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ABSTRACT 
For many real world problems we must perform classification 
under widely varying amounts of computational resources. For 
example, if asked to classify an instance taken from a bursty 
stream, we may have from milliseconds to minutes to return a 
class prediction. For such problems an anytime algorithm may 
be especially useful.  

In this work we show how we can convert the ubiquitous nearest 
neighbor classifier into an anytime algorithm that can produce 
an instant classification, or if given the luxury of additional 
time, can utilize the extra time to increase classification 
accuracy. We demonstrate the utility of our approach with a 
comprehensive set of experiments on data from diverse 
domains.  
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1. INTRODUCTION 
For many real world problems we must perform classification 
under widely varying amounts of computational resources. For 
example, if asked to classify an instance taken from a bursty 
stream [2][29], we may have from milliseconds to minutes to 
return a class prediction. For such problems an anytime 
algorithm may be especially useful.  

Anytime algorithms are algorithms that trade execution time for 
quality of results [8]. In particular, an anytime algorithm always 
has a best-so-far answer available, and the quality of the answer 
improves with execution time. The user may examine this 
answer at any time, and then choose to terminate the algorithm, 
temporarily suspend the algorithm, or allow the algorithm to run 
to completion. The utility of anytime algorithms for data mining 
has been extensively documented [5][6][28]. 
To increase the reader’s appreciation of the utility of nearest 
neighbor classifiers in real world settings we will consider some 
motivating examples below. 
Audio Sensor Monitoring: In ongoing work we are attempting 

to build classifiers for “smart” insect traps that can identify the 
species and sex of automatically captured insects [33]. While 

the single feature of wing beat frequency is quite effective by 
itself, our best results come from a nearest neighbor algorithm 
that considers many additional features, including sound 
amplitude, time of day, season, temperature, humidity etc. Our 
classifier must run on low-powered embedded computers 
attached to disposable smart traps. This computer has very 
limited computational resources, making exhaustive nearest 
neighbor search quite demanding even in databases of only a 
few thousand instances. Furthermore, in our empirical studies 
we found that the insects inter arrival time can vary from 
tenths of seconds to tens of minutes. In such an environment 
an anytime algorithm will allow the classifier to make the best 
possible decision in the time permitted. 

Robotics: A general approach to robot navigation, (the so called 
SLAM problem, Simultaneous Localization And Mapping) is 
for the robot to perform range scans and compare the shapes 
to previously obtained maps [15]. However the shape 
comparisons can be computationally expensive [1], and the 
robot may be forced to move before an exhaustive nearest 
neighbor search has been completed. Under such 
circumstances an anytime algorithm will allow the robot to 
best utilize the time before a decision is forced.  

Industrial Applications: As noted in [4] “Many industrial 
applications require classification of items placed on a 
moving conveyor”. The distance measure used may have a 
complexity as high as O(n3) in order to achieve robustness 
despite rotation and other distortions [1]. In domains such as 
manufacturing it may be possible to know the frequency at 
which the objects in question pass under the camera. However 
in other applications, such as fruit sorting and grading [34], 
the inter arrival times can vary greatly. The amount of time 
the algorithm has to classify an object before it must take 
action (i.e., blowing the suspect fruit off the conveyer with 
compressed air) can vary by up to 3 orders of magnitude. 
Once again using an anytime algorithm can allow us to make 
the best decision in the time available. 

In this work we show how we can convert the ubiquitous nearest 
neighbor classifier to an anytime algorithm that can produce an 
instant classification, or if given the luxury of additional time, 
can increase classification accuracy. The framework is based on 
the simple intuition that important exemplars (instances highly 



representative of a given class) should be examined first.  We 
show that, for most problems, a simple generic algorithm can 
produce a high quality ordering of the exemplars, .  We also 
show that, in some specialized domains, we can further improve 
our algorithm with domain-specific techniques. 
The rest of the paper is organized as follows. In Section 2, we 
review related work and discuss some background material. In 
Section 3 we introduce a formal definition of our anytime 
nearest neighbour classification. We introduce our observations 
on index ordering in Section 4. Section 5 introduces three 
general heuristics for ordering the instances for our algorithm. 
In Section 6 we show an example of a special ordering heuristic 
that can take advantage of domain knowledge in time series 
classification.  We perform an extensive empirical evaluation in 
Section 7.  In Section 8 we provide a detailed case study of a 
real world application of our algorithm to streaming data. 
Finally, Section 9 offers some conclusions and suggestions for 
future work. 

2. RELATED WORK AND BACKGROUND  
As illustrated in Figure 1, anytime algorithms are algorithms 
that trade execution time for quality of results [8]. In particular, 
after some small amount of “setup time,” an anytime algorithm 
always has a best-so-far answer available, and the quality of the 
answer improves with execution time. 

 

Figure 1:  An abstract illustration of an anytime algorithm. Note 
that the quality of the solution keeps improving up to time S, 
when the algorithm is interrupted by the user.  

Zilberstein and Russell [38] give a number of desirable 
properties of anytime algorithms: 
• Interruptability: After some small amount of setup time, 

the algorithm can be stopped at anytime and provide an 
answer. 

• Monotonicity: the quality of the result is a non-decreasing 
function of computation time. For classification, this 
quality is simply the probability of correct classification.  

• Measurable quality: the quality of an approximate result 
can be determined. 

• Diminishing returns: the improvement in solution quality 
is largest at the early stages of computation, and diminishes 
over time. 

• Preemptability: the algorithm can be suspended and 
resumed with minimal overhead. 

