

Anytime Classification Using the Nearest Neighbor

Algorithm with Applications to Stream Mining

Ken Ueno

Corporate Research and Development
Center

Toshiba Corporation

1 Komukai-toshiba-cho, Saiwai-ku,
Kawasaki 212-8520, JAPAN

ken.ueno@toshiba.co.jp

Xiaopeng Xi Eamonn Keogh Dah-Jye Lee1

Computer Science & Engineering Department
University of California, Riverside

Riverside, CA 92521
{xxi, eamonn}@cs.ucr.edu

1Brigham Young University
1djlee@ee.byu.edu

ABSTRACT
For many real world problems we must perform classification
under widely varying amounts of computational resources. For
example, if asked to classify an instance taken from a bursty
stream, we may have from milliseconds to minutes to return a
class prediction. For such problems an anytime algorithm may
be especially useful.

In this work we show how we can convert the ubiquitous nearest
neighbor classifier into an anytime algorithm that can produce
an instant classification, or if given the luxury of additional
time, can utilize the extra time to increase classification
accuracy. We demonstrate the utility of our approach with a
comprehensive set of experiments on data from diverse
domains.

Keywords
Classification, Anytime Algorithms, Nearest Neighbor, Streams

1. INTRODUCTION
For many real world problems we must perform classification
under widely varying amounts of computational resources. For
example, if asked to classify an instance taken from a bursty
stream [2][29], we may have from milliseconds to minutes to
return a class prediction. For such problems an anytime
algorithm may be especially useful.

Anytime algorithms are algorithms that trade execution time for
quality of results [8]. In particular, an anytime algorithm always
has a best-so-far answer available, and the quality of the answer
improves with execution time. The user may examine this
answer at any time, and then choose to terminate the algorithm,
temporarily suspend the algorithm, or allow the algorithm to run
to completion. The utility of anytime algorithms for data mining
has been extensively documented [5][6][28].
To increase the reader’s appreciation of the utility of nearest
neighbor classifiers in real world settings we will consider some
motivating examples below.
Audio Sensor Monitoring: In ongoing work we are attempting

to build classifiers for “smart” insect traps that can identify the
species and sex of automatically captured insects [33]. While

the single feature of wing beat frequency is quite effective by
itself, our best results come from a nearest neighbor algorithm
that considers many additional features, including sound
amplitude, time of day, season, temperature, humidity etc. Our
classifier must run on low-powered embedded computers
attached to disposable smart traps. This computer has very
limited computational resources, making exhaustive nearest
neighbor search quite demanding even in databases of only a
few thousand instances. Furthermore, in our empirical studies
we found that the insects inter arrival time can vary from
tenths of seconds to tens of minutes. In such an environment
an anytime algorithm will allow the classifier to make the best
possible decision in the time permitted.

Robotics: A general approach to robot navigation, (the so called
SLAM problem, Simultaneous Localization And Mapping) is
for the robot to perform range scans and compare the shapes
to previously obtained maps [15]. However the shape
comparisons can be computationally expensive [1], and the
robot may be forced to move before an exhaustive nearest
neighbor search has been completed. Under such
circumstances an anytime algorithm will allow the robot to
best utilize the time before a decision is forced.

Industrial Applications: As noted in [4] “Many industrial
applications require classification of items placed on a
moving conveyor”. The distance measure used may have a
complexity as high as O(n3) in order to achieve robustness
despite rotation and other distortions [1]. In domains such as
manufacturing it may be possible to know the frequency at
which the objects in question pass under the camera. However
in other applications, such as fruit sorting and grading [34],
the inter arrival times can vary greatly. The amount of time
the algorithm has to classify an object before it must take
action (i.e., blowing the suspect fruit off the conveyer with
compressed air) can vary by up to 3 orders of magnitude.
Once again using an anytime algorithm can allow us to make
the best decision in the time available.

In this work we show how we can convert the ubiquitous nearest
neighbor classifier to an anytime algorithm that can produce an
instant classification, or if given the luxury of additional time,
can increase classification accuracy. The framework is based on
the simple intuition that important exemplars (instances highly

representative of a given class) should be examined first. We
show that, for most problems, a simple generic algorithm can
produce a high quality ordering of the exemplars, . We also
show that, in some specialized domains, we can further improve
our algorithm with domain-specific techniques.
The rest of the paper is organized as follows. In Section 2, we
review related work and discuss some background material. In
Section 3 we introduce a formal definition of our anytime
nearest neighbour classification. We introduce our observations
on index ordering in Section 4. Section 5 introduces three
general heuristics for ordering the instances for our algorithm.
In Section 6 we show an example of a special ordering heuristic
that can take advantage of domain knowledge in time series
classification. We perform an extensive empirical evaluation in
Section 7. In Section 8 we provide a detailed case study of a
real world application of our algorithm to streaming data.
Finally, Section 9 offers some conclusions and suggestions for
future work.

2. RELATED WORK AND BACKGROUND
As illustrated in Figure 1, anytime algorithms are algorithms
that trade execution time for quality of results [8]. In particular,
after some small amount of “setup time,” an anytime algorithm
always has a best-so-far answer available, and the quality of the
answer improves with execution time.

Figure 1: An abstract illustration of an anytime algorithm. Note
that the quality of the solution keeps improving up to time S,
when the algorithm is interrupted by the user.

Zilberstein and Russell [38] give a number of desirable
properties of anytime algorithms:
• Interruptability: After some small amount of setup time,

the algorithm can be stopped at anytime and provide an
answer.

• Monotonicity: the quality of the result is a non-decreasing
function of computation time. For classification, this
quality is simply the probability of correct classification.

• Measurable quality: the quality of an approximate result
can be determined.

• Diminishing returns: the improvement in solution quality
is largest at the early stages of computation, and diminishes
over time.

• Preemptability: the algorithm can be suspended and
resumed with minimal overhead.

Due to their suitability for real world problems, anytime
classifiers can be used in many application domains. The work
of Myers, et al. considers an anytime classification framework
[24] for topic identification in the Natural Language Processing
domains. In their framework, features (words from a
conversation) continuously stream in, and the program may be
required to produce a class label at any time.
In computer vision anytime classifiers have been successfully
used to perform a fast reconfiguration to a view database as
reported by Heidemann et al. [13]. The task is to recognize
multiple objects using image processing. Because the system is

part of a user interface for augmented reality, the amount of
time allowed for classification is not known in advance, so an
anytime framework is necessary.
Yamada et. al reported an anytime algorithm that successfully
controls web robots to create Personal Web Maps (PWM) using
Self Organizing Maps [31]. It is important to have anytime
behavior in this domain because it is an inherently interactive
domain due to of the users changing information needs.
Anytime classification is also shown to be helpful in supporting
teamwork in a multi-agent system [19]. Kotenko et. al have
investigated the anytime framework in domains as diverse as
virtual soccer (Robocup), simulations of battle operations in
autonomous flight vehicles, and simulations of distributed
coordinated computer attacks. This suggests that anytime
classifiers can be helpful to make quick decisions since agents
are required to classify the current situations correctly and select
appropriate operations within widely varying times.
There has also been some research in converting conventional
machine learning algorithms to anytime algorithms, including
anytime inductive logic programming [23], the anytime Naïve
Bayes Text Classifier [28], and anytime Bayesian Networks [14].
Others have noted that certain algorithms can be regarded as
anytime algorithms even if they were not designed for that
purpose, for example Roy and McCallum[28] note “By initially
using a fairly restrictive pool of candidates for labeling, and
increasing the pool as time permits, our algorithm can be
considered an anytime algorithm”. Surprisingly, however, little
is written about anytime algorithms for nearest neighbor
classifiers.

