Naïve Bayes Classifier

Eamonn Keogh UCR

This is a high level overview only. For details, see:
Pattern Recognition and Machine Learning, Christopher Bishop, Springer-Verlag, 2006. Or
Pattern Classification by R. O. Duda, P. E. Hart, D. Stork, Wiley and Sons.

Thomas Bayes
1702-1761

We will start off with a visual intuition, before looking at the math...

Grasshoppers

With a lot of data, we can build a histogram. Let us just build one for "Antenna Length" for now...

We can leave the histograms as they are, or we can summarize them with two normal distributions.

Let us us two normal distributions for ease of visualization in the following slides...

- We want to classify an insect we have found. Its antennae are 3 units long. How can we classify it?
- We can just ask ourselves, give the distributions of antennae lengths we have seen, is it more probable that our insect is a Grasshopper or a Katydid.
- There is a formal way to discuss the most probable classification...
$p\left(c_{j} \mid d\right)=$ probability of class c_{j}, given that we have observed d

Antennae length is $\mathbf{3}$

$p\left(c_{j} \mid d\right)=$ probability of class c_{j}, given that we have observed d

$$
\begin{array}{rll}
\mathrm{P}(\text { Grasshopper | 3 }) & =10 /(10+2) & =0.833 \\
\mathrm{P}(\text { Katydid } \mid \mathbf{3}) & =2 /(10+2) & =0.166
\end{array}
$$

Antennae length is $\mathbf{3}$

$p\left(c_{j} \mid d\right)=$ probability of class c_{j}, given that we have observed d

$$
\begin{aligned}
\mathrm{P}(\text { Grasshopper } \mid 7) & =3 /(3+9) & & =0.250 \\
\mathrm{P}(\text { Katydid } \mid 7) & =9 /(3+9) & & =0.750
\end{aligned}
$$

Antennae length is 7

$p\left(c_{j} \mid d\right)=$ probability of class c_{j}, given that we have observed d

$$
\begin{array}{rll}
\mathrm{P}(\text { Grasshopper } \mid 5)=6 /(6+6) & =0.500 \\
\mathrm{P}(\text { Katydid } \mid \mathbf{5}) & =6 /(6+6) & =0.500
\end{array}
$$

Bayes Classifiers

That was a visual intuition for a simple case of the Bayes classifier, also called:

- Idiot Bayes
- Naïve Bayes
- Simple Bayes

We are about to see some of the mathematical formalisms, and more examples, but keep in mind the basic idea.

Find out the probability of the previously unseen instance belonging to each class, then simply pick the most probable class.

Bayes Classifiers

- Bayesian classifiers use Bayes theorem, which says

$$
p\left(c_{j} \mid d\right)=\frac{p\left(d \mid \mathrm{c}_{j}\right) p\left(c_{j}\right)}{p(d)}
$$

- $p\left(c_{j} \mid d\right)=$ probability of instance d being in class c_{j},

This is what we are trying to compute

- $\quad p\left(d \mid \mathrm{c}_{j}\right)=$ probability of generating instance d given class c_{j}, We can imagine that being in class c_{j}, causes you to have feature d with some probability
- $p\left(c_{j}\right)=$ probability of occurrence of class c_{j},

This is just how frequent the class c_{j}, is in our database

- $\quad p(d)=$ probability of instance d occurring

This can actually be ignored, since it is the same for all classes

Assume that we have two classes

$$
c_{1}=\text { male }, \text { and } c_{2}=\text { female } .
$$

We have a person whose sex we do not know, say "drew" or d.
Classifying drew as male or female is equivalent to asking is it more probable that drew is male or female, I.e which is greater p (male \mid drew) or p (female \mid drew)
(Note: "Drew can be a male or female name")

What is the probability of being called "drew" given that you are a male?

This is Officer Drew (who arrested me in 1997). Is Officer Drew a Male or Female?

Luckily, we have a small database with names and sex.

We can use it to apply Bayes rule...

