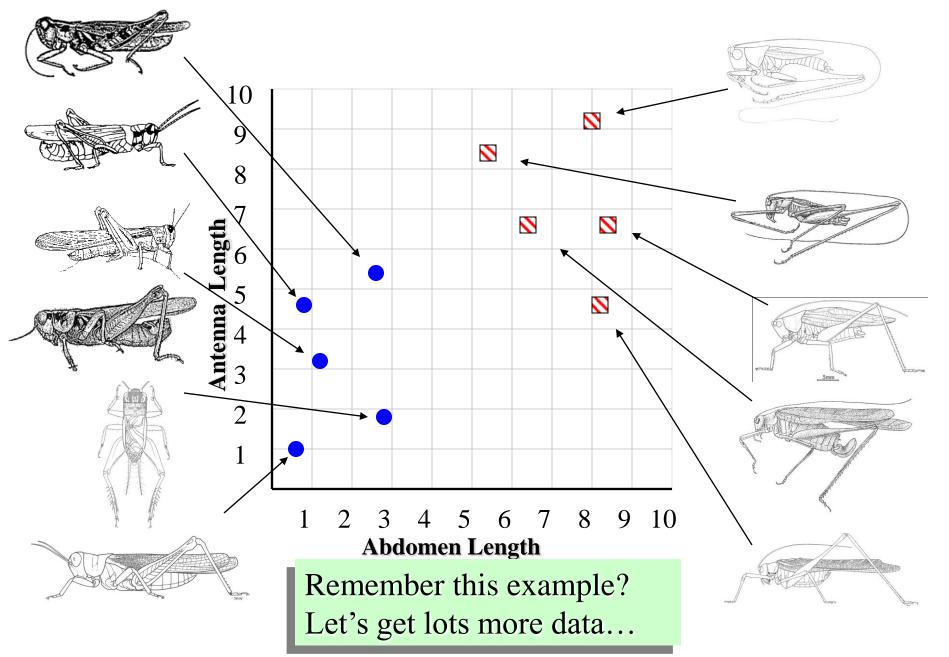
Naïve Bayes Classifier

Eamonn Keogh UCR

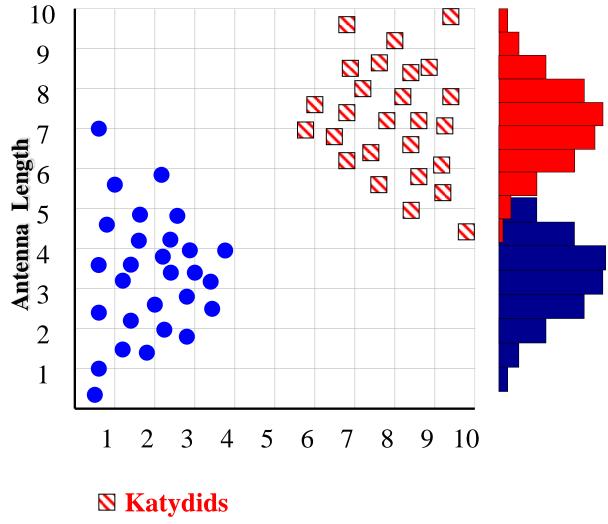
This is a high level overview only. For details, see: Pattern Recognition and Machine Learning, Christopher Bishop, Springer-Verlag, 2006. Or Pattern Classification by R. O. Duda, P. E. Hart, D. Stork, Wiley and Sons. Thomas Bayes 1702 - 1761

We will start off with a visual intuition, before looking at the math...

Grasshoppers

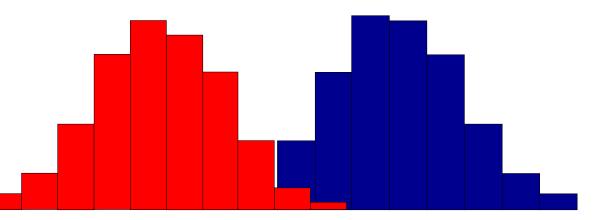


With a lot of data, we can build a histogram. Let us just build one for "Antenna Length" for now...

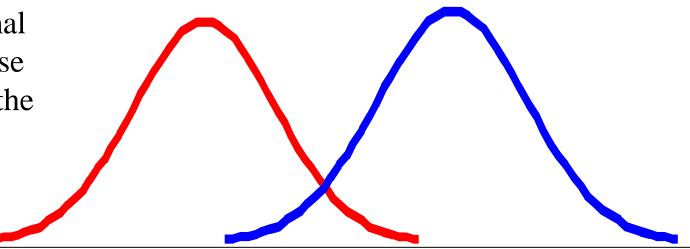


Grasshoppers

We can leave the histograms as they are, or we can summarize them with two normal distributions.



Let us us two normal distributions for ease of visualization in the following slides...

