ga
tiv

e
ra

te

Simple cost-based
Faster cost-based
Random-based

Figure 5. Our editing technique can significantly reduce database size
with a slight increase in false positive rates.

With the greater time complexity of the simple cost-
based method, training time (reducing database time) is
much longer than the faster cost-based method. Generally,
when the database size is reduced to 10% of its original size,
the faster cost-based method uses only 1 second, while the
simple cost-based method requires 42 seconds.

The sensitivity parameter b is utilized to trade off
between the false positive and false negative rates.
Therefore, users can choose the parameter b according to
their applications. We demonstrate the effect of false
positive/negative rate when the parameter b is varied
in Figure 6.

1

0 200 400 600 800 1000 1200 1400
0

0.5

Reduced database size (K)

Fa
ls

e
po

si
tiv

e
ra

te

b=1
b=0.5
b=0.1
b=0

1

0 200 400 600 800 1000 1200 1400
0

0.5

Reduced database size (K)

Fa
ls

e
ne

ga
tiv

e
ra

te

b=1
b=0.5
b=0.1
b=0

Figure 6. top) False positive rates for the faster algorithm when b is
varied; bottom) False negative rates for the faster algorithm when b is
varied.

C. Robotics
The Sony AIBO shown in Figure 7 is a small quadruped

robot that comes equipped with a tri-axial accelerometer [7].
This accelerometer measures data at a rate of 125 Hz. We
can easily obtain a large normal reference, Database D, for
the AIBO by allowing the robot to walk unobstructed in
normal conditions. However, this tiny robot has limited
space1 in which to store these normal examples. Once again,
this is exactly the scenario for which our algorithms are
designed for.

Figure 7. left) A Sony AIBO robot; right) An on-board sensor can
measure X/Y/Z acceleration at 125 Hz. Here, just a snippet of the Z-
axis is shown.

We created a training dataset consisting of unobstructed
walking, and a carefully annotated test dataset consisting of
unobstructed walking interspersed with occasions where the
robot walked into a wall (labeled as anomalous). Each
dataset consists of 6000 data points, where Figure 8 shows
the first 3000 data points. Subsequences were extracted with
a window length of 50 data points and, as is common

1 The AIBO has 64MB of memory, but this figure is for the entire system,

so space efficient algorithms are critical.

0 20 40 60 80 100 120

One-second of z-axis acceleration data

practice for time series, we normalized all subsequences with
z-normalization [6][15].

REFERENCES
[1] F. Angiulli and F. Fassetti, "Detecting Distance-based

Outliers in Streams of Data," In Proceedings of CIKM'07, pp.
811-820, November 6-10 2007.

0 500 1000 1500 2000 2500 3000
-1.1

-1

-0.9

-0.8 Training database

0 500 1000 1500 2000 2500 3000

-1.4

-1.2

-1

-0.8
Test database

Anomaly
[2] F. J. Anscombe and I. Guttman, "Rejection of Outliers,"

Technometrics, vol. 2, pp. 123-147, May 1960.
[3] S. D. Bay and M. Schwabacher, "Mining Distance-based

Outliers in Near Linear Time with Randomization and a
Simple Pruning Rule," In Proceedings KDD'03, pp. 29-38,
August 24-27 2003.

Figure 8. Illustration of robotic dataset, left) sample training dataset;
right) sample test dataset. In this test dataset, five anomaly sequences
were randomly inserted.

[4] M. Breunig, H.-P. Kriegel, R. Ng, and J. Sander, "OPTICS-
OF: Identifying Local Outliers," In Proceedings of PKDD'99,
pp. 262-270, September 15-18 1999.

In Figure 9, we show how our algorithm's performance
gracefully degrades as we use smaller and smaller values of
K. As we can see, we can more than halve the required
space, with only a tiny increase in the false positive rate. In
this experiment, the two cost-based approaches are
demonstrated, the simple obvious greedy one and our faster
greedy algorithm. As we can see in Figure 9, our faster
algorithm can achieve a performance nearly equal to that of
the simple greedy algorithm, our faster algorithm requires
only a fraction of the time required by the simple algorithm.

[5] V. Chandola, D. Cheboli, and V. Kumar, "Detecting
Anomalies in a Timeseries Database," CS Technical Report
09-004, Computer Science Department, University of
Minnesota, January, 2009.