Due to their suitability for real world problems, anytime 
classifiers can be used in many application domains. The work 
of Myers, et al. considers an anytime classification framework 
[24] for topic identification in the Natural Language Processing 
domains. In their framework, features (words from a 
conversation) continuously stream in, and the program may be 
required to produce a class label at any time.  
In computer vision anytime classifiers have been successfully 
used to perform a fast reconfiguration to a view database as 
reported by Heidemann et al. [13]. The task is to recognize 
multiple objects using image processing. Because the system is 

part of a user interface for augmented reality, the amount of 
time allowed for classification is not known in advance, so an 
anytime framework is necessary.  
Yamada et. al reported an anytime algorithm that successfully 
controls web robots to create Personal Web Maps (PWM) using 
Self Organizing Maps [31]. It is important to have anytime 
behavior in this domain because it is an inherently interactive 
domain due to of the users changing information needs.  
Anytime classification is also shown to be helpful in supporting 
teamwork in a multi-agent system [19]. Kotenko et. al have 
investigated the anytime framework in domains as diverse as 
virtual soccer (Robocup), simulations of battle operations in 
autonomous flight vehicles, and simulations of distributed 
coordinated computer attacks. This suggests that anytime 
classifiers can be helpful to make quick decisions since agents 
are required to classify the current situations correctly and select 
appropriate operations within widely varying times.  
There has also been some research in converting conventional 
machine learning algorithms to anytime algorithms, including 
anytime inductive logic programming [23], the anytime Naïve 
Bayes Text Classifier [28], and anytime Bayesian Networks [14]. 
Others have noted that certain algorithms can be regarded as 
anytime algorithms even if they were not designed for that 
purpose, for example Roy and McCallum[28] note “By initially 
using a fairly restrictive pool of candidates for labeling, and 
increasing the pool as time permits, our algorithm can be 
considered an anytime algorithm”. Surprisingly, however, little 
is written about anytime algorithms for nearest neighbor 
classifiers.  
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In any anytime classifier, it is hard to know when users should 
interrupt an anytime algorithm to get the best-so-far answer 
since anytime algorithms provides us “a tradeoff between 
solution quality and computation time that has proved useful in 
applying artificial intelligence techniques to time-critical 
problems” [12]. We never know when algorithms should 
optimally be interrupted in advance. Thus algorithms should be 
equipped with appropriate stopping criteria by monitoring 
learning performances. Therefore algorithms should achieve 
better results asymptotically so that they can return the 
approximately good answers before user interruption [38]. For 
this reason we do not consider contract anytime classifiers 
focusing only on interruptible anytime classifiers in this paper.  
As noted in [32][9] it is sometimes a good idea to order the 
index of training data for asymptotically good results. However 
this work applies to decision trees [9], and Naïve Bayes 
classifiers [32], and to the best of our knowledge, no ordering 
heuristics has been reported for nearest neighbor.  
In this paper we focus on our generic framework for anytime 
nearest neighbor algorithms that can be interrupted anytime and 
get the best answers in limited time. We also propose our 
generic and special ordering heuristics that can sort the index of 
training data suitable for anytime nearest neighbor classifiers. In 
an extensive empirical evaluation we will show that our 
methods work exceptionally well although they are quite simple 
algorithms. 
Given our definition of the problem at hand, it is natural to ask, 
why not use an indexing technique to speed up nearest 
neighbor?, or why not use a faster classification algorithm like a 
decision tree?. We defer answering these questions until Section 
9, so that we may refer to some empirical observations in our 
experimental study. 



3. ANYTIME NEAREST NEIGHBOR 
Assume we have a set of m training instances, which we refer to 
as Database. We can access the ith exemplar from this set with 
Database.object(i), and the class label for the ith exemplar 
with Database.class_label(i). The instances in the database 
can be any objects we are interested in classifying, such as 
classic database tuples, strings, graphs, time series, webpages 
etc.  
Assume that Index is a permutation of the integers from 1 to m, 
where m is the size of Database.  
Finally, assume O is an object we wish to classify using an 
anytime nearest neighbor algorithm with Database as our 
training data.  
At some time S, where number_of_classes(Database) ≤  S ≤ m, 
the algorithm will be interrupted and we report a class label 
prediction for O. Given the above notation, Table 1 shows our 
anytime nearest neighbor algorithm. 

Table 1: Anytime Nearest Neighbor Algorithm 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

Function  [best_match_class]= Anytime_Classifier (Database, Index, O) 

best_match_val       = inf; 

best_match_class   = undefined; 

For p = 1 to number_of_classes(Database)              

   D = distance(Database.object(Indexp) , O); 

   If  D < best_match_val 

       best_match_val = D; 

       best_match_class = Database.class_label(Indexp); 

   End 

End 

 

Disp(‘The algorithm can now be interrupted’); 

 

p = number_of_classes(Database)  + 1; 

While (user_has_not_interrupted AND p < max(index) ) 

   D = distance(Database.object(Indexp) , O); 

   If  D < best_match_val 

       best_match_val = D; 

       best_match_class = Database.class_label(Indexp); 

   End 

   p = p +1; 

   user_has_not_interrupted = test_for_user_interrupt; 

End 

 
In the first ten lines of code we compare O to one member of 
each class and tentatively assign its class label to the nearest 
exemplar. Note that the algorithm cannot be interrupted during 
this phase of the algorithm, however this is a very small amount 
of time. After this setup time, the algorithm can be interrupted at 
any point. Until it is interrupted, or has exhaustively compared 
O to the entire database, it will compare O to each object in the 
database in the order predefined in Index variable, updating the 
class prediction to reflect the current cumulative results.   
Note that we have not yet defined how Index is sorted. The only 
way we can help the algorithm above is to sort the Index such 
that “useful” examples will appear early. In Section 4 we will 
make some observations about this problem before introducing 
several concrete algorithms as solutions in Sections 5 and 6. 
Before leaving this section it is worth making two additional 
observations about the anytime algorithm. We note that the 
distance measure, distance(Database.object(Indexp),O) can 
be any distance measure, including Euclidean distance, 
Manhattan distance, correlation, etc. Where appropriate it can 
also be any specialized distance measure such as string edit 

distance, Dynamic Time Warping etc. Note also that the time 
and space complexity for classification has not changed, 
although we must do some additional preprocessing work in 
creating the Index variable.  