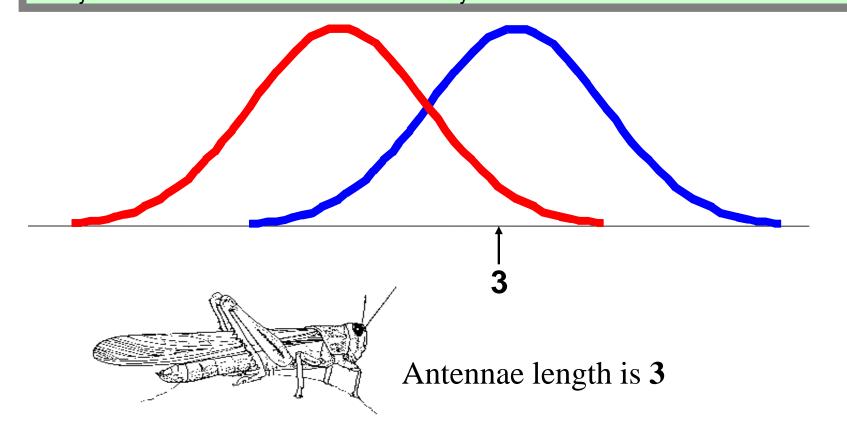


• We want to classify an insect we have found. Its antennae are 3 units long. How can we classify it?

• We can just ask ourselves, give the distributions of antennae lengths we have seen, is it more *probable* that our insect is a **Grasshopper** or a **Katydid**.

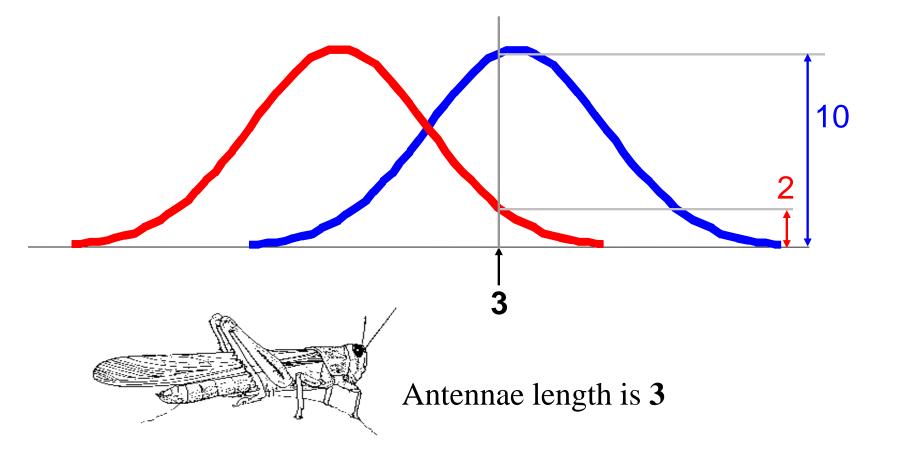
• There is a formal way to discuss the most *probable* classification...

 $p(c_i \mid d) = probability of class c_i, given that we have observed d$



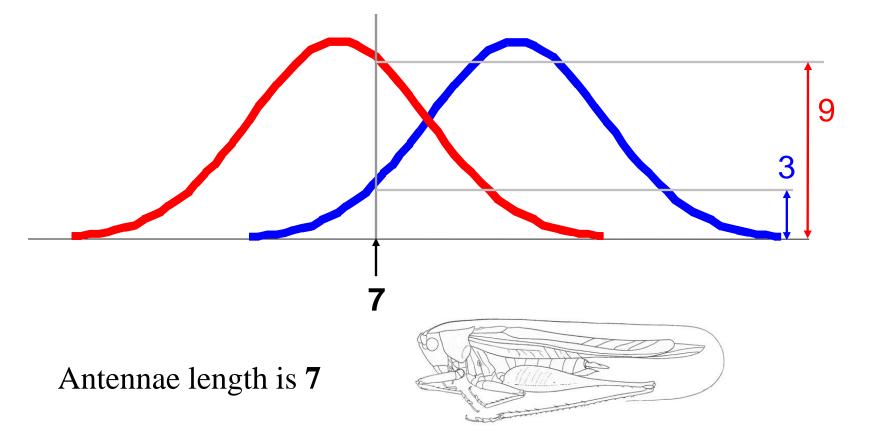
 $p(c_j \mid d) = probability of class c_j$, given that we have observed d

$$P(Grasshopper | 3) = 10 / (10 + 2) = 0.833$$
$$P(Katydid | 3) = 2 / (10 + 2) = 0.166$$