Time

Q
ua

lit
y

of

So
lu

tio
n Current Solution

Setup
Time

STime

Q
ua

lit
y

of

So
lu

tio
n Current Solution

Setup
Time

S

In any anytime classifier, it is hard to know when users should
interrupt an anytime algorithm to get the best-so-far answer
since anytime algorithms provides us “a tradeoff between
solution quality and computation time that has proved useful in
applying artificial intelligence techniques to time-critical
problems” [12]. We never know when algorithms should
optimally be interrupted in advance. Thus algorithms should be
equipped with appropriate stopping criteria by monitoring
learning performances. Therefore algorithms should achieve
better results asymptotically so that they can return the
approximately good answers before user interruption [38]. For
this reason we do not consider contract anytime classifiers
focusing only on interruptible anytime classifiers in this paper.
As noted in [32][9] it is sometimes a good idea to order the
index of training data for asymptotically good results. However
this work applies to decision trees [9], and Naïve Bayes
classifiers [32], and to the best of our knowledge, no ordering
heuristics has been reported for nearest neighbor.
In this paper we focus on our generic framework for anytime
nearest neighbor algorithms that can be interrupted anytime and
get the best answers in limited time. We also propose our
generic and special ordering heuristics that can sort the index of
training data suitable for anytime nearest neighbor classifiers. In
an extensive empirical evaluation we will show that our
methods work exceptionally well although they are quite simple
algorithms.
Given our definition of the problem at hand, it is natural to ask,
why not use an indexing technique to speed up nearest
neighbor?, or why not use a faster classification algorithm like a
decision tree?. We defer answering these questions until Section
9, so that we may refer to some empirical observations in our
experimental study.

3. ANYTIME NEAREST NEIGHBOR
Assume we have a set of m training instances, which we refer to
as Database. We can access the ith exemplar from this set with
Database.object(i), and the class label for the ith exemplar
with Database.class_label(i). The instances in the database
can be any objects we are interested in classifying, such as
classic database tuples, strings, graphs, time series, webpages
etc.
Assume that Index is a permutation of the integers from 1 to m,
where m is the size of Database.
Finally, assume O is an object we wish to classify using an
anytime nearest neighbor algorithm with Database as our
training data.
At some time S, where number_of_classes(Database) ≤ S ≤ m,
the algorithm will be interrupted and we report a class label
prediction for O. Given the above notation, Table 1 shows our
anytime nearest neighbor algorithm.

Table 1: Anytime Nearest Neighbor Algorithm
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Function [best_match_class]= Anytime_Classifier (Database, Index, O)

best_match_val = inf;

best_match_class = undefined;

For p = 1 to number_of_classes(Database)

 D = distance(Database.object(Indexp) , O);

 If D < best_match_val

 best_match_val = D;

 best_match_class = Database.class_label(Indexp);

 End

End

Disp(‘The algorithm can now be interrupted’);

p = number_of_classes(Database) + 1;

While (user_has_not_interrupted AND p < max(index))

 D = distance(Database.object(Indexp) , O);

 If D < best_match_val

 best_match_val = D;

 best_match_class = Database.class_label(Indexp);

 End

 p = p +1;

 user_has_not_interrupted = test_for_user_interrupt;

End

In the first ten lines of code we compare O to one member of
each class and tentatively assign its class label to the nearest
exemplar. Note that the algorithm cannot be interrupted during
this phase of the algorithm, however this is a very small amount
of time. After this setup time, the algorithm can be interrupted at
any point. Until it is interrupted, or has exhaustively compared
O to the entire database, it will compare O to each object in the
database in the order predefined in Index variable, updating the
class prediction to reflect the current cumulative results.
Note that we have not yet defined how Index is sorted. The only
way we can help the algorithm above is to sort the Index such
that “useful” examples will appear early. In Section 4 we will
make some observations about this problem before introducing
several concrete algorithms as solutions in Sections 5 and 6.
Before leaving this section it is worth making two additional
observations about the anytime algorithm. We note that the
distance measure, distance(Database.object(Indexp),O) can
be any distance measure, including Euclidean distance,
Manhattan distance, correlation, etc. Where appropriate it can
also be any specialized distance measure such as string edit

distance, Dynamic Time Warping etc. Note also that the time
and space complexity for classification has not changed,
although we must do some additional preprocessing work in
creating the Index variable.

4. OBSERVATIONS ON INDEX ORDERING
In the previous section we simplified the problem of producing
an anytime nearest neighbor algorithm to finding an ordering of
Index. There are m! such orderings.
It might be imagined that for any particular dataset there is an
optimal ordering of the Index. Such a speculation is important,
because it suggests a possible efficient algorithm. Many similar
problems can be efficiently solved by dynamic programming if
the optimal arrangement with n objects can be derived from the
optimal arrangement with n-1 objects.
Unfortunately, it is easy to see that we must abandon any hope
of such an optimal ordering. Consider Figure 2, which shows a
simple two-dimensional classification problem, which we call
the Japanese Flag (JF) problem. We will use this problem as a
running example throughout this work.

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

Figure 2: A two-class classification problem. The data forms a 2-
D Gaussian ball, objects within r of the center are in class A, all
other objects are in class B. When r = 1.2 as above, the two
classes are approximately equiprobable

For simplicity and without loss of generality, imagine that we
are allowed to keep just one instance from class A, and we are
asked to find the optimal n instances from class B. As illustrated
in Figure 3 the chosen instances will form a Voronoi tessellation
of the plane.

I II IIII II III

Figure 3: I) a zoom-in of the classification problem in Figure 2.
II) An optimal set of 3 instances to keep from class B. III) An
optimal set of 4 instances to keep from class B

For this problem, it is easy to see that minimizing the error rate
is equivalent to minimizing the area enclosed by the true class
boundary and its Voronoi piecewise linear approximation,

which in turn is equivalent to the Archimedean problem of
approximating a circle with n straight lines.
The implications for the task at hand are obvious. In this case
the optimal 4 instances and the optimal 3 instances have zero
intersections. We cannot derive the optimal arrangement for n
instances from the optimal arrangement with n-1 instances.
We could instead attempt to solve the problem of finding the
optimal arrangement of instances, given perfect knowledge of
the distribution of the interruption times. However a
fundamental (and realistic) assumption of anytime algorithms is
that we have no way of knowing when an interruption might
take place, even on average.
Note that these findings are not all bad news for us. At least for
this JF problem we can see that there are many very good
solutions for each value of n.

5. GENERAL ORDERING HEURISTICS
Having introduced our anytime classification algorithm, we note
that there are only two ways to modify the algorithm: by
changing the distance measure and by changing the Index
ordering heuristic. As distance measurement selection is an
independent concern well-documented in many other papers,
will only focus on the critical Index ordering subroutine
Table 2 shows our ordering algorithm. The basic intuition is as
follows: We begin by finding the “worst” exemplar (Line 4),
and place a pointer to it in the last position in the Index (Line
5). To ensure that we don’t consider it again, we replace the
exmplar in the original list with a null (Line 6). We then
repeatedly find the worst exemplar remaining and place a
pointer to it in the last unoccupied place in the Index.

Table 2: Ordering Algorithm
1

2

3

4

5

6

7

Function [Index] = Order_Index(Training_Database)

Index = create_vector_of_size(m) // m is the size of Training_Database

For p = 0 to m – (1 + number_of_classes(Training_Database))

 location = find_location_of_worst_exemplar(Training_Database)

 Indexm-p = location

 Training_Database(location) = null;

End

The above algorithm is completely generic and self-contained,
except we have not yet explained how we defined the “worst”
exemplar. This is a deliberate omission, which allows us to
explore many possibilities, and allows anyone to use our
framework simply by creating a definition of the “worst”
exemplar. Before considering this problem in the next section
we will make some observations about the ordering algorithm.
Note that there is no mechanism in the algorithm to force the
first few exemplars pointed to by the Index to include one of
each class. In practice however, this is almost always the case
under any definition of exemplar quality.
Notice also that we have chosen to search “worse-first,” rather
than to search “best-first.” That is to say, we could in principle
search in the opposite direction, find the best instance and place
it in the first place in the Index, then find the next best instance
and place it in the second place in the Index etc. The main
reason for this decision is the difficulty in defining “best” in the
early stages of the algorithm. It is hard to measure the utility of
single instance in the early stages of “best-first” search because
we are interested in the decision boundaries, which are defined
by (at least) two instances of different classes.