4. OBSERVATIONS ON INDEX ORDERING  
In the previous section we simplified the problem of producing 
an anytime nearest neighbor algorithm to finding an ordering of 
Index. There are m! such orderings. 
It might be imagined that for any particular dataset there is an 
optimal ordering of the Index. Such a speculation is important, 
because it suggests a possible efficient algorithm. Many similar 
problems can be efficiently solved by dynamic programming if 
the optimal arrangement with n objects can be derived from the 
optimal arrangement with n-1 objects. 
Unfortunately, it is easy to see that we must abandon any hope 
of such an optimal ordering. Consider Figure 2, which shows a 
simple two-dimensional classification problem, which we call 
the Japanese Flag (JF) problem. We will use this problem as a 
running example throughout this work. 
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Figure 2: A two-class classification problem. The data forms a 2-
D Gaussian ball, objects within r of the center are in class A, all 
other objects are in class B. When r = 1.2 as above, the two 
classes are approximately equiprobable  

For simplicity and without loss of generality, imagine that we 
are allowed to keep just one instance from class A, and we are 
asked to find the optimal n instances from class B. As illustrated 
in Figure 3 the chosen instances will form a Voronoi tessellation 
of the plane.  
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Figure 3: I) a zoom-in of the classification problem in Figure 2. 
II) An optimal set of 3 instances to keep from class B. III) An 
optimal set of 4 instances to keep from class B 

For this problem, it is easy to see that minimizing the error rate 
is equivalent to minimizing the area enclosed by the true class 
boundary and its Voronoi piecewise linear approximation, 



which in turn is equivalent to the Archimedean problem of 
approximating a circle with n straight lines.  
The implications for the task at hand are obvious. In this case 
the optimal 4 instances and the optimal 3 instances have zero 
intersections. We cannot derive the optimal arrangement for n 
instances from the optimal arrangement with n-1 instances.  
We could instead attempt to solve the problem of finding the 
optimal arrangement of instances, given perfect knowledge of  
the distribution of the interruption times. However a 
fundamental (and realistic) assumption of anytime algorithms is 
that we have no way of knowing when an interruption might 
take place, even on average.  
Note that these findings are not all bad news for us. At least for 
this JF problem we can see that there are many very good 
solutions for each value of n. 

5. GENERAL ORDERING HEURISTICS  
Having introduced our anytime classification algorithm, we note 
that there are only two ways to modify the algorithm: by 
changing the distance measure and by changing the Index 
ordering heuristic.  As distance measurement selection is an 
independent concern well-documented in many other papers, 
will only focus on the critical Index ordering subroutine 
Table 2 shows our ordering algorithm. The basic intuition is as 
follows: We begin by finding the “worst” exemplar (Line 4), 
and place a pointer to it in the last position in the Index (Line 
5). To ensure that we don’t consider it again, we replace the 
exmplar in the original list with a null (Line 6). We then 
repeatedly find the worst exemplar remaining and place a 
pointer to it in the last unoccupied place in the Index. 

Table 2: Ordering Algorithm 
1 

2 

3 

4 

5 

6 

7 

Function  [Index] = Order_Index(Training_Database) 

Index = create_vector_of_size(m)   // m  is the size of Training_Database 

For p = 0 to m – (1 + number_of_classes(Training_Database))                        

   location = find_location_of_worst_exemplar(Training_Database) 

   Indexm-p = location 

   Training_Database(location) = null;  

End 

The above algorithm is completely generic and self-contained, 
except we have not yet explained how we defined the “worst” 
exemplar. This is a deliberate omission, which allows us to 
explore many possibilities, and allows anyone to use our 
framework simply by creating a definition of the “worst” 
exemplar. Before considering this problem in the next section 
we will make some observations about the ordering algorithm. 
Note that there is no mechanism in the algorithm to force the 
first few exemplars pointed to by the Index to include one of 
each class.  In practice however, this is almost always the case 
under any definition of exemplar quality.  
Notice also that we have chosen to search “worse-first,” rather 
than to search “best-first.” That is to say, we could in principle 
search in the opposite direction, find the best instance and place 
it in the first place in the Index, then find the next best instance 
and place it in the second place in the Index etc. The main 
reason for this decision is the difficulty in defining “best” in the 
early stages of the algorithm. It is hard to measure the utility of 
single instance in the early stages of “best-first” search because 
we are interested in the decision boundaries, which are defined 
by (at least) two instances of different classes.  

5.1 Finding the Worst Exemplar  
We are now in a position to explain some techniques for 
defining the worst exemplar.  Random and BestDrop are 
considered to allow some baseline comparison, and our method 
SimpleRank, is discussed last.  
• Random: Here the find_location_of_worst_exemplar 

subroutine on line 4 of Table 2 simply returns a random 
number between 0 and m-1. We define this algorithm to 
allow a simple baseline comparison. 