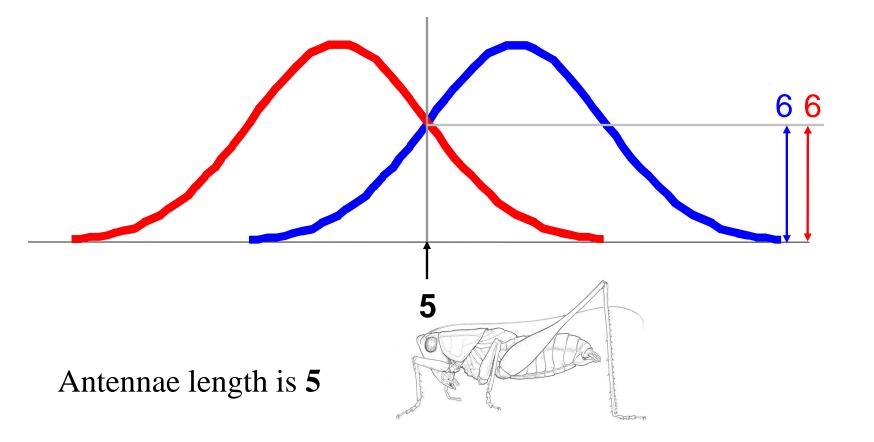
 $p(c_i \mid d) = probability of class c_i$, given that we have observed d

P(Grasshopper | 7) = 3 / (3 + 9)= 0.250P(Katydid | 7)= 9 / (3 + 9)= 0.750



 $p(c_i \mid d) = probability of class c_i$, given that we have observed d

P(Grasshopper | 5) = 6 / (6 + 6)= 0.500P(Katydid | 5)= 6 / (6 + 6)= 0.500



Bayes Classifiers

That was a visual intuition for a simple case of the Bayes classifier, also called:

- Idiot Bayes
- Naïve Bayes
- Simple Bayes

We are about to see some of the mathematical formalisms, and more examples, but keep in mind the basic idea.

Find out the probability of the previously unseen instance belonging to each class, then simply pick the most probable class.

Bayes Classifiers

- Bayesian classifiers use **Bayes theorem**, which says $p(c_j | d) = \frac{p(d | c_j) p(c_j)}{p(d)}$
- $p(c_j | d)$ = probability of instance *d* being in class c_j , This is what we are trying to compute
- p(d | c_j) = probability of generating instance d given class c_j,
 We can imagine that being in class c_j, causes you to have feature d with some probability
- $p(c_j)$ = probability of occurrence of class c_j , This is just how frequent the class c_j , is in our database
- p(d) = probability of instance *d* occurring

This can actually be ignored, since it is the same for all classes

Assume that we have two classes $c_1 =$ male, and $c_2 =$ female.

We have a person whose sex we do not know, say "drew" or d. Classifying drew as male or female is equivalent to asking is it more probable

that *drew* is male or female, I.e which is greater p(male | drew) or p(female | drew)

(Note: "Drew can be a male or female name")

Drew Barrymore

Drew Carey

This is Officer Drew (who arrested me in 1997). Is Officer Drew a Male or Female?

Luckily, we have a small database with names and sex.

We can use it to apply Bayes rule...

Officer Drew

$$p(c_j \mid d) = p(d \mid c_j) p(c_j)$$
$$\overline{p(d)}$$

Name	Sex
Drew	Male
Claudia	Female
Drew	Female
Drew	Female
Alberto	Male
Karin	Female
Nina	Female
Sergio	Male

			Γ	Name	Sex
				Drew	Male
				Claudia	Female
				Drew	Female
				Drew	Female
	$p(c_i \mid d) =$	$p(d \mid \mathbf{c}_i) p(c)$,)	Alberto	Male
AL LAND		$\frac{1}{p(a)}$	(\overline{d})	Karin	Female
Officer Drew		_		Nina	Female
			.	Sergio	Male
p(male drew) = 1/2 p(female drew) = 2	3/8	$= \frac{0.125}{3/8}$ $= 0.250$ $= \frac{0.250}{3/8}$		Officer I more lik a <mark>Femal</mark> e	ely to be

Officer Drew IS a female!

Officer Drew

$p(\text{male} \mid drew) = 1/3 * 3/2$	$^{\prime 8} = 0.125$
3/8	3/8
$p(\text{female} \mid drew) = \frac{2}{5} * .$	5/8 = 0.250
3/8	3/8

So far we have only considered Bayes Classification when we have one attribute (the "*antennae length*", or the "*name*"). But we may have many features.

$$p(c_j \mid d) = \frac{p(d \mid c_j) p(c_j)}{p(d)}$$

How do we use all the features?