5.1 Finding the Worst Exemplar
We are now in a position to explain some techniques for
defining the worst exemplar. Random and BestDrop are
considered to allow some baseline comparison, and our method
SimpleRank, is discussed last.
• Random: Here the find_location_of_worst_exemplar

subroutine on line 4 of Table 2 simply returns a random
number between 0 and m-1. We define this algorithm to
allow a simple baseline comparison.

• BestDrop: There has been much work on data editing
(numerosity reduction/condensing) for nearest neighbor
classification [25][35]. Such algorithms have very similar
goals to the current work, except these algorithms
explicitly know in advance the stopping value S. Perhaps
the most referenced work in this area is by Wilson and
Martinez [35], who introduced 3 algorithms for
determining the worst exemplar. All these algorithms
create some list of nearest neighbors, of both the same class
(associates) and of different classes (enemies), and use a
weighted scoring function based on this list to determine
the worst exemplar. We have implemented all three
variants and we report only the best performing variant for
each possible S value.

• SimpleRank: The intuition behind this algorithm is to give
every instance a rank according to its contribution to the
classification. We do leave-one-out 1-nearest-neighbor
classification for the training data, and the rank of the
instance is calculated as the following formula:

otherwise)1__/(2

)class()(class if 1
)(∑

⎩
⎨
⎧

−−

=
=

j

j

classofnum

xx
xrank (1)

where xj is an instance having x as its nearest neighbor.
This ranking typically produces many ties for the worst
instance, which we break by further sorting the instances
by their distance to their nearest neighbor of the same class.

While we defer detailed experimental results until Section 6, we
will preview here the utility of the SimpleRank method on the
JF classification problem introduced in Section 4. Figure 4
shows the first ten instances encountered by the anytime nearest
neighbor algorithm, using both SimpleRank and Random
ordering. The ten points were obtained from an original set of
2,000. The testing error rate, assuming we interrupt after seeing
ten points, was 7.75% for SimpleRank and 24.36% for Random
ordering.

-2 -1 0 1 2
I

-2

-1

0

1

2

-2 -1 0 1 2

II
-2 -1 0 1 2

I
-2

-1

0

1

2

-2 -1 0 1 2
I

-2

-1

0

1

2

-2 -1 0 1 2

II
-2 -1 0 1 2

II

Figure 4: The classifiers used by the anytime nearest neighbor
when interrupted after seeing just ten instances from the JF
problem. I) The ten SimpleRank instances. II) The 10 random
ordering instances. The dark circular dots are misclassified
instances

Note that in Figure 4 the ten instances used by SimpleRank
create a decision boundary that is a pretty good approximation
to the pentagon which is the optimal solution for this number of
exemplars.
The time complexity for a naive implementation of the ordering
algorithm in Table 2 is O(m3 log(m)), because the outer loop on
line 4 repeats O(m) times, and the subroutine
find_location_of_worst_exemplar requires sorting m objects, after
doing an all-to-all comparison. However, by simply caching the
results of the first iteration of the outer loop on line 4, and only
updating the instances that where affected by the temporary
removal of the worse instance, we can reduce the complexity to
O(m2). To concretely ground these numbers, on the largest
problem considered in this work (the 11,340 training instances
of the Forest Cover Type problem), the simple caching approach
reduces the time complexity from 277.7 hours to 53.7 minutes
using a Pentium(R)4 3.0GHz.

6. SPECIAL ORDERING HEURISTICS
As we shall show in the Section 7, the generic ordering
algorithms discussed in the previous section can produce
dramatic improvement over random ordering. However we
believe that in certain domains, it will be possible to create
specialized algorithms that can then be transparently used with
the anytime nearest neighbor algorithm introduced in Table 1.
The specialized algorithms leverage domain-specific knowledge
to produce superior results. In this section we will give one
complete example of a specialized domain solution, beginning
with the motivation.

6.1 Agricultural Monitoring
Health care management is a critical and demanding issue in
current livestock production. The economic cost related to large-
scale diseases such as avian flu and BSE (“mad cow” disease)
makes early detection of disease very important. This has
investigated a huge effort in developing sensors and sensing
techniques for diagnosis in the agricultural sector.
One example of a successfully deployed system is monitoring
pigs for coughing sounds indicative of certain diseases [10]. The
algorithm used to detect the coughs is simple 1-nearest-neighbor
with Dynamic Time Warping (DTW) as the distance measure.
The system continuously monitors sounds in the pigsty to
identify candidate sounds by “applying a threshold to the signal
energy.” All extracted sounds are then passed to the
classification system. Herein lies the problem: the DTW
algorithm is relatively lethargic, requiring quadratic time per
comparison, and we do not know how long we have until the
next candidate sound will be extracted. This is exactly the kind
of problem where an anytime algorithm is ideally suited.

6.2 DTW Review with Novel Observations
To align two sounds using DTW, an n-by-n matrix is
constructed, where the (ith, jth) element of the matrix is the
distance d(qi, cj) between the two points qi and cj (i.e. d(qi, cj) =
(qi - cj)2). Each matrix element (i, j) corresponds to the
alignment between the points qi and cj, as illustrated in Figure 5.
The warping path is subject to several constraints. For example,
the warping path must start and finish in diagonally opposite
corner cells of the matrix, the steps in the warping path are
restricted to adjacent cells (including diagonally adjacent cells),
and the points in the warping path must be monotonically
spaced in time. In addition to these constraints, virtually all

practitioners using DTW also constrain the warping path in a
global sense by limiting how far it may stray from the diagonal.
A typical constraint is the Sakoe-Chiba Band which states that
the warping path cannot deviate more than R from diagonal,
where R is a percentage of the length of the time series.

Q
C

Q
C

Q

C

Q
C

Q
C

Q

C

Q
C

Q
CC

Q

C

R

Q
C

Q
C

Q

C

Q
C

Q
C

Q

C

Q
C

Q
CC

Q

C

R
Figure 5: Left) Two time series sequences which are similar but
out of phase. Right) To align the sequences we construct a
warping matrix, and search for the optimal warping path,
shown with solid squares. Note that Sakoe-Chiba Band with
width R is used to constrain the warping path

Our idea to create a special purpose-ordering algorithm for
DTW is based on two observations made in [26]. The first
observation is that the value of the parameter R greatly affects
the accuracy of DTW classification. When R equals 0, DTW
degenerates to Euclidean distance and achieves Euclidean
distances’ (surprisingly hard to beat [15]) accuracy. As R gets
larger, the accuracy briefly increases, then either falls or levels
off. While this is only an empirical observation, it holds for
every publicly available time series dataset. Figure 6 shows
some examples.

0 10 20 30 40 50

CBF

GunX

Two Pattern

Trace

WordSpot

Lighting

Face

Special Case
Euclidean Distance

Special Case
DTW with no constraint

Leaf

10% difference in accuracy

0 10 20 30 40 50

CBF

The value of R

GunX

Two Pattern

Trace

WordSpot

Lighting

Face

Special Case
Euclidean Distance

Special Case
DTW with no constraint

Leaf

10% difference in accuracy

0 10 20 30 40 50

CBF

GunX

Two Pattern

Trace

WordSpot

Lighting

Face

Special Case
Euclidean Distance

Special Case
DTW with no constraint

Leaf

10% difference in accuracy

0 10 20 30 40 500 10 20 30 40 50

CBF

GunX

Two Pattern

Trace

WordSpot

Lighting

Face

Special Case
Euclidean Distance

Special Case
DTW with no constraint

Leaf

10% difference in accuracy

0 10 20 30 40 50

CBF

The value of R

GunX

Two Pattern

Trace

WordSpot

Lighting

Face

Special Case
Euclidean Distance

Special Case
DTW with no constraint

Leaf

10% difference in accuracy

0 10 20 30 40 50

CBF

GunX

Two Pattern

Trace

WordSpot

Lighting

Face

Special Case
Euclidean Distance

Special Case
DTW with no constraint

Leaf

10% difference in accuracy

0 10 20 30 40 50

CBF

GunX

Two Pattern

Trace

WordSpot

Lighting

Face

Special Case
Euclidean Distance

Special Case
DTW with no constraint

Leaf

10% difference in accuracy

Figure 6: The accuracy of DTW classification on 8 datasets as a
function of parameter R. Note that in every case, the accuracy
briefly increases as a function of R, then either levels off or
decreases