[6] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E.
Keogh, "Querying and Mining of Time Series Data:
Experimental Comparison of Representations and Distance
Measures," Proceedings of the VLDB Endowment, vol. 1, pp.
1542-1552, August 2008.

0 1000 2000 3000 4000 5000
0

0.5

1

Reduced database size (K)

Fa
ls

e
po

si
tiv

e
ra

te

Simple cost-based
Faster cost-based
Random-based

[7] G. S. Hornby, M. Fujita, S. Takamura, T. Yamamoto, and O.
Hanagata, "Autonomous Evolution of Gaits with the Sony
Quadruped Robot," In Proceedings of GECCO'99, pp. 1297-
1304, July 13-17 1999.

[8] R.M. Karp, “Reducibility among Combinatorial Problems,”
Complexity of Computer Computations, 1972, pp. 85-103.

0 1000 2000 3000 4000 5000

0

0.5

1

Reduced database size (K)

Fa
ls

e
ne

ga
tiv

e
ra

te

Simple cost-based
Faster cost-based
Random-based

[9] E. Pękalska, R. P. W. Duin, and P. Paclík, "Prototype
Selection for Dissimilarity-Based Classifiers," Pattern
Recognition, vol. 39, pp. 189-208, February 2006.

[10] V. Roth, "Kernel Fisher Discriminants for Outlier Detection,"
Neural Computation, vol. 18, pp. 942-960, April 2006.

Figure 9. The false positive rates of three approaches (simple obvious
cost-based, faster cost-based, and random-based editing techniques)
against reduced database size.

[11] J. Tang, Z. Chen, A. W.-C. Fu, and D. W.-L. Cheung,
"Enhancing Effectiveness of Outlier Detections for Low
Density Patterns," In Proceedings of PAKDD'02, pp. 535-
548, May 6-8 2002.

[12] A. Vahdatpour and M. Sarrafzadeh, "Unsupervised Discovery
of Abnormal Activity Occurrences in Multi-dimensional Time
Series, with Applications in Wearable Systems," In
Proceedings of SDM'10, pp. 641-652, April 29 - May 1 2010.

V. CONCLUSION
In this work, we have introduced a framework to allow

efficient distance-based anomaly detection in data streams.
Our method borrows from a well-known idea in
classification, which is to use data editing to reduce the size
of the database, while maintaining critical properties. Our
proposed framework guarantees either no false positives or
no false negatives relative to the performance of the full
dataset, or allows the user to choose sensitivity/specificity
based on his/her tolerance to each kind of risk.

[13] D. R. Wilson and T. R. Martinez, "Instance Pruning
Techniques," In Proceedings of ICML'97, pp. 403-411, July
8-12 1997.

[14] W. Wu, L. Au, B. Jordan, T. Stathopoulos, M. Batalin, W.
Kaiser, A. Vahdatpour, M. Sarrafzadeh, M. Fang, and J.
Chodosh, "The SmartCane System: An Assistive Device for
Geriatrics," In Proceedings of the ICST 3rd International
Conference on Body Area Networks, pp. 1-4, 2008.

ACKNOWLEDGEMENT [15] X. Xi, E. Keogh, C. Shelton, L. Wei, and C. A.
Ratanamahatana, "Fast Time Series Classification using
Numerosity Reduction," In Proceedings of ICML'06, pp.
1033-1040, June 25-29 2006.

This research was funded by the Thailand Research Fund
given through the Royal Golden Jubilee Ph.D. Program
(PHD/0141/2549 to V. Niennattrakul and C.A.
Ratanamahatana) and NSF awards 0803410 and 0808770. [16] D. Yankov, E. Keogh, and U. Rebbapragada, "Disk Aware

Discord Discovery: Finding Unusual Time Series in Terabyte
Sized Datasets," Knowledge and Information Systems, vol.
17, pp. 241-262, November 2008.

 [17] All code and data used in this paper:

http://www.cp.eng.chula.ac.th/~g49vnn/ICDM2010

	I. Introduction
	II. Related Work and Background
	A. Background on Numerosity Reduction
	B. Notations
	C. Problem Definition

	III. Cost-based Editing Algorithm
	A. Simple Obvious Greedy Algorithm
	B. A Faster Greedy Algorithm
	C. Extended Variable Sensitivity Algorithm

	IV. Experimental Evaluation
	A. Threshold Initialization
	B. The SmartCane System
	C. Robotics

	V. Conclusion
	Acknowledgement
	References