Name	Over 170 см	Eye	Hair length	Sex
Drew	No	Blue	Short	Male
Claudia	Yes	Brown	Long	Female
Drew	No	Blue	Long	Female
Drew	No	Blue	Long	Female
Alberto	Yes	Brown	Short	Male
Karin	No	Blue	Long	Female
Nina	Yes	Brown	Short	Female
Sergio	Yes	Blue	Long	Male

• To simplify the task, **naïve Bayesian classifiers** assume attributes have independent distributions, and thereby estimate

$$p(d|c_j) = p(d_1|c_j) * p(d_2|c_j) * \dots * p(d_n|c_j)$$

he probability of

The probability of class c_j generating instance d, equals....

> The probability of class c_j generating the observed value for feature 1, multiplied by..

> > The probability of class c_j generating the observed value for feature 2, multiplied by..

• To simplify the task, **naïve Bayesian classifiers** assume attributes have independent distributions, and thereby estimate

$$p(d|c_j) = p(d_1|c_j) * p(d_2|c_j) * \dots * p(d_n|c_j)$$

 $p(\text{officer drew}|c_i) = p(\text{over}_170_{\text{cm}} = \text{yes}|c_i) * p(\text{eye} = blue|c_i) * \dots$

Officer Drew is blue-eyed, over $170_{\rm cm}$ tall, and has long hair

 $p(\text{officer drew} | \text{Female}) = 2/5 * 3/5 * \dots$ $p(\text{officer drew} | \text{Male}) = 2/3 * 2/3 * \dots$

The Naive Bayes classifiers is often represented as this type of graph...

Note the direction of the arrows, which state that each class causes certain features, with a certain probability

 $p(d_1|c_j)$

 $p(d_2|c_j)$

 $p(d_n|c_j)$

Naïve Bayes is fast and space efficient

We can look up all the probabilities with a single scan of the database and store them in a (small) table...

Sex	Over190 _{cm}	
Male	Yes	0.15
	No	0.85
Female	Yes	0.01
	No	0.99

 $p(d_1|c_j)$

Sex	Long Hair	
Male	Yes	0.05
	No	0.95
Female	Yes	0.70
	No	0.30

 $p(d_2|c_j)$

Sex	
Male	
Female	

 $p(d_n|c_j)$

Naïve Bayes is NOT sensitive to irrelevant features...

Suppose we are trying to classify a persons sex based on several features, including eye color. (Of course, eye color is completely irrelevant to a persons gender)

 $p(\text{Jessica} | c_j) = p(\text{eye} = \text{brown} | c_j) * p(\text{wears_dress} = \text{yes} | c_j) * \dots$

$$p(\text{Jessica} | \text{Female}) = 9,000/10,000 * 9,975/10,000 *$$

 $p(\text{Jessica} | \text{Male}) = 9,001/10,000 * 2/10,000 *$
Almost the same!

However, this assumes that we have good enough estimates of the probabilities, so the more data the better. <u>An obvious point</u>. I have used a simple two class problem, and two possible values for each example, for my previous examples. However we can have an arbitrary number of classes, or feature values

 $p(d_1|c_j)$

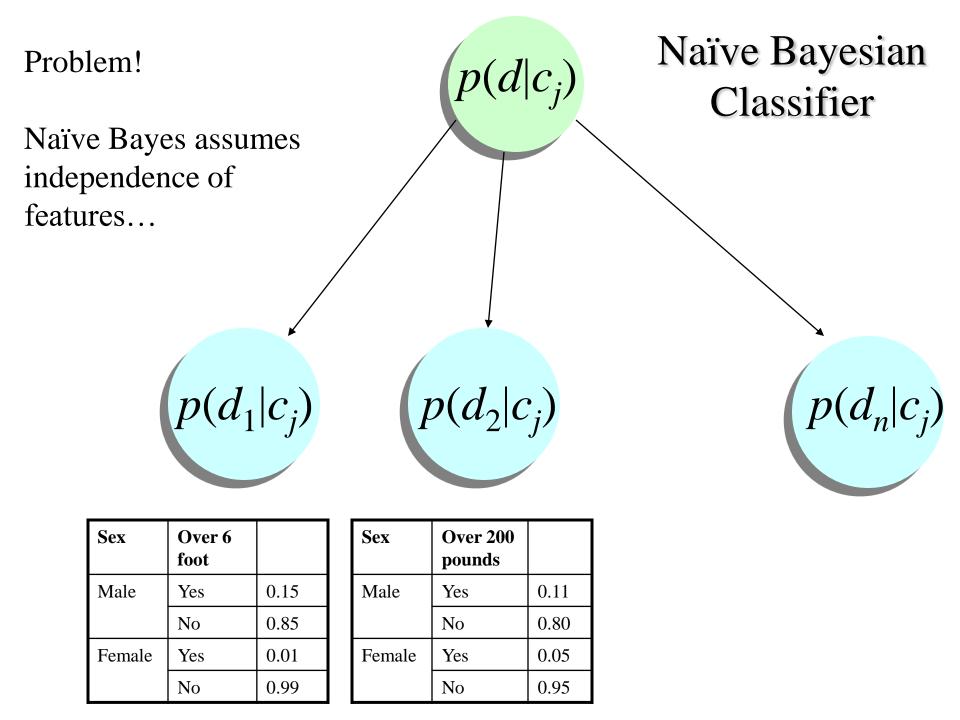
Animal	Mass >10 _{kg}	
Cat	Yes	0.15
	No	0.85
Dog	Yes	0.91
	No	0.09
Pig	Yes	0.99
	No	0.01