This observation is very important if we wish to build accurate
classifiers. For example, for the GunX problem the best setting
of R is 3%, this gives an error rate of just 1%. However setting
R = 0% (i.e. the Euclidean distance) gives an error of 5.5%. If

we instead set R to a large value, say 10%, we get an even worse
error rate of 11.5%.
The second observation is that, for a fixed domain, the best
value for R depends on the amount of training data. The more
training data available, the smaller R should be. Again, this is
only an empirical observation, but again it holds for every
publicly available time series dataset (we did experiments on
other datasets and obtained similar results, see [17]). Figure 7
shows an example on the GUN dataset, which has 200 instances.
Each time half of the instances are randomly removed from the
dataset. We try all the warping window sizes and record
corresponding accuracies. We repeated this experiment ten
times and report the average results.

Figure 7: The best value for R depends on the amount of
training data available

This figure shows that the more training data we see, the more
accurate we can be, hardly a surprise. However it also clearly
shows that the best setting for R depends on the amount of
training data. For example, it we are only going to see 6
instances, we should set R to size 10. However, if we are going
to see 200 instances, we should set R to size 3. Note that if we
naively keep the best setting learned on 6 instances on the 200-
instance version of the problem, our error rate would increase by
an order of magnitude!
Recall that in Table 1 we make repeated calls to a distance
function: D = distance(Database.object(Indexp),O). As we
noted earlier this distance function can be anything, including
DTW. Note that the distance function “sees” the value of p, and
can thus be made aware of how many instances we have seen
thus far. We can leverage off this observation with a trivial
modification of the ordering algorithm shown in Table 2.

Table 3: DTW Ordering Algorithm
1

2

3

4

5

6

7

8

9

10

11

12

13

14

Function [Index, Index_R_values] = Order_Index_DTW(Training_Database)

Index = create_vector_of_size(m); // m is the size of Training_Database

R = Find_best_value_of_R(Training_Database); // warping window size

For p = 0 to m – (1 + number_of_classes(Training_Database))

 [loc_R, accuracy_R] = find_worst_exemplar(Training_Database, R);
 [loc_R+, accuracy_R+] = find_worst_exemplar(Training_Database, R +1);

 If accuracy_R+ > accuracy_R

 R = R +1;

 loc_R = loc_R+;

 End

 Indexm-p = loc_R;

 Index_R_valuesm-p = R;
 Training_Database(loc_R) = null;

End

The DTW ordering algorithm shown in Table 3 is almost
identical to its generic ordering counterpart except for two
minor modifications. First, before beginning the ordering
search, we determine the best value for R on the full dataset. We
then begin the ordering search but include an additional
operator. We find the worst exemplar for both R and R +1. In
most cases the training accuracy for both cases will be the same,
but the results in Figure 7 suggest that occasionally, as the
dataset gets smaller, the better accuracy will be obtained by the
larger value of R. When this is the case, we increment R and
continue the search.

7. EXPERIMENTS

0 10 20 30 40 50 60 70 80 90 100
60

65

70

75

80

85

90

95

100

Warping Window Size R

A
cc

ur
ac

y(
%

)

6 instances

100 instances

50 instances

24 instances

12 instances

0 10 20 30 40 50 60 70 80 90 100
60

65

70

75

80

85

90

95

100

Warping Window Size R

A
cc

ur
ac

y(
%

)

6 instances

100 instances

50 instances

24 instances

12 instances

In this section we perform an extensive empirical evaluation of
our ideas. We made an effort to consider a diverse range of
problems in terms of size, feature types, and number of classes.
For example, the problems we consider range from 351 to
581,012 instances, and we consider problems with real,
categorical, and mixed features in addition to three specialized
time series problems. Table 4 lists the properties of the datasets.
Table 4: The datasets used in our experiments, including
the two time series used with the special ordering heuristic

Name # classes # features # instances Evaluation Data type

JF 2 2 20,000 2,000/18,000 real

Forest Cover 7 54 581,012 11,340/569,672 mixed

Letter 26 16 20,000 5,000/15,000 real

Pen Digits 10 16 10,992 7,494/3,498 real

Ionosphere 2 34 351 10-fold CV real

Voting Record 2 16 435 10-fold CV boolean

Australian
Credit

2 14 690 10-fold CV mixed

Leaf 6 150 442 200/242 time series

Two_Pat 4 128 5,000 1,000/4,000 time series

Face 16 131 2,231 1,113/1,118 time series

We use 10-fold cross validation (CV) except were a preexisting
training/test split was defined. In order to ensure our
experiments are reproducible we have placed the exact data,
(with split information) at [17], where we have also placed
additional experiments that we could not fit in the paper. The
original datasets except JF, Leaf, Face and Two_Pat came from
www.ics.uci.edu/~mlearn/MLRepository.html.

7.1 Generic Ordering
We begin by considering our running example, the JF problem,
which we have already mentioned in Section 3 (Figure 2). We
randomly took 2,000 instances from 20,000 instances as training
data, and used the remaining 18,000 as the testing set as
described in Table 4. Figure 8 shows the accuracy obtained by
both SimpleRank and Random. Note that while the training
accuracy is slightly optimistic, it closely shadows the curve for
the testing data.
In this experiment, SimpleRank clearly beats Random ordering.
For example, the accuracy assuming we interrupt after seeing
ten points is 92.25% for SimpleRank but only 75.64% for
Random ordering. As with all our experiments, if the algorithm
is not interrupted and both methods see all the instances, they
will have identical accuracy.

Figure 8: The accuracy of anytime classification on the JF
problem for every possible interruption time from 2 to 2,000

Figure 9 considers the Australian Credit problem. Since this
dataset has only 690 examples, we used cross validation for the
evaluation. This dataset contains both categorical and numerical
attributes. We compare the accuracy curves of SimpleRank,
BestDrop, and Random in this dataset. We found that BestDrop
only slightly beats Random here, a finding which was echoed in
all the other datasets. For this reason, and to enhance visual
clarity, we will not include the results of the BestDrop in the
rest of the figures, however the results are available at [17].
The results show that SimpleRank can achieve good results even
if we have smaller datasets (and thus a smaller space to search
over), with an accuracy difference of 5-7% between Random
and SimpleRank for almost the entire range of possible
interruption times.