• BestDrop: There has been much work on data editing 
(numerosity reduction/condensing) for nearest neighbor 
classification [25][35]. Such algorithms have very similar 
goals to the current work, except these algorithms 
explicitly know in advance the stopping value S. Perhaps 
the most referenced work in this area is by Wilson and 
Martinez [35], who introduced 3 algorithms for 
determining the worst exemplar. All these algorithms 
create some list of nearest neighbors, of both the same class 
(associates) and of different classes (enemies), and use a 
weighted scoring function based on this list to determine 
the worst exemplar. We have implemented all three 
variants and we report only the best performing variant for 
each possible S value. 

• SimpleRank: The intuition behind this algorithm is to give 
every instance a rank according to its contribution to the 
classification. We do leave-one-out 1-nearest-neighbor 
classification for the training data, and the rank of the 
instance is calculated as the following formula: 
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where xj is an instance having x as its nearest neighbor. 
This ranking typically produces many ties for the worst 
instance, which we break by further sorting the instances 
by their distance to their nearest neighbor of the same class.   

While we defer detailed experimental results until Section 6, we 
will preview here the utility of the SimpleRank method on the 
JF classification problem introduced in Section 4. Figure 4 
shows the first ten instances encountered by the anytime nearest 
neighbor algorithm, using both SimpleRank and Random 
ordering. The ten points were obtained from an original set of 
2,000. The testing error rate, assuming we interrupt after seeing 
ten points, was 7.75% for SimpleRank and 24.36% for Random 
ordering. 
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Figure 4: The classifiers used by the anytime nearest neighbor 
when interrupted after seeing just ten instances from the JF 
problem. I) The ten SimpleRank instances. II) The 10 random 
ordering instances. The dark circular dots are misclassified 
instances  

 



Note that in Figure 4 the ten instances used by SimpleRank 
create a decision boundary that is a pretty good approximation 
to the pentagon which is the optimal solution for this number of 
exemplars. 
The time complexity for a naive implementation of the ordering 
algorithm in Table 2 is O(m3 log(m)), because the outer loop on 
line 4 repeats O(m) times, and the subroutine 
find_location_of_worst_exemplar requires sorting m objects, after 
doing an all-to-all comparison. However, by simply caching the 
results of the first iteration of the outer loop on line 4, and only 
updating the instances that where affected by the temporary 
removal of the worse instance, we can reduce the complexity to 
O(m2). To concretely ground these numbers, on the largest 
problem considered in this work (the 11,340 training instances 
of the Forest Cover Type problem), the simple caching approach 
reduces the time complexity from 277.7 hours to 53.7 minutes 
using a Pentium(R)4 3.0GHz. 

6. SPECIAL ORDERING HEURISTICS  
As we shall show in the Section 7, the generic ordering 
algorithms discussed in the previous section can produce 
dramatic improvement over random ordering. However we 
believe that in certain domains, it will be possible to create 
specialized algorithms that can then be transparently used with 
the anytime nearest neighbor algorithm introduced in Table 1.  
The specialized algorithms leverage domain-specific knowledge 
to produce superior results.  In this section we will give one 
complete example of a specialized domain solution, beginning 
with the motivation.  

6.1 Agricultural Monitoring  
Health care management is a critical and demanding issue in 
current livestock production. The economic cost related to large-
scale diseases such as avian flu and BSE (“mad cow” disease) 
makes early detection of disease very important. This has 
investigated a huge effort in developing sensors and sensing 
techniques for diagnosis in the agricultural sector. 
One example of a successfully deployed system is monitoring 
pigs for coughing sounds indicative of certain diseases [10]. The 
algorithm used to detect the coughs is simple 1-nearest-neighbor 
with Dynamic Time Warping (DTW) as the distance measure. 
The system continuously monitors sounds in the pigsty to 
identify candidate sounds by “applying a threshold to the signal 
energy.” All extracted sounds are then passed to the 
classification system. Herein lies the problem: the DTW 
algorithm is relatively lethargic, requiring quadratic time per 
comparison, and we do not know how long we have until the 
next candidate sound will be extracted. This is exactly the kind 
of problem where an anytime algorithm is ideally suited.  

6.2 DTW Review with Novel Observations 
To align two sounds using DTW, an n-by-n matrix is 
constructed, where the (ith, jth) element of the matrix is the 
distance d(qi, cj) between the two points qi and cj (i.e. d(qi, cj) = 
(qi - cj)2 ). Each matrix element (i, j) corresponds to the 
alignment between the points qi and cj, as illustrated in Figure 5. 
The warping path is subject to several constraints. For example, 
the warping path must start and finish in diagonally opposite 
corner cells of the matrix, the steps in the warping path are 
restricted to adjacent cells (including diagonally adjacent cells), 
and the points in the warping path must be monotonically 
spaced in time. In addition to these constraints, virtually all 

practitioners using DTW also constrain the warping path in a 
global sense by limiting how far it may stray from the diagonal. 
A typical constraint is the Sakoe-Chiba Band which states that 
the warping path cannot deviate more than R from diagonal, 
where R is a percentage of the length of the time series. 
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Figure 5: Left) Two time series sequences which are similar but 
out of phase. Right) To align the sequences we construct a 
warping matrix, and search for the optimal warping path, 
shown with solid squares. Note that Sakoe-Chiba Band with 
width R is used to constrain the warping path 