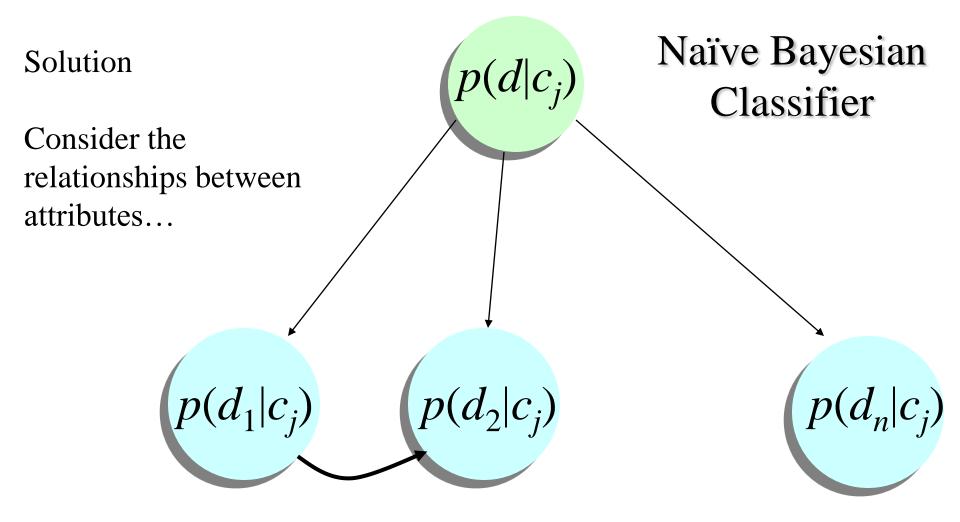
Animal	Color	
Cat	Black	0.33
	White	0.23
	Brown	0.44
Dog	Black	0.97
	White	0.03
	Brown	0.90
Pig	Black	0.04
	White	0.01

