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ABSTRACT
Recent initiatives like the Million Book Project and Google Print
Library Project have already archived several million books in
digital format, and within a few years a significant fraction of
world’s books will be online. While the majority of the data will
naturally be text, there will also be tens of millions of pages of
images. Many of these images will defy automation annotation for
the foreseeable future, but a considerable fraction of the images
may be amiable to automatic annotation by algorithms that can
link the historical image with a modern contemporary, with its
attendant metatags. In order to perform this linking we must have
a suitable distance measure which appropriately combines the
relevant features of shape, color, texture and text. However the
best combination of these features will vary from application to
application and even from one manuscript to another. In this work
we propose a simple technique to learn the distance measure by
perturbing the training set in a principled way. We show the
utility of our ideas on archives of manuscripts containing images
from natural history and cultural artifacts.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval models
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1. INTRODUCTION
Recent initiatives like the Million Book Project and Google Print
Library Project have already archived several million books in
digital format, and within a few years a significant fraction of
world’s books will be online [10]. As Kevin Kelly recently noted,
“the real magic will come in the second act, as each word in each
book is cross-linked, clustered, cited, extracted, indexed,
analyzed, annotated, remixed, reassembled and woven deeper
into the culture than ever before” [12]. While this quotation
explicitly singles out text, a similar argument can be made for
images. Clearly the majority of the data gleaned from scanned
books will be text, but there will also be tens of millions of pages
of images. Many of these images will defy automation annotation
for the foreseeable future, however a considerable fraction of the
images may be amiable to automatic annotation by algorithms that
can link the historical image with a modern contemporary, with its
attendant meta tags [2]. As a concrete example, consider Figure 1.

Figure 1: A page from a scientific text published in 1849
[6]. The heavily stylized scrip is difficult to read even at
full resolution, however we have independently confirmed
that the three insects are (left to right) Zygaena
filipendulae, Acherontia atropos and Syntomis phegea

In this image the text annotations will surely defy even the state-
of-the-art handwriting recognizers [1], and humans, particularly
those without experience in reading cursive script are also
unlikely to be able to parse these words. Suppose that we segment
out the individual insects and search for the most similar images
on the web (for the moment, we will gloss over the technical
details of how this is done). In fact we have done this, and
discovered the image in Figure 2.

Figure 2: An image of Acherontia atropos, also known as
the Death's-head Hawkmoth, retrieved from URL [24]

The image is uncannily like the query image, we can confidently
assume it is the same (or closely related) species and therefore we
can link the historical image to its modern counterpart to provide
context and annotations to the digital archive. In this example the
shape and color provided the necessary clues to the identity of
unknown object. More generally, different sets of features may be
useful depending on the application. For example, most Diatoms
(eukaryotic algae) are colorless when viewed at the microscopic
scale, but are often richly textured, as in Figure 3.



Figure 3: Left) Plate 5, fig. 44 of a Smith’s British
Diatomaceae (1853) [19], Right) An image of Triceratium
favum, a type of Algae, retrieved from URL [25]

Here (rotation invariant) shape and texture allow us to link this
object to a modern image, and learn of the latest research on this
intriguing life form.

In this work we propose a general framework for annotating large
archives of historical image manuscripts. Our work is similar in
spirit to the work of Agosti et al. [2] on the automatic discovery of
relationships among images in illuminated manuscripts; however
we are focusing on the lower level primitives to support such
work. We use different feature spaces such as shape, color and
texture. We then we combine these similarities using appropriate
weights. Our experiments show that the accuracy we can obtain is
higher using a combined feature similarity measure than we can
obtain using any individual single feature calculation. Our
fundamental contribution is introducing a novel technique for
learning this weighting parameter, in spite of a lack of any labeled
training data.

The rest of this paper is organized as follows. In Section 2 we
consider the necessary background and related work in image
matching in the context of historical archives. In Section 3 we
introduce our novel algorithm for learning the appropriate
weighting parameter for combining different image features.
Section 4 contains an empirical evaluation on several datasets
which are up to five hundred years old. We concluded in Section
5 with a discussion of our results and directions for future work.