Our idea to create a special purpose-ordering algorithm for 
DTW is based on two observations made in [26]. The first 
observation is that the value of the parameter R greatly affects 
the accuracy of DTW classification. When R equals 0, DTW 
degenerates to Euclidean distance and achieves Euclidean 
distances’ (surprisingly hard to beat [15]) accuracy. As R gets 
larger, the accuracy briefly increases, then either falls or levels 
off. While this is only an empirical observation, it holds for 
every publicly available time series dataset. Figure 6 shows 
some examples. 
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Figure 6: The accuracy of DTW classification on 8 datasets as a 
function of parameter R. Note that in every case, the accuracy 
briefly increases as a function of R, then either levels off or 
decreases 

This observation is very important if we wish to build accurate 
classifiers. For example, for the GunX problem the best setting 
of R is 3%, this gives an error rate of just 1%. However setting 
R = 0% (i.e. the Euclidean distance) gives an error of 5.5%. If 



we instead set R to a large value, say 10%, we get an even worse 
error rate of 11.5%. 
The second observation is that, for a fixed domain, the best 
value for R depends on the amount of training data. The more 
training data available, the smaller R should be. Again, this is 
only an empirical observation, but again it holds for every 
publicly available time series dataset (we did experiments on 
other datasets and obtained similar results, see [17]). Figure 7 
shows an example on the GUN dataset, which has 200 instances. 
Each time half of the instances are randomly removed from the 
dataset. We try all the warping window sizes and record 
corresponding accuracies. We repeated this experiment ten 
times and report the average results. 
 

Figure 7: The best value for R depends on the amount of 
training data available  

This figure shows that the more training data we see, the more 
accurate we can be, hardly a surprise. However it also clearly 
shows that the best setting for R depends on the amount of 
training data.  For example, it we are only going to see 6 
instances, we should set R to size 10. However, if we are going 
to see 200 instances, we should set R to size 3. Note that if we 
naively keep the best setting learned on 6 instances on the 200-
instance version of the problem, our error rate would increase by 
an order of magnitude! 
Recall that in Table 1 we make repeated calls to a distance 
function: D = distance(Database.object(Indexp),O). As we 
noted earlier this distance function can be anything, including 
DTW. Note that the distance function “sees” the value of p, and 
can thus be made aware of how many instances we have seen 
thus far.  We can leverage off this observation with a trivial 
modification of the ordering algorithm shown in Table 2.  

Table 3: DTW Ordering Algorithm 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Function  [Index, Index_R_values] = Order_Index_DTW(Training_Database) 

Index = create_vector_of_size(m);   // m  is the size of Training_Database 

R  = Find_best_value_of_R(Training_Database);      // warping window size 

For p = 0 to m – (1 + number_of_classes(Training_Database))                           

   [ loc_R, accuracy_R ] = find_worst_exemplar(Training_Database, R ); 
   [loc_R+, accuracy_R+ ] = find_worst_exemplar(Training_Database, R +1); 

    If accuracy_R+ > accuracy_R 

         R = R +1; 

         loc_R = loc_R+; 

    End 

    Indexm-p = loc_R; 

    Index_R_valuesm-p = R; 
   Training_Database(loc_R) = null;  

End 

 

The DTW ordering algorithm shown in Table 3 is almost 
identical to its generic ordering counterpart except for two 
minor modifications. First, before beginning the ordering 
search, we determine the best value for R on the full dataset. We 
then begin the ordering search but include an additional 
operator. We find the worst exemplar for both R and R +1. In 
most cases the training accuracy for both cases will be the same, 
but the results in Figure 7 suggest that occasionally, as the 
dataset gets smaller, the better accuracy will be obtained by the 
larger value of R. When this is the case, we increment R and 
continue the search. 

7. EXPERIMENTS 
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In this section we perform an extensive empirical evaluation of 
our ideas. We made an effort to consider a diverse range of 
problems in terms of size, feature types, and number of classes. 
For example, the problems we consider range from 351 to 
581,012 instances, and we consider problems with real, 
categorical, and mixed features in addition to three specialized 
time series problems. Table 4 lists the properties of the datasets. 
Table 4: The datasets used in our experiments, including 
the two time series used with the special ordering heuristic 

Name # classes # features # instances Evaluation Data type 

JF 2 2 20,000 2,000/18,000 real 

Forest Cover 7 54 581,012 11,340/569,672 mixed 

Letter 26 16 20,000 5,000/15,000 real 

Pen Digits 10 16 10,992 7,494/3,498 real 

Ionosphere 2 34 351 10-fold CV real 

Voting Record 2 16 435 10-fold CV  boolean 

Australian 
Credit 

2 14 690 10-fold CV mixed 

Leaf 6 150 442 200/242 time series 

Two_Pat 4 128 5,000 1,000/4,000 time series 

Face 16 131 2,231 1,113/1,118 time series 

We use 10-fold cross validation (CV) except were a preexisting 
training/test split was defined. In order to ensure our 
experiments are reproducible we have placed the exact data, 
(with split information) at [17], where we have also placed 
additional experiments that we could not fit in the paper. The 
original datasets except JF, Leaf, Face and Two_Pat came from 
www.ics.uci.edu/~mlearn/MLRepository.html.  

7.1 Generic Ordering 
We begin by considering our running example, the JF problem, 
which we have already mentioned in Section 3 (Figure 2). We 
randomly took 2,000 instances from 20,000 instances as training 
data, and used the remaining 18,000 as the testing set as 
described in Table 4. Figure 8 shows the accuracy obtained by 
both SimpleRank and Random. Note that while the training 
accuracy is slightly optimistic, it closely shadows the curve for 
the testing data.  
In this experiment, SimpleRank clearly beats Random ordering. 
For example, the accuracy assuming we interrupt after seeing 
ten points is 92.25% for SimpleRank but only 75.64% for 
Random ordering. As with all our experiments, if the algorithm 
is not interrupted and both methods see all the instances, they 
will have identical accuracy. 