Figure 9: The accuracy of anytime classification on the
Australian problem for every possible interruption time from 2
to 619

Note for this problem we achieve the best accuracy after seeing
only 18% of the data, thereafter the accuracy begins to decrease
(we see similar behavior in Figure 11). This non-monotonic
behavior is undesirable in an anytime algorithm, although we
note that it still beats random over the entire range of the
dataset. In this case the non-monotonic behavior is caused by
noisy (possibly mislabeled) exemplars. We could improve
accuracy by permanently removing exemplars which appear late
in the Index (i.e data editing), however for simplicity we leave
such considerations for future work.
Figure 10 shows the results of applying our algorithm to the
Letter dataset. The Letter dataset has 26 class labels
corresponding to the letters from A to Z, of which the attributes
are normalized from 0 to 1. The task in this dataset is to
recognize letters given 16 features extracted from image data.
Even in such a multiple-class problem we find that SimpleRank

dominates Random ordering up to the first 2,000 training
examples.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

70

80

90

100

Number of instances seen before interruption, S

ac
cu

ra
cy

(%
) Random Train

Random Test

SimpleRank Train

SimpleRank Test

Japanese Flag (JF)
Dataset

0 200 400 600 800 1000 1200 1400 1600 1800 2000

70

80

90

100

Number of instances seen before interruption, S

ac
cu

ra
cy

(%
) Random Train

Random Test

SimpleRank Train

SimpleRank Test

0 200 400 600 800 1000 1200 1400 1600 1800 2000

70

80

90

100

Number of instances seen before interruption, S

ac
cu

ra
cy

(%
) Random Train

Random Test

SimpleRank Train

SimpleRank Test

Random Train

Random Test

SimpleRank Train

SimpleRank Test

Japanese Flag (JF)
Dataset

50000 500 1000 1500 2000 2500 3000 3500 4000 4500

20

30

40

50

60

70

80

90

100

Number of instances seen before interruption, S

ac
cu

ra
cy

(%
)

Random Train

Random Test

SimpleRank Train

SimpleRank Test

Letter
Dataset

50000 500 1000 1500 2000 2500 3000 3500 4000 4500

20

30

40

50

60

70

80

90

100

Number of instances seen before interruption, S

ac
cu

ra
cy

(%
)

Random Train

Random Test

SimpleRank Train

SimpleRank Test

50000 500 1000 1500 2000 2500 3000 3500 4000 4500

20

30

40

50

60

70

80

90

100

Number of instances seen before interruption, S

ac
cu

ra
cy

(%
)

Random Train

Random Test

SimpleRank Train

SimpleRank Test

Random Train

Random Test

SimpleRank Train

SimpleRank Test

Letter
Dataset

Figure 10: The accuracy of anytime classification on the Letter
problem for every possible interruption time from 26 to 5,000.
Note that the Random training and test curves almost perfectly
coincide and are thus impossible to distinguish

PenDigits dataset is another multiple-class problem, which we
consider in Figure 11. We used 7,494 examples for training and
3,498 for test respectively. Because we have a much smaller
testing set the curves are less smooth, however, SimpleRank
clearly beats Random up to the first 2,000 examples.

0 1000 2000 3000 4000 5000 6000 7000

80

90

100

Number of instances seen before interruption, S

ac
cu

ra
cy

(%
)

Random Train

Random Test

SimpleRank Train

SimpleRank TestPen Digits
Dataset

0 1000 2000 3000 4000 5000 6000 7000

80

90

100

Number of instances seen before interruption, S

ac
cu

ra
cy

(%
)

Random Train

Random Test

SimpleRank Train

SimpleRank Test

0 1000 2000 3000 4000 5000 6000 7000

80

90

100

Number of instances seen before interruption, S

ac
cu

ra
cy

(%
)

Random Train

Random Test

SimpleRank Train

SimpleRank Test

Random Train

Random Test

SimpleRank Train

SimpleRank TestPen Digits
Dataset

0 100 200 300 400 500 60050

60

70

80

90

Number of instances seen before interruption, S

ac
cu

ra
cy

(%
)

Random Train

Random Test

SimpleRank Train

SimpleRank Test

BestDrop Test
BestDrop Train

0 100 200 300 400 500 60050

60

70

80

90

Number of instances seen before interruption, S

ac
cu

ra
cy

(%
)

Random Train

Random Test

SimpleRank Train

SimpleRank Test

Random Train

Random Test

SimpleRank Train

SimpleRank Test

BestDrop Test
BestDrop Train

Australian Credit
Dataset

Figure 11: The accuracy of anytime classification on the
PenDigits problem for every possible interruption time from 10
to 7,494

The Forest Cover Type problem considered in Figure 12 is a
particularly challenging dataset because of its size both in terms
of the number of the instances and the number of attributes. The
dataset has mixed type of attributes, including both categorical
and numerical data. For simplicity, all of the attribute values are
transformed to numeric data and normalized by subtracting the
minimum value and then dividing by the maximum value on
each attribute. We then use Euclidean distance, as with all the
other datasets in this section. This is probably not the best
choice for distance measure, but we are only interested in
comparing the relative merits of our ordering algorithms, not in
finding the best distance measure for mixed data types. This
explains why our best accuracy using by 1-nearest-neighbor is
66.6%, while the best reported accuracy from UCI KDD
Archive is higher, 70% using back propagation. Interestingly,
after an initial “jump” in accuracy, the accuracy curves almost
increases linearly from 200 to 11,340. This phenomenon
suggests that (unlike, say, Australian Credit or PenDigits) we
could greatly benefit from obtaining more data in this domain.

Figure 12: The accuracy of anytime classification on the Forest
Cover Type problem for every possible interruption time from 7
to 11,340. Note that the training curves are highly optimistic

Figure 13 considers the Ionosphere problem. It has 34 attributes
although the number of the examples is only 351. All the
attributes are numerical and normalized as 0 to 1. The results
once again show that Simple Rank outperforms Random over
the entire space of interruption times.

Figure 13: The accuracy of anytime classification on the
Ionosphere problem for every possible interruption time from 2
to 326

Our final example for generic ordering is the Vote problem
shown in Figure 14. While it is too small to be motivating to our
work, we include it because it is very well known and is an
example of an all-binary feature dataset.

Figure 14: The accuracy of anytime classification on the Vote
problem for every possible interruption time from 2 to 351.

Note that while the training curve for our algorithm is wildly
optimistic our approach still beats Random a large majority of
the time.

Using the above evaluations we found that our generic heuristic
dominates random ordering, although the latter sometimes has
increasingly competitive accuracy as more time passes before
interruption, particularly for ‘Forest Cover Type’ and ‘Pen
Digits’ datasets. These results strongly support our claim that
our generic ordering heuristic works well in a variety of
application domains.

0 2000 4000 6000 8000 10000

30

40

50

60

70

80

90

Number of instances seen before interruption, S

ac
cu

ra
cy

(%
)

Random Train

Random Test

SimpleRank Train

SimpleRank Test

Forest Cover Type
Dataset

0 2000 4000 6000 8000 10000

30

40

50

60

70

80

90

Number of instances seen before interruption, S

ac
cu

ra
cy

(%
)

Random Train

Random Test

SimpleRank Train

SimpleRank Test

0 2000 4000 6000 8000 10000

30

40

50

60

70

80

90

Number of instances seen before interruption, S

ac
cu

ra
cy

(%
)

Random Train

Random Test

SimpleRank Train

SimpleRank Test

Random Train

Random Test

SimpleRank Train

SimpleRank Test

Forest Cover Type
Dataset

7.2 Special Ordering for DTW
The Two-patterns (Two_Pat) dataset was introduced in [7].
Each class is characterized by the presence of two patterns in a
definite order, down-down, up-down, down-up, and up-up. We
randomly choose 1,000 instances as the training set, and let the
other 4,000 objects be the testing set. As always, we recorded
the exact split and archived it [17] to allow reproducibility.
Figure 15 shows the results. Note that changes in the best value
for R (learned in the training phase and enforced in the testing
phase) are encoded by toggling the background between gray
and white.