 $p(d_2|c_i)$

Animal Cat Dog Pig

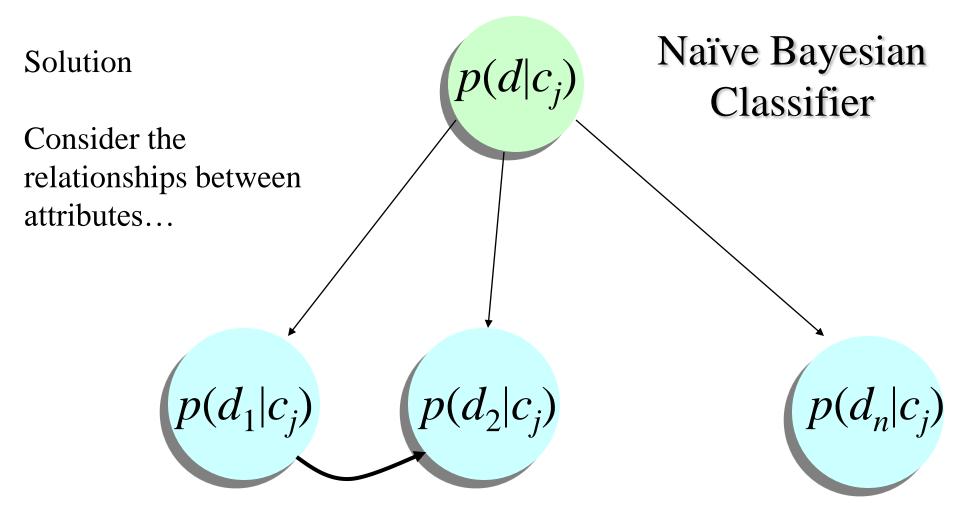
 $p(d_n|c)$





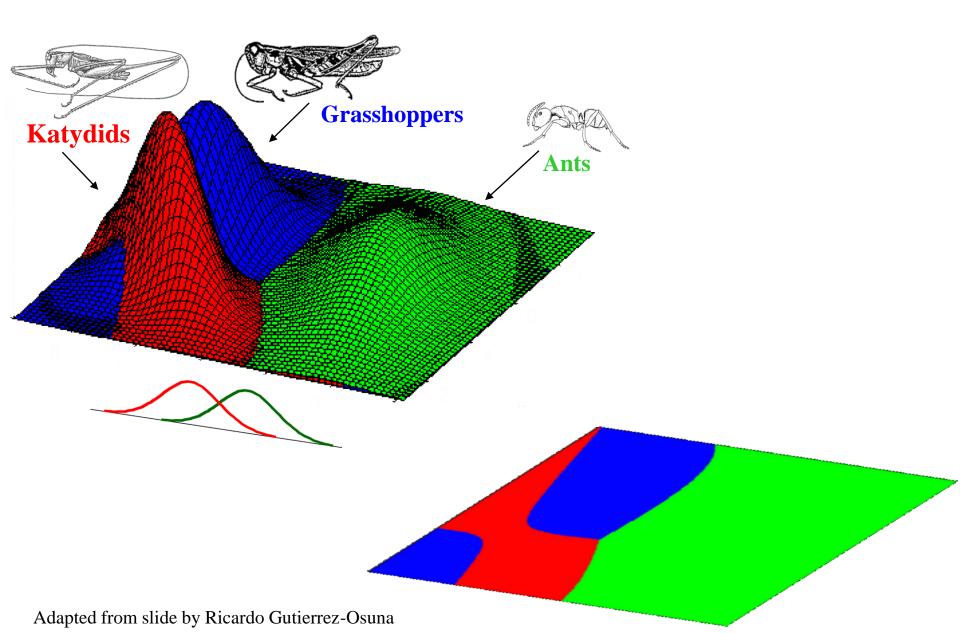
Sex	Over 6 foot	
Male	Yes	0.15
	No	0.85
Female	Yes	0.01
	No	0.99

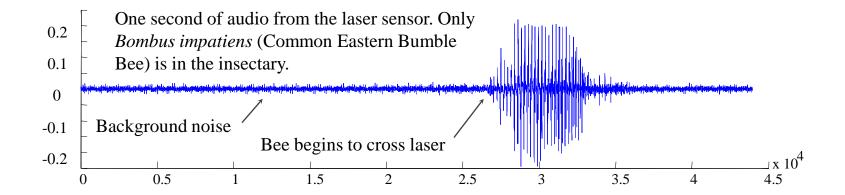
Sex	Over 200 pounds	
Male	Yes and Over 6 foot	0.11
	No and Over 6 foot	0.59
	Yes and NOT Over 6 foot	0.05
	No and NOT Over 6 foot	0.35
Female	Ves and Over 6 foot	0.01

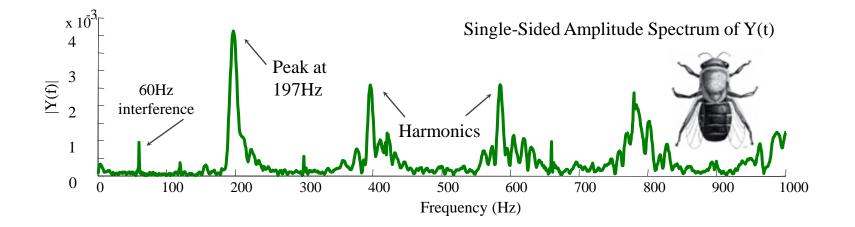


But how do we find the set of connecting arcs??