 

Figure 8: The accuracy of anytime classification on the JF 
problem for every possible interruption time from 2 to 2,000   

Figure 9 considers the Australian Credit problem. Since this 
dataset has only 690 examples, we used cross validation for the 
evaluation. This dataset contains both categorical and numerical 
attributes. We compare the accuracy curves of SimpleRank, 
BestDrop, and Random in this dataset. We found that BestDrop 
only slightly beats Random here, a finding which was echoed in  
all the other datasets. For this reason, and to enhance visual 
clarity, we will not include the results of the BestDrop in the 
rest of the figures, however the results are available at [17].  
The results show that SimpleRank can achieve good results even 
if we have smaller datasets (and thus a smaller space to search 
over), with an accuracy difference of 5-7% between Random 
and SimpleRank for almost the entire range of possible 
interruption times. 
 

Figure 9: The accuracy of anytime classification on the 
Australian problem for every possible interruption time from 2 
to 619   

Note for this problem we achieve the best accuracy after seeing 
only 18% of the data, thereafter the accuracy begins to decrease 
(we see similar behavior in Figure 11). This non-monotonic 
behavior is undesirable in an anytime algorithm, although we 
note that it still beats random over the entire range of the 
dataset. In this case the non-monotonic behavior is caused by 
noisy (possibly mislabeled) exemplars. We could improve 
accuracy by permanently removing exemplars which appear late 
in the Index (i.e data editing), however for simplicity we leave 
such considerations for future work. 
Figure 10 shows the results of applying our algorithm to the 
Letter dataset. The Letter dataset has 26 class labels 
corresponding to the letters from A to Z, of which the attributes 
are normalized from 0 to 1. The task in this dataset is to 
recognize letters given 16 features extracted from image data. 
Even in such a multiple-class problem we find that SimpleRank 

dominates Random ordering up to the first 2,000 training 
examples.  
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Figure 10: The accuracy of anytime classification on the Letter 
problem for every possible interruption time from 26 to 5,000. 
Note that the Random training and test curves almost perfectly 
coincide and are thus impossible to distinguish 

PenDigits dataset is another multiple-class problem, which we 
consider in Figure 11. We used 7,494 examples for training and 
3,498 for test respectively. Because we have a much smaller 
testing set the curves are less smooth, however, SimpleRank 
clearly beats Random up to the first 2,000 examples.  
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Figure 11: The accuracy of anytime classification on the 
PenDigits problem for every possible interruption time from 10 
to 7,494 

The Forest Cover Type problem considered in Figure 12 is a 
particularly challenging dataset because of its size both in terms 
of the number of the instances and the number of attributes.  The 
dataset has mixed type of attributes, including both categorical 
and numerical data. For simplicity, all of the attribute values are 
transformed to numeric data and normalized by subtracting the 
minimum value and then dividing by the maximum value on 
each attribute. We then use Euclidean distance, as with all the 
other datasets in this section. This is probably not the best 
choice for distance measure, but we are only interested in 
comparing the relative merits of our ordering algorithms, not in 
finding the best distance measure for mixed data types. This 
explains why our best accuracy using by 1-nearest-neighbor is 
66.6%, while the best reported accuracy from UCI KDD 
Archive is higher, 70% using back propagation.  Interestingly, 
after an initial “jump” in accuracy, the accuracy curves almost 
increases linearly from 200 to 11,340. This phenomenon 
suggests that (unlike, say, Australian Credit or PenDigits) we 
could greatly benefit from obtaining more data in this domain. 



 

Figure 12: The accuracy of anytime classification on the Forest 
Cover Type problem for every possible interruption time from 7 
to 11,340. Note that the training curves are highly optimistic 

Figure 13 considers the Ionosphere problem. It has 34 attributes 
although the number of the examples is only 351. All the 
attributes are numerical and normalized as 0 to 1. The results 
once again show that Simple Rank outperforms Random over 
the entire space of interruption times.   

 

Figure 13: The accuracy of anytime classification on the 
Ionosphere problem for every possible interruption time from 2 
to 326 

Our final example for generic ordering is the Vote problem 
shown in Figure 14. While it is too small to be motivating to our 
work, we include it because it is very well known and is an 
example of an all-binary feature dataset.    

 

Figure 14: The accuracy of anytime classification on the Vote 
problem for every possible interruption time from 2 to 351. 

Note that while the training curve for our algorithm is wildly 
optimistic our approach still beats Random a large majority of 
the time. 

Using the above evaluations we found that our generic heuristic 
dominates random ordering, although the latter sometimes has 
increasingly competitive accuracy as more time passes before 
interruption, particularly for ‘Forest Cover Type’ and ‘Pen 
Digits’ datasets. These results strongly support our claim that 
our generic ordering heuristic works well in a variety of 
application domains.  
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7.2 Special Ordering for DTW 
The Two-patterns (Two_Pat) dataset was introduced in [7]. 
Each class is characterized by the presence of two patterns in a 
definite order, down-down, up-down, down-up, and up-up. We 
randomly choose 1,000 instances as the training set, and let the 
other 4,000 objects be the testing set. As always, we recorded 
the exact split and archived it [17] to allow reproducibility. 
Figure 15 shows the results. Note that changes in the best value 
for R (learned in the training phase and enforced in the testing 
phase) are encoded by toggling the background between gray 
and white. 
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Figure 15: The classification accuracy on the testing data 
against all possible interruption times for 4 rival methods. It is 
very clear that the adaptive method greatly outperforms the 
other methods 
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The results are very encouraging; our method allows us to 
obtain near perfect accuracy after seeing only a tiny fraction of 
the instances. Note that this experiment strongly supports our 
observations in Section 6.2, which states that the best value of R 
is inversely related to database size.  
The Leaf dataset consists of 442 leaf images, from four species 
of Maple and two species of Oak trees. It has been shown that 
an image can be converted into a “pseudo time series” [26]. 
Here, we have converted each leaf image to a time series by 
measuring the local curvature along its outline. Figure 16 shows 
a maple leaf image and its times series representation.  
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Figure 16: An example of a leaf converted into a “pseudo time 
series” 