Officer Drew

$$
p\left(c_{j} \mid d\right)=\frac{p\left(d \mid \mathrm{c}_{j}\right) p\left(c_{j}\right)}{p(d)}
$$

Name	Sex
Drew	Male
Claudia	Female
Drew	Female
Drew	Female
Alberto	Male
Karin	Female
Nina	Female
Sergio	Male

Officer Drew

Name	Sex
Drew	Male
Claudia	Female
Drew	Female
Drew	Female
Alberto	Male
Karin	Female
Nina	Female
Sergio	Male

$$
p(\text { male } \mid \text { drew })=\frac{\mathbf{1} / \mathbf{3} * \mathbf{3} / \mathbf{8}}{\mathbf{3 / 8}}=\underline{\mathbf{0} . \mathbf{1 2 5}} \frac{3 / 8}{}
$$

$$
p\left(c_{j} \mid d\right)=\frac{p\left(d \mid \mathrm{c}_{j}\right) p\left(c_{j}\right)}{p(d)}
$$

$\begin{array}{lll}p(\text { male } \mid \text { drew })=\frac{1 / 3 * 3 / 8}{3 / 8} & =\frac{0.125}{3 / 8} & =\begin{array}{l}\text { Officer Drew is } \\ \text { more likely to be } \\ \text { a Female. }\end{array} \\ p(\text { female } \mid \text { drew })=\frac{2 / 5 * 5 / 8}{3 / 8} & =\frac{0.250}{3 / 8} & \end{array}$

Officer Drew IS a female!

Officer Drew

$$
\begin{array}{ll}
p(\text { male } \mid \text { drew })=\frac{1 / 3 * 3 / 8}{3 / 8} & =\frac{0.125}{3 / 8} \\
p(\text { female } \mid \text { drew })=\frac{2 / 5 * 5 / 8}{3 / 8} & =\frac{0.250}{3 / 8}
\end{array}
$$

So far we have only considered Bayes Classification when we have one attribute (the "antennae length", or the

$$
p\left(c_{j} \mid d\right)=\frac{p\left(d \mid \mathrm{c}_{j}\right) p\left(c_{j}\right)}{p(d)}
$$

"name"). But we may have many features.
How do we use all the features?

Name	Over 170cm	Eye	Hair length	Sex
Drew	No	Blue	Short	Male
Claudia	Yes	Brown	Long	Female
Drew	No	Blue	Long	Female
Drew	No	Blue	Long	Female
Alberto	Yes	Brown	Short	Male
Karin	No	Blue	Long	Female
Nina	Yes	Brown	Short	Female
Sergio	Yes	Blue	Long	Male

- To simplify the task, naïve Bayesian classifiers assume attributes have independent distributions, and thereby estimate

$$
p\left(d \mid c_{j}\right)=p\left(d_{1} \mid c_{j}\right) * p\left(d_{2} \mid c_{j}\right) * \ldots * p\left(d_{n} \mid c_{j}\right)
$$

The probability of class c_{j} generating instance d, equals....

The probability of class c_{j} generating the observed value for feature 1 , multiplied by..

The probability of class c_{j} generating the observed value for feature 2 , multiplied by..

- To simplify the task, naïve Bayesian classifiers assume attributes have independent distributions, and thereby estimate

$$
p\left(d \mid c_{j}\right)=p\left(d_{1} \mid c_{j}\right) * p\left(d_{2} \mid c_{j}\right) * \ldots * p\left(d_{n} \mid c_{j}\right)
$$

$p\left(\right.$ officer drew $\left.\mid c_{j}\right)=p\left(\right.$ over_170 $\left.0_{\mathrm{cm}}=\mathrm{yes} \mid c_{j}\right) * p\left(\right.$ eye $\left.=b l u e \mid c_{j}\right) * \ldots$

Officer Drew is blue-eyed, over 170_{cm} tall, and has long hair
$p($ officer drew \mid Female $)=2 / 5 * 3 / 5 * \ldots$ $p($ officer drew \mid Male $)=2 / 3 * 2 / 3 * \ldots$

The Naive Bayes classifiers is often represented as this type of graph...

Note the direction of the arrows, which state that each class causes certain features, with a certain probability

Naïve Bayes is fast and space efficient

We can look up all the probabilities with a single scan of the database and store them in a (small) table...

$$
p\left(d_{1} \mid c_{j}\right) \quad\left(p\left(d_{2} \mid c_{j}\right)\right.
$$

Sex	Over 190 cm	
Male	Yes	0.15
	No	0.85
Female	Yes	0.01
	No	0.99

Sex	Long Hair	
Male	Yes	0.05
	No	0.95
Female	Yes	0.70
	No	0.30

Sex	
Male	
Female	

Naïve Bayes is NOT sensitive to irrelevant features...