2. BACKGROUND AND RELATED WORK
The literature on image matching is vast, we refer the reader to
[22] for an overview. Most of the work is concerned with
efficiently and effectively matching images using one type of
feature, i.e. shape, color, texture or text annotations. If we are to
use more than one type of feature, we have the problem of finding
an appropriate weighting parameter w. Research on combining
two or more features tends to either assume that labeled training
data is available [21][20], or it considers specialized domains
where the value of w can be determined once and fixed forever.
However it is clear that for the general problem of manuscript
annotation the best value for w is highly data dependent. At one
extreme, we may have monochrome engravings of objects as in
Figure 4.Left, in which case we would wish to place all the weight
on the shape features. For the other extreme, imagine we are
matching heraldic shields as in Figure 4.Right, here there is very
little variation in shape (and none of it meaningful), and we would
wish the algorithm to consider color only1.

1 This is true in our particular dataset, see Figure 5 and Figure 17.
However in other datasets of heraldic shields the shapes can be very
useful.

Figure 4: Two examples at the extremes of color/shape
importance for matching. Left) Historia Naturalis (1648)
by John Johnston (engraved by Matthaeus Merian). Right)
Coats of arms. fols. 25v-26r. Founders' and benefactors'
book of Tewkesbury Abbey. Early 16th century.

There are many existing techniques for learning this mixing
parameter w, if we have access to subjective similarity judgments
[20][16][21]. While we would not rule out human interaction to
refine a distance measure in an important domain, the scale of the
problems we wish to eventually consider means that we would
like to have a completely automated system to at least bootstrap
the process and produce an initial high quality measure.

There are also dozens of methods for learning distance measures
if we have labeled training data. One basic idea is to use a
wrapper over all possible feature weights [4], another idea is to set
up a classification problem where the input is two objects and the
output is 0 if they are in the same class and 1 if they are not. We
can then train a classifier which provides continuous output, like
an SVM or neural network [11]. The continuous output of the
trained classifier can then be used as a distance measure [14]. The
problem with all these approaches is that they require labeled
training data. However we are explicitly assuming that we do not
have any such labels. We simply have a collection of objects
manually or automatically extracted from documents. As we shall
see in Section 3, our solution is to produce pseudo-labeled data
and use it to learn the w parameter.

2.1 Image Matching Primitives
While we plan to present a generic technique to allow us to find a
mixing parameter w for any of the many measures defined for
shape, color, texture or text features, for concreteness will we will
show the particular shape and color measures we use in the
diverse experiments in this work.

2.1.1 Color Matching
While many information retrieval uses of color use a single color
histogram to represent the entire query object, it is clear that in
many areas of historical manuscript annotation we need to
consider the localized arrangements of color. Consider for
example the four heraldic shields shown in Figure 5. It is clear
that all four must have near identical color histograms, yet they
are clearly distinct.

Triceratium
favum



Figure 5: I) Leaf 36v from Treatises on Heraldry, dating to
the 15th century. II) The shields have virtually identical
color histograms. III) By creating localized color regions
we can easily distinguish between the objects.

While this example is particularly clear and obvious, we have also
observed similar cases for butterflies and other natural objects.
Our solution is to localize the color information by creating a grid
within the Minimum Bounding Rectangle (MBR) of the object,
and considering the color histogram for each cell. For simplicity,
and to help mitigate the problem of overfitting, we create an equal
number, g, of row and columns. This leaves open the question of
how we set the value of g. We propose a simple method to do this.
The intuition of our idea is that if g is too small, there will be a lot
of variance of color within a cell, but when each cell contains a
single patch of color, the variance within each cell should be low.
We can therefore search over different values of g and measure
the change in average variance within the g2 cells as we increase
g. More formally:

g = argmax{ avg(var(gi)/avg(var(gi+1) }, 0 ≤ i, g0 ≡ g1

This is rather similar to the criteria of information gain used in
decision trees. In Figure 6, we tested this idea on two small
contrived datasets for which the objectively correct answer is
obvious.