In addition to leaf images, other types of images including faces, 
cells, X-rays, etc. can also be treated as a time series, which 
makes our anytime algorithm very attractive for image retrieval 
and mining in very large image databases. Figure 17 shows the 
results on the leaf dataset.   

 

Figure 17: The classification accuracy of the testing data against 
all possible interruption times for 4 rival methods  

Once again the results support our previous observations. This 
time the differences are not quite so dramatic, presumably 
because we are working with a smaller dataset and thus have 
less opportunity to find high quality exemplars to put at the 
beginning of the Index. 
We also considered the problem of recognizing faces from 
profiles, after the faces have been transformed into time series 
using the same algorithm as used for the leafs. Figure 18 shows 
the results. 

 

Figure 18: The classification accuracy of the testing data against 
all possible interruption times for 4 rival methods 

Here the effect of increasing the maximum warping width R is 
much smaller than with Two_Pat or Leaf, but it is still 
statistically significantly better than fixed R, at the 95% 
confidence level, over the range of S = 10 to 220.  

8. Fish Species Classification: A Case Study 
We conclude our experiments with a detailed case study of a 
real world implementation of classification on a streaming (in 
the literal as well as the data mining sense of the word) problem. 
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Careful monitoring of fish migration is required to understand 
the behavioural responses of fish to man-made and natural 
environmental variations [21]. Such monitoring has implications 
for human as well a fish health, since fish health is an implicit 
measure of water quality. Currently, monitoring is most often 
done manually, by on-site human observers, and thus prone to 
human error and expensive in labour costs. One effort to 
mitigate the labour costs is to record the fish migration on video, 
and allow users to “fast-forward” through time periods when no 
fish are observed. However both US Bureau of Reclamation 
(USBR), and the US Department of Agriculture (USDA) have 
recently noted that a fully-automated fish recognition system is 
urgently needed [36]. 
Fish classification is difficult for several reasons. Many species 
look very similar, the raw data may be corrupted by bubbles and 
debris, and, as shown in Figure 19, the fish may be “misaligned” 
with their representations in the database. 

 

Figure 19: Two examples of fish contours captured in our 
classification system, showing the variably of rotation observed 

However, the main reason why fish classification for streaming 
data is difficult is because robust similarity measures for shapes 
are typically very computationally demanding, for example the 
O(n3) method of Adamek and Connor [1]. Since the average 
number of fish observed at a monitoring station in a day is 
typically less than a few thousand, this may not seem like a 



problem.  However, as with the agricultural monitoring problem 
discussed in Section 6.1, the arrival times can greatly vary and 
thus the classification time for any given fish may be quite 
small. 
The current solution to mitigate the classification time is to 
reduce the resolution of the fish contour in a principled way. For 
example, in [21] 1  the authors note: “it is first necessary to 
reduce the number of data points on the contour to a reasonable 
number that can be evaluated using shape similarity 
measurement.” For example, on the fish contour shown in 
Figure 20, there are 1,824 raw datapoints.  This is reduced down 
to a mere forty datapoints because they “… found that a reduced 
data set of 40 points was sufficient to retain the important shape 
features for comparison” [21]. This dramatic data reduction did 
make the similarity measure more tractable, but we wondered if 
the assumption that it “retain(s) the important shape features” 
was true. We compared their results, which after considerable 
parameter tuning claimed “the highest recognition accuracy of 
64%.”, with rotation invariant Euclidean distance on the raw 
data. Surprisingly this simple, parameter-free method achieves 
88.57% accuracy. However, this dramatic improvement comes 
at a cost. Rotation invariant Euclidean distance requires that we 
compare one contour with every possible circular shift of 
another, and thus requires O(n2) time. While there are recent 
methods to somewhat mitigate this quadratic complexity [16], 
we can see that this problem is ideally suited to the anytime 
classification framework. 

 

Figure 20:  Top) A video capture of a fish. Bottom) Our system 
finds the outline of the fish using classic image processing tools 
and converts the two-dimensional outline into a one-dimensional 
“time series” 

Note that while this problem shares similarities with the Leaf 
classification problem considered above, it differs in one 
important aspect. For leafs, the existence of a stem (petiole) 
gives an unambiguous starting point and thus removes the need 

                                                                 
1 Note that one current authors is also an author of this study. However, 

it is more natural to refer to this work in the third person. 

for rotation invariance (cf. Figure 16). In contrast, finding a 
fixed starting point for fish can be so difficult (depending on the 
species) that it is simply more accurate to test all rotations.    

8.1 Anytime Fish Classification Results 
Our experiment considers seven fish species. The fish have 
similar shape characteristics, and the problem is non-trivial even 
for human experts. The seven species are Chinook Salmon, 
Winter Coho, Brown Trout, Bonneville Cutthroat, Colorado 
River Cutthroat, Yellowstone Cutthroat, and Mountain 
Whitefish. As noted above, video data from streams are plagued 
by debris, so we include images of debris in our experiments. 
Table 5 lists the properties of the dataset. 