10000 100 200 300 400 500 600 700 800 900
30

40

50

60

70

90

100

ac
cu

ra
cy

(%
)

4%5%11%

14%

9%

0 100 200 300 400 500 600 700 800 900
30

40

50

60

70

80

90

100

4%

6%
7%8%10%

12%
13%

Number of instances seen before interruption, S

Random, Euclidean distance

Random, Fixed R = 4

SimpleRank, Fixed R = 4

SimpleRank, Adaptive R

Two Patterns
Dataset

10000 100 200 300 400 500 600 700 800 900
30

40

50

60

70

90

100

ac
cu

ra
cy

(%
)

4%5%11%

14%

9%

0 100 200 300 400 500 600 700 800 900
30

40

50

60

70

80

90

100

4%

6%
7%8%10%

12%
13%

Number of instances seen before interruption, S

Random, Euclidean distance

Random, Fixed R = 4

SimpleRank, Fixed R = 4

SimpleRank, Adaptive R

Random, Euclidean distance

Random, Fixed R = 4

SimpleRank, Fixed R = 4

SimpleRank, Adaptive R

Two Patterns
Dataset

0 50 100 150 200 250 300

50

60

70

80

90

100

Number of instances seen before interruption, S

ac
cu

ra
cy

(%
)

Random Train

Random Test

SimpleRank Train

SimpleRank Test
Ionosphere

Dataset

0 50 100 150 200 250 300

50

60

70

80

90

100

Number of instances seen before interruption, S

ac
cu

ra
cy

(%
)

Random Train

Random Test

SimpleRank Train

SimpleRank Test

Random Train

Random Test

SimpleRank Train

SimpleRank Test
Ionosphere

Dataset

Figure 15: The classification accuracy on the testing data
against all possible interruption times for 4 rival methods. It is
very clear that the adaptive method greatly outperforms the
other methods

0 50 100 150 200 250 300 350

90

100

Number of instances seen before interruption, S

ac
cu

ra
cy

(%
)

Random Train

Random Test

SimpleRank Train

SimpleRank TestVote
Dataset

0 50 100 150 200 250 300 350

90

100

Number of instances seen before interruption, S

ac
cu

ra
cy

(%
)

Random Train

Random Test

SimpleRank Train

SimpleRank Test

0 50 100 150 200 250 300 350

90

100

Number of instances seen before interruption, S

ac
cu

ra
cy

(%
)

Random Train

Random Test

SimpleRank Train

SimpleRank Test

Random Train

Random Test

SimpleRank Train

SimpleRank TestVote
Dataset

The results are very encouraging; our method allows us to
obtain near perfect accuracy after seeing only a tiny fraction of
the instances. Note that this experiment strongly supports our
observations in Section 6.2, which states that the best value of R
is inversely related to database size.
The Leaf dataset consists of 442 leaf images, from four species
of Maple and two species of Oak trees. It has been shown that
an image can be converted into a “pseudo time series” [26].
Here, we have converted each leaf image to a time series by
measuring the local curvature along its outline. Figure 16 shows
a maple leaf image and its times series representation.

0 200 400 600 800 1000
20

30

40

50

60

70

80

90

Number of instances seen before interruption, S

ac
cu

ra
cy

(%
)

Face Dataset

Random, Euclidean distance

Random, Fixed R = 4

SimpleRank, Fixed R = 4

SimpleRank, Adaptive R

Random, Euclidean distance

Random, Fixed R = 3

SimpleRank, Fixed R = 3

SimpleRank, Adaptive R

3%4%

0 200 400 600 800 1000
20

30

40

50

60

70

80

90

Number of instances seen before interruption, S

ac
cu

ra
cy

(%
)

Face Dataset

Random, Euclidean distance

Random, Fixed R = 4

SimpleRank, Fixed R = 4

SimpleRank, Adaptive R

Random, Euclidean distance

Random, Fixed R = 3

SimpleRank, Fixed R = 3

SimpleRank, Adaptive R

3%4%

Acer circinatum
(Oregon Vine Maple)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Acer circinatum
(Oregon Vine Maple)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 16: An example of a leaf converted into a “pseudo time
series”

In addition to leaf images, other types of images including faces,
cells, X-rays, etc. can also be treated as a time series, which
makes our anytime algorithm very attractive for image retrieval
and mining in very large image databases. Figure 17 shows the
results on the leaf dataset.

Figure 17: The classification accuracy of the testing data against
all possible interruption times for 4 rival methods

Once again the results support our previous observations. This
time the differences are not quite so dramatic, presumably
because we are working with a smaller dataset and thus have
less opportunity to find high quality exemplars to put at the
beginning of the Index.
We also considered the problem of recognizing faces from
profiles, after the faces have been transformed into time series
using the same algorithm as used for the leafs. Figure 18 shows
the results.

Figure 18: The classification accuracy of the testing data against
all possible interruption times for 4 rival methods

Here the effect of increasing the maximum warping width R is
much smaller than with Two_Pat or Leaf, but it is still
statistically significantly better than fixed R, at the 95%
confidence level, over the range of S = 10 to 220.

8. Fish Species Classification: A Case Study
We conclude our experiments with a detailed case study of a
real world implementation of classification on a streaming (in
the literal as well as the data mining sense of the word) problem.

0 50 100 150 200 250 300 350 400
30

40

50

60

70

80

90

100

ac
cu

ra
cy

(%
)

8%

9%
 -11%

12%

Random, Euclidean distance

Random, Fixed R = 8

SimpleRank, Fixed R = 8

SimpleRank, Adaptive R

Number of instances seen before interruption, S

Leaf
Dataset

0 50 100 150 200 250 300 350 400
30

40

50

60

70

80

90

100

ac
cu

ra
cy

(%
)

8%

9%
 -11%

12%

Random, Euclidean distance

Random, Fixed R = 8

SimpleRank, Fixed R = 8

SimpleRank, Adaptive R

Number of instances seen before interruption, S

0 50 100 150 200 250 300 350 400
30

40

50

60

70

80

90

100

ac
cu

ra
cy

(%
)

8%

9%
 -11%

12%

Random, Euclidean distance

Random, Fixed R = 8

SimpleRank, Fixed R = 8

SimpleRank, Adaptive R

Random, Euclidean distance

Random, Fixed R = 8

SimpleRank, Fixed R = 8

SimpleRank, Adaptive R

Number of instances seen before interruption, S

Leaf
Dataset

Careful monitoring of fish migration is required to understand
the behavioural responses of fish to man-made and natural
environmental variations [21]. Such monitoring has implications
for human as well a fish health, since fish health is an implicit
measure of water quality. Currently, monitoring is most often
done manually, by on-site human observers, and thus prone to
human error and expensive in labour costs. One effort to
mitigate the labour costs is to record the fish migration on video,
and allow users to “fast-forward” through time periods when no
fish are observed. However both US Bureau of Reclamation
(USBR), and the US Department of Agriculture (USDA) have
recently noted that a fully-automated fish recognition system is
urgently needed [36].
Fish classification is difficult for several reasons. Many species
look very similar, the raw data may be corrupted by bubbles and
debris, and, as shown in Figure 19, the fish may be “misaligned”
with their representations in the database.

Figure 19: Two examples of fish contours captured in our
classification system, showing the variably of rotation observed

However, the main reason why fish classification for streaming
data is difficult is because robust similarity measures for shapes
are typically very computationally demanding, for example the
O(n3) method of Adamek and Connor [1]. Since the average
number of fish observed at a monitoring station in a day is
typically less than a few thousand, this may not seem like a

problem. However, as with the agricultural monitoring problem
discussed in Section 6.1, the arrival times can greatly vary and
thus the classification time for any given fish may be quite
small.
The current solution to mitigate the classification time is to
reduce the resolution of the fish contour in a principled way. For
example, in [21] 1 the authors note: “it is first necessary to
reduce the number of data points on the contour to a reasonable
number that can be evaluated using shape similarity
measurement.” For example, on the fish contour shown in
Figure 20, there are 1,824 raw datapoints. This is reduced down
to a mere forty datapoints because they “… found that a reduced
data set of 40 points was sufficient to retain the important shape
features for comparison” [21]. This dramatic data reduction did
make the similarity measure more tractable, but we wondered if
the assumption that it “retain(s) the important shape features”
was true. We compared their results, which after considerable
parameter tuning claimed “the highest recognition accuracy of
64%.”, with rotation invariant Euclidean distance on the raw
data. Surprisingly this simple, parameter-free method achieves
88.57% accuracy. However, this dramatic improvement comes
at a cost. Rotation invariant Euclidean distance requires that we
compare one contour with every possible circular shift of
another, and thus requires O(n2) time. While there are recent
methods to somewhat mitigate this quadratic complexity [16],
we can see that this problem is ideally suited to the anytime
classification framework.