Suppose we are trying to classify a persons sex based on several features, including eye color. (Of course, eye color
is completely irrelevant to a persons gender)

$$
\begin{aligned}
& p\left(\text { Jessica } \mid c_{j}\right)=p\left(\text { eye }=\text { brown } \mid c_{j}\right) * p\left(\text { wears_dress }=\text { yes } \mid c_{j}\right) * \ldots \\
& p(\text { Jessica } \mid \text { Female })=9,000 / 10,000 \\
& p(\text { Jessica } \mid \text { Male })=9,001 / 10,000
\end{aligned} \quad * 9,975 / 10,000 * \ldots .10,000 \quad * \ldots .
$$

However, this assumes that we have good enough estimates of the probabilities, so the more data the better.

An obvious point. I have used a simple two class problem, and two possible values for each example, for my previous examples. However we can have an arbitrary number of classes, or feature values

$$
\left(p (d _ { 1 } | c _ { j }) \quad \left(p (d _ { 2 } | c _ { j }) \quad \ldots \quad \left(p\left(d_{n} \mid c_{j}\right)\right.\right.\right.
$$

Animal	Mass $>\mathbf{1 0}_{\mathbf{k g}}$	
Cat	Yes	0.15
	No	0.85
	Yes	0.91
	No	0.09
Pig	Yes	0.99
	No	0.01

Animal	Color	
Cat	Black	0.33
	White	0.23
	Brown	0.44
Dog	Black	0.97
	White	0.03
	Brown	0.90
Pig	Black	0.04
	White	0.01

Animal
Cat
Dog
Pig

Naïve Bayesian Classifier

Naïve Bayes assumes independence of features...

$p\left(d \mid c_{j}\right)$

$$
\left(p\left(d_{1} \mid c_{j}\right)\right.
$$

$p\left(d_{2} \mid c_{j}\right)$

$p\left(d_{n} \mid c_{j}\right)$

Sex	Over 6 foot	
Male	Yes	0.15
	No	0.85
Female	Yes	0.01
	No	0.99

Sex	Over 200 pounds	
Male	Yes	0.11
	No	0.80
Female	Yes	0.05
	No	0.95

Solution

Naïve Bayesian Classifier

$p\left(d \mid c_{j}\right)$

$$
\left(p (d _ { 1 } | c _ { j }) \quad \left(p\left(d_{2} \mid c_{j}\right)\right.\right.
$$ Consider the relationships between attributes...

Sex	Over 6 foot	
Male	Yes	0.15
	No	0.85
Female	Yes	0.01
	No	0.99

Sex	Over 200 pounds	
Male	Yes and Over 6 foot	0.11
	No and Over 6 foot	0.59
	Yes and NOT Over 6 foot	0.05
	No and NOT Over 6 foot	0.35
Eemale	Yes and Over 6 font	001

Consider the relationships between attributes...

But how do we find the set of connecting arcs??

The Naïve Bayesian Classifier has a piecewise quadratic decision boundary

Frequency (Hz)

$$
\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

If I see an insect with a wingbeat frequency of 500 , what is it?

$$
P(\text { Anopheles } \mid \text { wingbeat }=500)=\frac{1}{\sqrt{2 \pi} 30} e^{-\frac{(500-475)^{2}}{2 \times 30^{2}}}
$$

What is the error rate?
12.2% of the
8.02% of the area under the area under the pink curve red curve

Can we get more features?

Circadian Features

Suppose I observe an insect with a wingbeat frequency of 420 Hz

What is it?

Suppose I observe an insect with a wingbeat frequency of 420 Hz at 11:00am

What is it?

Suppose I observe an insect with a wingbeat frequency of 420 at 11:00am

What is it?

(Culex | [420Hz,11:00am]) $=(6 /(6+6+0)) *(2 /(2+4+3))=0.111$
(Anopheles | [420Hz, 11:00am] $)=(6 /(6+6+0)) *(4 /(2+4+3))=0.222$
$($ Aedes | [420Hz,11:00am] $)=(0 /(6+6+0))^{*}(3 /(2+4+3))=0.000$

Which of the "Pigeon Problems" can be solved by a decision tree?

Advantages/Disadvantages of Naïve Bayes

- Advantages:
- Fast to train (single scan). Fast to classify
- Not sensitive to irrelevant features
- Handles real and discrete data
- Handles streaming data well
- Disadvantages:
- Assumes independence of features