Table 5: The Fish dataset used in our experiment 
Name # classes # features # instances Evaluation Data type 

Fish 8 463 13,000 3,000/10,000 time series

Because debris images dominate, a default classifier can achieve 
98.0% by always choosing the “debris” class. 
The results of the test are shown in Figure 21. Note that a 
random selection (but one that is guaranteed to have at least one 
of each class) is initially only slightly better than the default 
rate, and it slowly improves as more objects are seen. In 
contrast, our approach immediately achieves 99.4% accuracy, 
and improves more quickly. 
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Figure 21: The classification accuracy for the fish dataset as a 
case study of stream image recognition 

9. DISCUSSION AND CONCLUSIONS 
9.1 Discussion 
We are now in a position to consider our nearest neighbor 
anytime algorithm in the context of Zilberstein and Russell’s 
desirable properties for anytime algorithms [38].  
Our algorithm is clearly interruptible, after a very small amount 
of setup time (the time taken to see one of each class).  In 
general our algorithm is monotonic, however on some problems 
(Ionosphere, Australian Credit and Leaf) the accuracy actually 
goes down slightly after some point. Intuitively, this makes 
sense. If the dataset has mislabeled or noisy instances, those 
instances will be placed at the end of the Index by the ordering 
algorithm, although they really should be thrown away. We 
could address this problem by using an internal cross validation 
to determine if the instances at the end of the Index should be 
discarded [25][35].  



The property of diminishing returns is generally dramatically 
satisfied. For almost all problems, we get 90% of the final 
accuracy after seeing only the first 10% of the data. The 
measurable quality property is a little more difficult to satisfy. 
In general the curves for the training error are very similar to 
those for testing error, but slightly optimistic. The exceptions to 
this are the very small datasets, and Forest Cover Type, which is 
known to have a training set that is unrepresentative of the test 
set. We can therefore use the training error curves to obtain 
approximate expected accuracy for unseen instances. Finally, 
our algorithm is clearly preemptable. If we wish to stop it 
temporarily and restart it later, we need only save three numbers, 
the current class prediction (best_match_class), the current 
best-so-far distance (best_match_val), and the number of 
objects we have seen thusfar (p). 

9.2 Why Not Indexing or Eager Algorithms? 
In Section 2 we posed the following rhetorical questions from 
an imagined critic of our work; “why not use an indexing 
technique to speed up nearest neighbor?”, and “why not use a 
faster classification algorithm like a decision tree?.” We are 
now in a position to answer these questions. 

9.2.1 Indexing 
Given the constraints of our problem we could theoretically use 
a Spatial Access Method (SAM) such as an R-tree [11] to 
quickly locate the nearest neighbor for our classifier. However 
there are several reasons why this is not a solution to the task at 
hand. In the best case, index trees require O(log2m) time to 
locate the nearest neighbor, however this O(log2m) comes with 
very high constants (which depend on the dimensionality of the 
data). The real utility of SAMs comes from minimizing costly 
disk accesses, but for a main memory problem on high 
dimensional data (as in Leaf, Face, Two_Pat, Forest Cover, 
Ionosphere etc) we are able to do a fast linear scan and see a 
large percentage of the data before the index structure returns an 
answer. During this time our anytime algorithm is interruptible, 
whereas an interrupted SAM does not have an answer of any 
kind.  
In addition, a major advantage of the nearest neighbor algorithm 
is that it is defined for any similarity/dissimilarity measure, 
including measures that either cannot be indexed, or are indexed 
only with great difficulty. For example, string, graph or tree edit 
distance, rotation invariant Euclidean distance (cf. Section 8) 
[16], Mahalanobis distance, Earth Movers Distance, 
compression based similarity [22] etc. 

9.2.2 Eager Learner Algorithms  
As to the suggestion of bypassing the lethargy of the nearest 
neighbor algorithm by using an eager learner such as a decision 
tree or Bayesian classifier, we can address this idea with a single 
word: accuracy. There exist many problems for which the best-
known classifier is Nearest Neighbor. As a concrete example, let 
us consider just time series classification, which we discussed at 
some length above in Sections 6 and 8. 
Both Geurts [7] and Rodriguez & Alonso [27], independently 
introduced decision trees to classify time series. On the Two 
Patterns dataset, they report error rates of 4.84% and 4.90% 
respectively.  However, in our experiments on the same dataset 
(cf. Figure 15) our anytime algorithm achieves the same 
accuracy after seeing only 47 instances, and thereafter rapidly 
converges on a 0.0% error rate. While there have been several 
other attempts to classify time series with decision trees, to the 
best of our knowledge none of them comes close to the accuracy 

achieved by Nearest Neighbor. There have been many other 
suggestions for classifying time series with eager learners. For 
example, in a recent work Wu and Chang [37], use a “super-
kernel fusion scheme” to achieve accuracy of 0.79% on the 
ControlChart dataset. However simply using 1NN-DTW on the 
same dataset gives an error rate of 0.33%. In summary, while 
the “no free lunch” theorem tells us that Nearest Neighbor 
classifier is not optimal for all problems, there are many 
problems where the Nearest Neighbor classifier is the best-
known solution in spite of decades of research.  

9.3 Conclusion 
In this work we have shown a simple method to convert the 
ubiquitous nearest neighbor algorithm into an anytime algorithm. 
We have shown, on a highly diverse set of problems, that our 
algorithm can achieve high accuracy even if interrupted after 
seeing only a small fraction of the dataset. Future work includes 
investigation of other ordering algorithms and a field study of 
anytime classification for insect classification [33].       
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