The Naïve Bayesian Classifier has a piecewise quadratic decision boundary

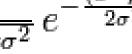


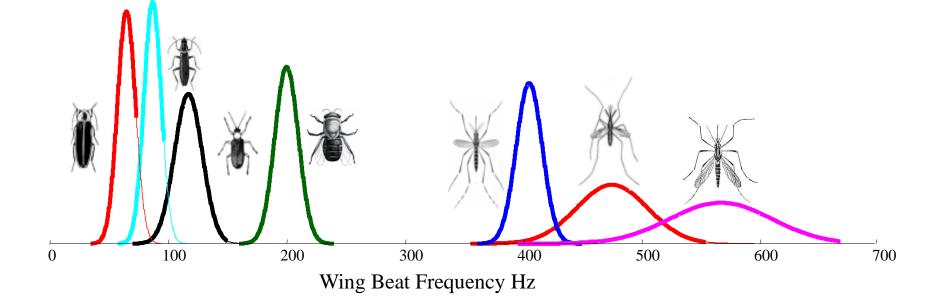


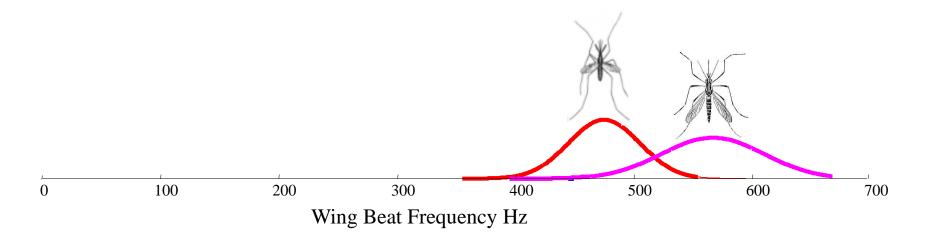


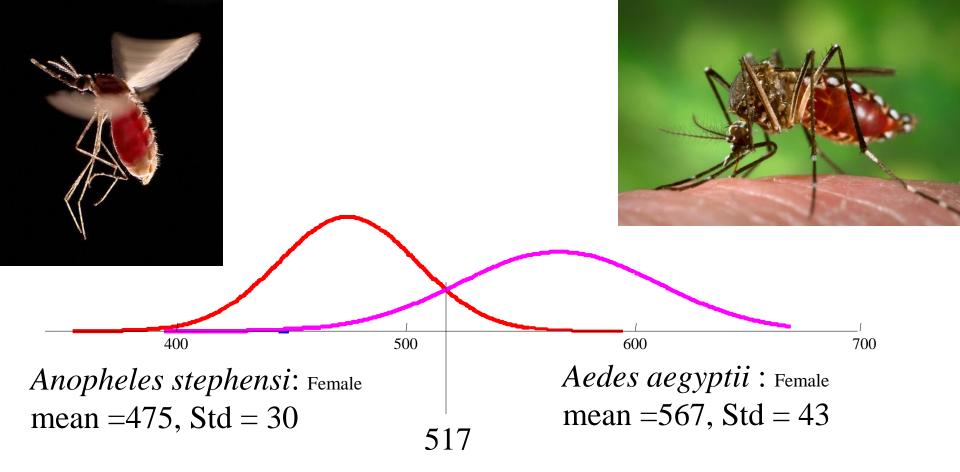


 $\frac{1}{\sqrt{2\pi\sigma^2}}e$



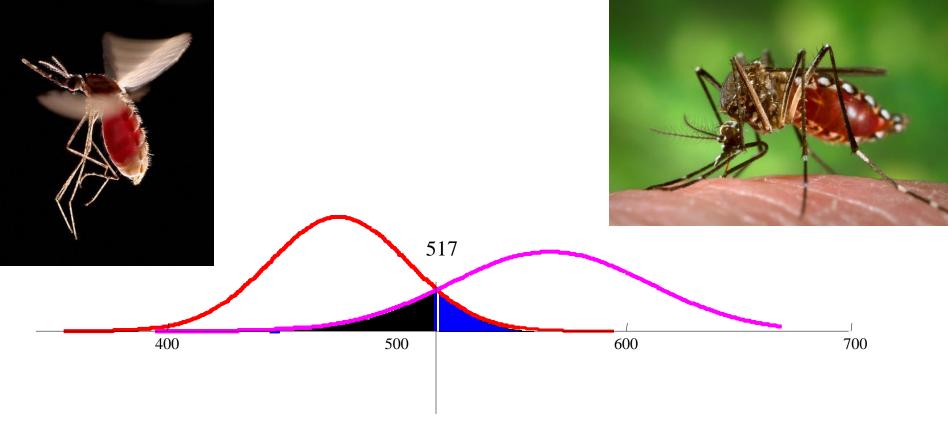




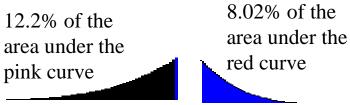


If I see an insect with a wingbeat frequency of 500, what is it?

$$P(Anopheles|wingbeat = 500) = \frac{1}{\sqrt{2\pi} \, 30} e^{-\frac{(500 - 475)^2}{2 \times 30^2}}$$

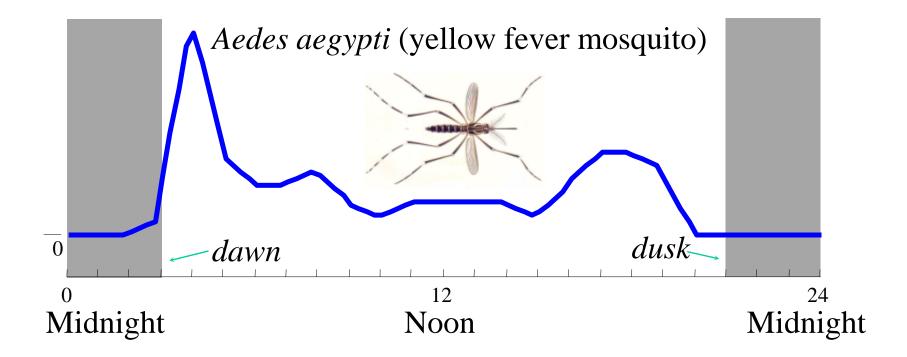


What is the error rate?