Figure 20: Top) A video capture of a fish. Bottom) Our system
finds the outline of the fish using classic image processing tools
and converts the two-dimensional outline into a one-dimensional
“time series”

Note that while this problem shares similarities with the Leaf
classification problem considered above, it differs in one
important aspect. For leafs, the existence of a stem (petiole)
gives an unambiguous starting point and thus removes the need

1 Note that one current authors is also an author of this study. However,

it is more natural to refer to this work in the third person.

for rotation invariance (cf. Figure 16). In contrast, finding a
fixed starting point for fish can be so difficult (depending on the
species) that it is simply more accurate to test all rotations.

8.1 Anytime Fish Classification Results
Our experiment considers seven fish species. The fish have
similar shape characteristics, and the problem is non-trivial even
for human experts. The seven species are Chinook Salmon,
Winter Coho, Brown Trout, Bonneville Cutthroat, Colorado
River Cutthroat, Yellowstone Cutthroat, and Mountain
Whitefish. As noted above, video data from streams are plagued
by debris, so we include images of debris in our experiments.
Table 5 lists the properties of the dataset.

Table 5: The Fish dataset used in our experiment
Name # classes # features # instances Evaluation Data type

Fish 8 463 13,000 3,000/10,000 time series

Because debris images dominate, a default classifier can achieve
98.0% by always choosing the “debris” class.
The results of the test are shown in Figure 21. Note that a
random selection (but one that is guaranteed to have at least one
of each class) is initially only slightly better than the default
rate, and it slowly improves as more objects are seen. In
contrast, our approach immediately achieves 99.4% accuracy,
and improves more quickly.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0 500 1000 1500 2000 2500 300098

98.5

99

99.5

100

Number of instances seen before interruption, S

ac
cu

ra
cy

(%
)

Random Test
SimpleRank Test

0 500 1000 1500 2000 2500 300098

98.5

99

99.5

100

Number of instances seen before interruption, S

ac
cu

ra
cy

(%
)

Random Test
SimpleRank Test

Figure 21: The classification accuracy for the fish dataset as a
case study of stream image recognition

9. DISCUSSION AND CONCLUSIONS
9.1 Discussion
We are now in a position to consider our nearest neighbor
anytime algorithm in the context of Zilberstein and Russell’s
desirable properties for anytime algorithms [38].
Our algorithm is clearly interruptible, after a very small amount
of setup time (the time taken to see one of each class). In
general our algorithm is monotonic, however on some problems
(Ionosphere, Australian Credit and Leaf) the accuracy actually
goes down slightly after some point. Intuitively, this makes
sense. If the dataset has mislabeled or noisy instances, those
instances will be placed at the end of the Index by the ordering
algorithm, although they really should be thrown away. We
could address this problem by using an internal cross validation
to determine if the instances at the end of the Index should be
discarded [25][35].

The property of diminishing returns is generally dramatically
satisfied. For almost all problems, we get 90% of the final
accuracy after seeing only the first 10% of the data. The
measurable quality property is a little more difficult to satisfy.
In general the curves for the training error are very similar to
those for testing error, but slightly optimistic. The exceptions to
this are the very small datasets, and Forest Cover Type, which is
known to have a training set that is unrepresentative of the test
set. We can therefore use the training error curves to obtain
approximate expected accuracy for unseen instances. Finally,
our algorithm is clearly preemptable. If we wish to stop it
temporarily and restart it later, we need only save three numbers,
the current class prediction (best_match_class), the current
best-so-far distance (best_match_val), and the number of
objects we have seen thusfar (p).

9.2 Why Not Indexing or Eager Algorithms?
In Section 2 we posed the following rhetorical questions from
an imagined critic of our work; “why not use an indexing
technique to speed up nearest neighbor?”, and “why not use a
faster classification algorithm like a decision tree?.” We are
now in a position to answer these questions.

9.2.1 Indexing
Given the constraints of our problem we could theoretically use
a Spatial Access Method (SAM) such as an R-tree [11] to
quickly locate the nearest neighbor for our classifier. However
there are several reasons why this is not a solution to the task at
hand. In the best case, index trees require O(log2m) time to
locate the nearest neighbor, however this O(log2m) comes with
very high constants (which depend on the dimensionality of the
data). The real utility of SAMs comes from minimizing costly
disk accesses, but for a main memory problem on high
dimensional data (as in Leaf, Face, Two_Pat, Forest Cover,
Ionosphere etc) we are able to do a fast linear scan and see a
large percentage of the data before the index structure returns an
answer. During this time our anytime algorithm is interruptible,
whereas an interrupted SAM does not have an answer of any
kind.
In addition, a major advantage of the nearest neighbor algorithm
is that it is defined for any similarity/dissimilarity measure,
including measures that either cannot be indexed, or are indexed
only with great difficulty. For example, string, graph or tree edit
distance, rotation invariant Euclidean distance (cf. Section 8)
[16], Mahalanobis distance, Earth Movers Distance,
compression based similarity [22] etc.

9.2.2 Eager Learner Algorithms
As to the suggestion of bypassing the lethargy of the nearest
neighbor algorithm by using an eager learner such as a decision
tree or Bayesian classifier, we can address this idea with a single
word: accuracy. There exist many problems for which the best-
known classifier is Nearest Neighbor. As a concrete example, let
us consider just time series classification, which we discussed at
some length above in Sections 6 and 8.
Both Geurts [7] and Rodriguez & Alonso [27], independently
introduced decision trees to classify time series. On the Two
Patterns dataset, they report error rates of 4.84% and 4.90%
respectively. However, in our experiments on the same dataset
(cf. Figure 15) our anytime algorithm achieves the same
accuracy after seeing only 47 instances, and thereafter rapidly
converges on a 0.0% error rate. While there have been several
other attempts to classify time series with decision trees, to the
best of our knowledge none of them comes close to the accuracy

achieved by Nearest Neighbor. There have been many other
suggestions for classifying time series with eager learners. For
example, in a recent work Wu and Chang [37], use a “super-
kernel fusion scheme” to achieve accuracy of 0.79% on the
ControlChart dataset. However simply using 1NN-DTW on the
same dataset gives an error rate of 0.33%. In summary, while
the “no free lunch” theorem tells us that Nearest Neighbor
classifier is not optimal for all problems, there are many
problems where the Nearest Neighbor classifier is the best-
known solution in spite of decades of research.

9.3 Conclusion
In this work we have shown a simple method to convert the
ubiquitous nearest neighbor algorithm into an anytime algorithm.
We have shown, on a highly diverse set of problems, that our
algorithm can achieve high accuracy even if interrupted after
seeing only a small fraction of the dataset. Future work includes
investigation of other ordering algorithms and a field study of
anytime classification for insect classification [33].

10. ACKNOWLEDGMENTS
We gratefully acknowledge Agenor Mafra-Neto, Geoffrey
Webb, Jill Brady and Ying Yang for their useful suggestions.
We further wish to acknowledge Dennis Shiozawa, Xiaoqian
Xua, and Pengcheng Zhana at Brigham Young University, and
Robert Schoenberger with Agris-Schoen Vision Systems for
their help with the fish monitoring problem.
This research was partly funded by the National Science Foundation
under grant IIS-0237918.

11. REFERENCES
[1] T. Adamek, and N. E. Connor. A multiscale representation

method for nonrigid shapes with a single closed contour.
IEEE Circuits and Systems for Video Technology, Vol.14,
pages 742- 753, 2004.

[2] C. Aggarwal, J. Han, J. Wang, and P. S. Yu. On demand
classification of data streams. In Proceedings of the
International Conference on Knowledge Discovery and
Data Mining (KDD'04), 2004.

[3] J. L. Bentley, and R. Sedgewick. Fast algorithms for
sorting and searching strings. In Proceedings of the 8th
Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 360-369, 1997.

[4] H. I. Bozma, and Hulya Yalcin. Visual processing and
classification of items on a moving conveyor: A selective
perception approach. Robotics and Computer Integrated
Manufacturing, Vol.18, No.2, pages 125-133, 2002.

[5] P. Bradley, U. Fayyad and C. Reina. Scaling clustering
algorithms to large databases. In Proceedings of the 4th
International Conference on Knowledge Discovery and
Data Mining (KDD'98), pages 9-15, 1998.