Figure 6: Top) Two synthetic datasets for which the best
value of g is known. Bottom) For both datasets, our
heuristic picks the correct value for g.

In Figure 7 we test the heuristic on a real dataset for which,
subjectively speaking, there is a narrow range of reasonable
choices for g.

Figure 7: Top) A subset of heraldic shields from Treatises
on Heraldry, which subjectively seem to require a value of
g which is 2 or 3. Bottom) The value of g chosen by our
heuristic seems plausible for this dataset.

In this example the heuristic gives a plausible answer, as it does in
all datasets considered in this paper. We therefore use this idea in
all experiments in this work.

2.1.2 Shape Matching
There are literally hundreds of shape measures in the literature;
[22] and the references therein provide an excellent overview. In
choosing a shape measure for mining historical archives we have
two critical requirements. We must have a scalable algorithm,
given that we may need to compare millions of images, and we
must have shape measure that requires few parameters. Some
shape measures require as many as 8 parameters. While it may be
possible to tune these in limited domains for which we have
massive amounts of labeled data, for the task at hand we need to
compare unlabeled historical images to unconstrained images
retrieved from the web. Any attempt to tune parameters is very
likely to result in over fitting. As noted above, we will eventually
need to find a parameter w to combine the contribution of shape
and color. Having additional parameters for just the shape
measure will increase the search space, resulting in slower
training times and dramatically increasing the possibility of over
fitting.

Fortunately there is at least one shape distance measure which is
completely parameter-free and scalable to large datasets [13]. The
basic idea to transform the two-dimensional shape to a one-
dimensional “time series”. Figure 8 gives a visual intuition has to
how this is achieved. The distance from every point on the profile
to the center is measured and treated as the Y-axis of a time series
of length n.
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Figure 8: A visual intuition of the conversion of a two-
dimensional shape to a one-dimensional “time series”. II)
Two shapes that are similar in the shape space will also be
similar in the time series shape. III) Here we compare an
1890 chromolithograph [5] to a modern photograph of
Stenotomus chrysops (common name: Scup or Porgy)

Once we have transformed the shape into a time series, we can
leverage off the wealth of distance measures and indexing
techniques available for time series [13]. In this work we use
Euclidean distance as the distance measure. Recent work has
shown that the Euclidean distance on this representation is at
least competitive with more complex measures on a large variety
of shape matching problems [13]. Note that in the example in
Figure 8 the two fish are pointing in the same direction and have
approximately the same rotation. However we can achieve
invariance to both enantiomorphic and rotated shape with a very
small overhead [13].

2.1.3 Texture and Text Matching
For simplicity and in order to tightly focus our experiments, we
only consider shape and color for the rest of this work. We note
however that our ideas can generalize to other features that can be
measured from the historical documents. One obvious feature is
texture (recall Figure 3). Texture features may be useful in some
domains where shape and color do not completely disambiguate
the objects in question, for example consider the heraldic shields
shown in Figure 9.

Figure 9: Heraldic shields from the 15th century Treatises
on Heraldry, with three modern equivalents, clustered
using Gabor filters and group average linkage.

Text may also be a very useful feature for the task at hand.
However extracting text from historical documents can be very
difficult. A recent special issue of the International Journal on
Document Analysis and Recognition on the topic highlights the
challenges and recent progress [3]. Like the other features of

shape, color and texture, any similarity measures for text would
need to allow matching under uncertainty, because the inevitable
errors in optical character recognition are further compounded by
the document quality of many historical archives and the potential
for spelling changes over time [7]

3. LEARNING A DISTANCE MEASURE
For simplicity we are considering just the simple case where we
want to find a good value for w, a weighting parameter to
combine color and shape:

Combined_Dist(a,b,w) = w * Distcolor(a,b) + (1- w)* Distshape(a,b)

0  w  1

Intuitively a good value is one that will maximize the number of
correct mappings between the objects in our historical manuscript
collection and the collection of real world images. We are making
no assumptions about the collection of real world images. They
may be highly constrained and structured, for example the set of
idealized prototypes of heraldic shields shown in Figure 9, or they
may be highly heterogeneous, for example the set of all images
returned to a Google image query for “heraldic shields”.