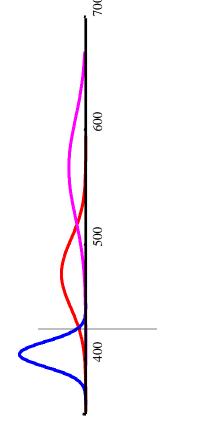
Can we get more features?

Circadian Features



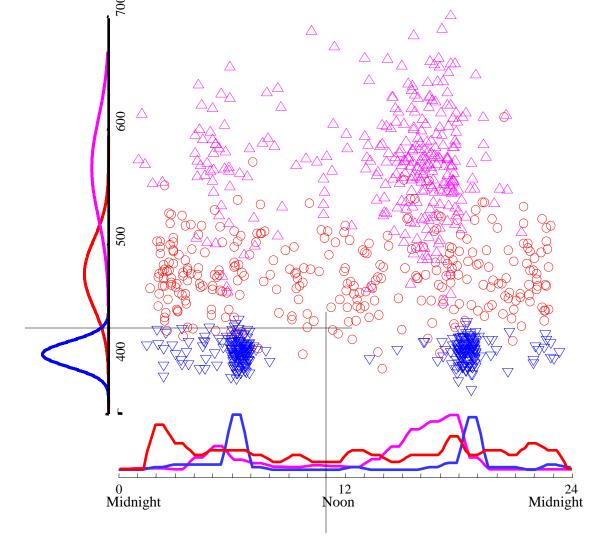
Suppose I observe an insect with a wingbeat frequency of 420Hz

What is it?



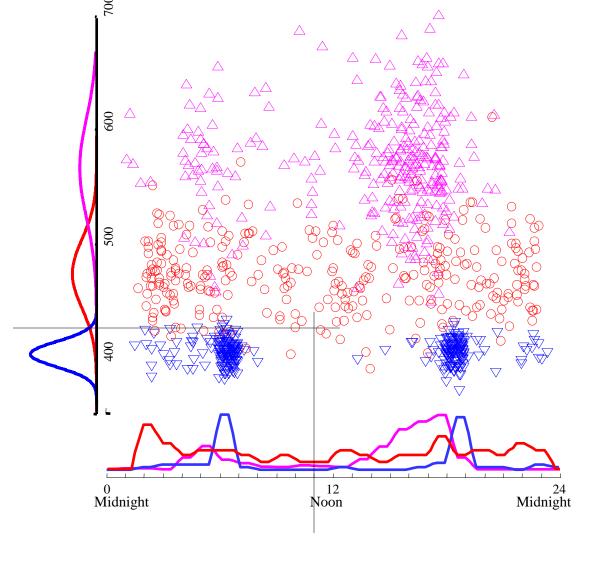
Suppose I observe an insect with a wingbeat frequency of 420Hz at 11:00am

What is it?

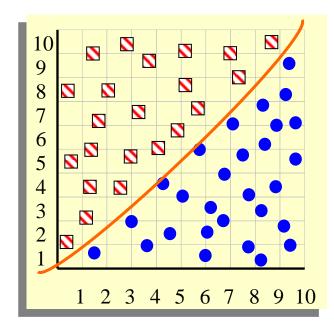


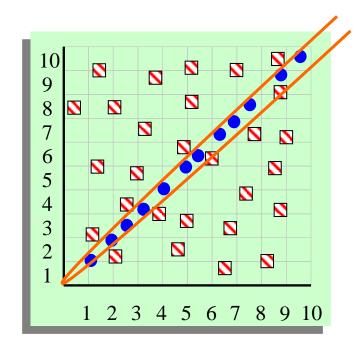
Suppose I observe an insect with a wingbeat frequency of 420 at 11:00am

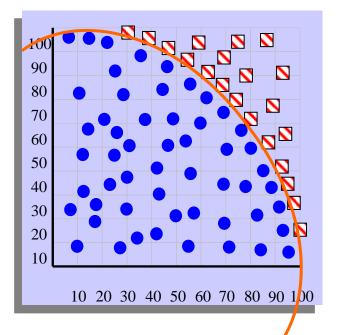
What is it?



(Culex | [420Hz,11:00am]) = (6/(6+6+0)) * (2/(2+4+3)) = 0.111(Anopheles | [420Hz,11:00am]) = (6/(6+6+0)) * (4/(2+4+3)) = 0.222 (Aedes | [420Hz,11:00am]) = (0/(6+6+0)) * (3/(2+4+3)) = 0.000 Which of the "Pigeon Problems" can be solved by a decision tree?







Advantages/Disadvantages of Naïve Bayes

- Advantages:
 - Fast to train (single scan). Fast to classify
 - Not sensitive to irrelevant features
 - Handles real and discrete data
 - Handles streaming data well
- Disadvantages:
 - Assumes independence of features