[6] S. Esmeir, and S. Markovitch. Interruptible anytime
algorithms for iterative improvement of decision trees. In
Proceedings of Workshop on the Utility-Based Data
Mining (UBDM-2005), held with The 11th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD'05), 2005.

[7] P. Geurts. Contributions to decision tree induction:
bias/variance tradeoff and time series classification. Ph.D.
thesis, Department of Electrical Engineering and
Computer Science, University of Liege, Belgium, 2002.

[8] J. Grass, and S. Zilberstein. Anytime algorithm
development tools. SIGART Artificial Intelligence. Vol 7,
No. 2, ACM Press, 1996.

[9] O. Grumberg, S. Livne, and S. Markovitch. Learning to
order BDD variables in verification. Journal of Artificial
Intelligence Research, 2003.

[10] M. Guarino, A. Costa, A. van Hirtum, P. Jans, K.
Ghesquiere, J.M. Aerts, P. Navarotto, and D. Berckmans.
Automatic detection of infective pig coughing from
continuous recording in field situations. Rivista di
Ingegneria Agraria, Vol. 35, No. 4, pages 69-73, 2004.

[11] A. Guttman. R-trees: A Dynamic Index Structure for
Spatial Searching. Proc. ACM SIGMOD Int. Conf. on
Management of Data, Boston, MA, 1984, pp. 47-57.

[12] E. A. Hansen, and S. Zilberstein. Monitoring anytime
algorithms. In M. Pittarelli (Ed.), SIGART Bulletin Special
Issue on Anytime Algorithms and Deliberation Scheduling,
Vol.7, No.2, pages 28-33, 1996.

[13] G. Heidemann, H. Bekel, I. Bax, I, and H. Ritter.
Interactive online learning. Pattern Recognition and Image
Analysis, Vol.15, No.1, pages 55-58, 2005.

[14] G. Hulten, and P. Domingos. Mining complex models from
arbitrarily large databases in constant time. In Proceedings
of the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD'02), pages
525-531, 2002.

[15] E. Keogh, and S. Kasetty. On the need for time series data
mining benchmarks: A survey and empirical
demonstration. In Proceedings of the 8th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD'02), pages 102-111, 2002.

[16] E. Keogh, L. Wei, X. Xi, S.H. Lee and M. Vlachos (2006)
LB_Keogh Supports Exact Indexing of Shapes under
Rotation Invariance with Arbitrary Representations and
Distance Measures. To appear in VLDB 2006

[17] E. Keogh, www.cs.ucr.edu/~eamonn/ICDM06/
[18] E. Keogh, www.cs.ucr.edu/~eamonn/time_series_data/
[19] I. Kotenko, and L. Stankevitch. The control of teams of

autonomous objects in the time-constrained environments.
In Proceedings of the IEEE International Conference on
Artificial Intelligence Systems, pages 158-163, 2002.

[20] R. Lakaemper, L. J. Latecki, and D. Wolter: Incremental
multi-robot mapping. In Proceedings of the IEEE
International Conference on Intelligent Robots and Systems
(IROS), 2005.

[21] D-J. Lee, R. Schoenberger, D. Shiozawa, X. Xu, and P.
Zhan (2004). Contour Matching for a Fish Recognition and
Migration Monitoring System. In Proceedings of the SPIE
Optics East, Two and Three-Dimensional Vision Systems
for Inspection, Control, and Metrology II, vol. 5606-05,
Philadelphia, PA, USA, Oct. 25-28, 2004.

[22] M. Li, X. Chen , X. Li , B. Ma and P. Vitányi, The
similarity metric, Proceedings of the fourteenth annual
ACM-SIAM symposium on Discrete algorithms, January
12-14, 2003, Baltimore, Maryland

[23] T. Lindgren. Anytime inductive logic programming. In
Proceedings of the 15th International Conference on
Computers and Their Applications, pages 439-442, 2000.

[24] K. Myers, M. J. Kearns, S. P. Singh, M. A. Walker. A
boosting approach to topic spotting on subdialogues. In
Proceedings of the International Conference on Machine
Learning (ICML'00), pages 655-662, 2000.

[25] E. Pekalska, R. Duin, and P. Paclik. Prototype selection for
dissimilarity-based classifiers. Pattern Recognition, Vol.
39, No.2, pages 189-208, 2006.

[26] C.A. Ratanamahatana, and E. Keogh. Three myths about
Dynamic Time Warping data mining. In Proceedings of
SIAM International Conference on Data Mining (SDM'05),
pages 506-510, 2005.

[27] J.J. Rodríguez, and C.J. Alonso. Interval and dynamic time
warping-based decision trees. In Proceedings of the 2004
ACM symposium on Applied computing, pp. 548-552.

[28] N. Roy, and A. McCallum. Toward optimal active learning
through sampling estimation of error reduction. In
Proceedings of the 18th International Conference on
Machine Learning (ICML'01), pages 441-448, 2001.

[29] R. Shah, S. Krishnaswamy, and M. M. Gaber. Resource-
aware very fast K-Means for ubiquitous data stream
mining, In Proceedings of 2nd International Workshop on
Knowledge Discovery in Data Streams, to be held in
conjunction with the 16th European Conference on
Machine Learning (ECML’05) and the 9th European
Conference on the Principals and Practice of Knowledge
Discovery in Databases (PKDD’05), 2005.

[30] P. Smyth, and D. Wolpert. Anytime Exploratory data
analysis for massive data sets. In Proceedings of the 3rd
International Conference on Knowledge Discovery and
Data Mining, pages 54-60, 1997.

[31] S. Yamada, and N. Nagino. Constructing a personal web
map with anytime-control of web robots. International
Journal of Cooperative Information Systems, Vol.11 No.1-
2, pages 1-19, 2002.

[32] G.I. Webb, Y. Yang, J. Boughton, K. Korb, and K-M. Ting
Classifying under computational resource constraints:
Anytime classification using probabilistic estimators.
Technical Report 2005/185, Clayton School of Information
Technology, Monash University, 2005.

[33] L. Wei, E. Keogh, H. Van Herle, and A. Mafra-Neto.
Atomic Wedgie: Efficient query filtering for streaming
time series. In Proceedings of the 5th IEEE International
Conference on Data Mining, pages 490-497, 2005.

[34] Z. Wen, and Y. Tao. Dual-Camera NIR/MIR imaging for
stem-end/calyx identification in apple defect sorting.
Transaction of ASAE. Vol.43, No.2, pages 446-452, 2000.

[35] D.R. Wilson and T.R Martinez. Reduction techniques for
instance-based learning algorithms. Machine Learning, Vol
38, pages 257-286, Kluwer Acadamic Publishers, 2000.

[36] R. Winn Hardin. Vision System Monitors Fish Populations.
Vision Systems Design, January 2006.

[37] Y. Wu, and E. Y. Chang. Distance-function design and
fusion for sequence data. In Proceedings of 2004 ACM
International Conference on Information and Knowledge
Management, pp. 324-333.

[38] S. Zilberstein, and S. Russell. Approximate reasoning using
anytime algorithms. In Imprecise and Approximate
Computation, Kluwer Academic Publishers, 1995.

	INTRODUCTION
	RELATED WORK AND BACKGROUND
	ANYTIME NEAREST NEIGHBOR
	OBSERVATIONS ON INDEX ORDERING
	GENERAL ORDERING HEURISTICS
	Finding the Worst Exemplar

	SPECIAL ORDERING HEURISTICS
	Agricultural Monitoring
	DTW Review with Novel Observations

	EXPERIMENTS
	Generic Ordering
	Special Ordering for DTW

	Fish Species Classification: A Case Study
	Anytime Fish Classification Results

	DISCUSSION AND CONCLUSIONS
	Discussion
	Why Not Indexing or Eager Algorithms?
	Indexing
	Eager Learner Algorithms

	Conclusion

	ACKNOWLEDGMENTS
	REFERENCES