To make sure that the shape and color distance measures are
commensurate we normalize them. Once we have the shape/color
distance matrix between the drawing collection dataset and the
real world image dataset, we first find the maximum entry in the
matrix, and then we divide the whole matrix by this maximum
value. To motivate our solution to the problem of selecting a good
value for w, let us imagine an idealized case. Suppose our
collection of historical images happens to consist of only labeled
pairs, for example two Monarch butterflies, two Viceroy
butterflies etc. If this were the case, we could determine a good
value of w as follows. We could split the dataset into two subsets
A and B, such that each of subset contains exactly one of the
labeled pairs. We can then find the nearest neighbor for each
object in A from the subset B while varying the value of w from
zero to one. This is essentially 2-fold classification evaluation. A
good value of w is the one that maximizes classification accuracy.
While this idea is obvious and intuitive, for concreteness we
outline the code in Table 1.

Table 1: An algorithm to learn the parameter w
Algorithm Learn_Weighting_Parameter(A,B)

1

2
3
4
5
6
7
8
9
10
11
12
13

Calculate the normalized color/shape distance matrices
Discolor /Disshape between A and B;
for w = 0 to 1 in steps of 0.1

Combined_Dist = w * Distcolor + (1 - w) * Distshape;
accuracy(w) = 0;
for each object i in A

find i’s nearest neighbor j in B;
if i and j have the same class label
accuracy(w) = accuracy(w) + 1;
end

end
end
Find the wmax with the greatest accuracy;
return wmax;

The obvious problem with the scenario outlined above is that we
do not in general have two of each object. In fact, we are
assuming that the objects are not annotated, so we have no labels
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of any kind. Nevertheless we can use this idea, by creating
synthetic pairs of objects. The idea is that for each object in the set
of historical manuscripts A, we create a new example of it and
place these objects in set B, we can then use the algorithm in
Table 1 directly.

The success of this idea relies upon our ability to produce realistic
pairs. At one extreme, if we simply duplicated each object, there
could be no “distortion”to learn, and any value of w would give
perfect accuracy. At the other extreme, if we simply randomly
create objects and label them in the same class then we should
expect the classifier to perform at close to the default rate, since
there is no structure to learn from.

We have created two strategies for creating the necessary pairs.
The first is very simple, but only works for objects which are
symmetric about at least one axis. While this is the case for many
objects of interest, including butterflies/moths, bird eggs,
arrowheads etc, it is not true for some natural objects, including
mollusks shells, lateral views of most macroscopic animals and
some cultural artifacts. Because of this we have also created a
generic technique for creating synthetic pairs which does not
require symmetry. We discuss both methods in the following two
sections.

3.1 Exploiting Chirality2

The intuition here is to assume that there is one idealized object
for each class. This idealized object can never be reproduced
exactly, either by drawing it or photographing it. Any attempt to
reproduce it must invariably produce “distortions”, and it is the
purpose of our weighted distance measure to be invariant to these
distortions. We want to determine the weight that is most
invariant to the distortion realized both in drawing and
photographs. Although we cannot establish this in general, the
“two-of-each” assumption above allows us to empirically
determine the best weight for invariance to the distortion realized
just drawings, and we hope that this weight will generalize to
photographs too.

Note that many of the objects of interest in historical manuscripts
are approximately symmetrical. This suggests we can attempt to
create synthetic data simply by flipping existing images from left
to right along the central axis. Although idealized butterflies are
perfectly symmetrical, like most real world items, actual butteries,
and drawings or photographs of them, are never perfectly
symmetrical in either shape or color, as shown in Figure 10. We
therefore do not get the exact same butterfly after reversal, and we
can treat the flipped image as a new example.

Figure 10 : Examples flipped near-symmetrical objects
taken from historical archives. Left) A Per Bend heraldic
shield. Center) A Danaus plexippus butterfly. Right) A
projectile point

In the examples in Figure 10, our algorithm would find that
reversing a heraldic shield makes little difference to the shape, but

2 A figure is chiral (and said to have chirality) if it is not identical to its
mirror image.

can make a large difference to the color distribution. In contrast,
reversing the projectile point makes no difference to the color
distribution, but affects the shape (note the asymmetric tangs at
the bottom of the shape). Finally for the butterfly example, the
reversal makes subtle differences to both color and shape,
suggesting (correctly, as we shall see) that both color and shape
are important in this domain. Of course, here we are only looking
at one example from each domain, there may be other examples
where reversal does not have the desired effect, for example two
of the heraldic shields in Figure 5 are near identical after reversal.
However for the algorithm in Table 1 to work we only require that
some fraction of the datasets offer clues to the relative importance
of shape and color by comparing to their enantiomorphs.

3.2 Pseudo-example Generation
As we shall demonstrate in Section 4, the simple technique to
exploit chirality proposed in the previous section works
surprisingly well. However, we need to have a more general
technique to create synthetic examples, given that we may have a
dataset of intrinsically asymmetric objects. We propose to do this
by averaging objects. Concretely:

For each object ai in A, we create a new object bi by averaging ai’s
shape with the shape of its nearest neighbor considering only
shape, and by averaging its color with the color of its nearest
neighbor considering only color. The set of all newly created
objects becomes the set B. Figure 11 gives a visual intuition of
this process.

Figure 11 : A visual explanation of the process of
producing a new synthetic example of the object ai. Top) A
set of shapes A. Bottom) A slightly distorted version of
object ai is created and labeled bi. Object aj is the nearest
neighbor to ai if we consider only shape, and ak is the
nearest neighbor to ai considering only color

As the figure suggests, we can generally expect the newly created
object bi to be similar to its “parent”ai without being identical. In
this toy dataset, only the shape of the objects is meaningful; the
colors are simply random shades of green. As we show in Figure
12, if we later attempt to classify object bi by finding its nearest
neighbor is set A, the value of the parameter w used in the
Combined_Dist function is critical. It is this criticality that lets us
automatically discover that shape is the key to this particular
dataset.

RGB ={0,128,0} RGB ={90,242,90}

ai aj ai ak

ShapeAvg(ai, aj)

bi

ColorAvg(ai, ak) = {45,185,45}

ai aka1 a3 aja2

... ...



Figure 12 : If we attempt to classify bj using the nearest
neighbor algorithm and the Combined_Dist function, we
find the setting of the parameter w is critical to success

Let y denote the class label of a particular example and let x1, . . . ,
xn denote the different features domain values of this example (a
given xi might have multiple components, but they all correspond
to one measurement modality). We assume that each domain xi

lies in a space with a distance metric, but that the collection X =
(x1, . . . , xn) does not have an a priori defined distance measure.

We are given a set of examples {X1, . . . ,Xm} and their associated
class labels, {Y1, . . . ,Ym}, which collectively we will denote D.
We would like to use this data to find a global distance measure
on X as a weighted sum of the individual distance measures on its
subcomponents:
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There have been many prior methods for learning such weighted
distances for nearest neighbor classifiers. However, all of these
algorithms assume that each class label is represented more than
once in the training set. In our application, each of the training set
examples are of different classes. Stated differently, our goal in
classification of a new testing instance is to find the training
instance to which it is most similar, not merely to find the general
class of training instances to which it is most similar.

Therefore, we cannot adjust the distance weights to achieve good
leave-one-out training set accuracy. Our method of generating
pseudo-examples on which to tune the distance measure weights
is a natural consequence of the model described below.

Assumptions
Assume that the joint distribution over examples from which the
training and testing set are drawn factors when conditioned on the
label:
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This is the same assumption made for naive-Bayes classification,
except that we are only making the assumption at the level of the
different features domains, not also within a domain. We further
assume that each class label is equally likely (p(y) is a constant).
With only one example from each class, this is a natural
assumption.

We can now condition this distribution on the distribution over
the label of an example X.
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where f(y) returns the index in the training set of the example with
class label y (recall each label is unique in the training set). This
last step is a result of the dependence assumption made in
equation 1: the posterior distribution over the features in domain i
for examples of class y depends only on the single example in the
training set of class, and only on its features for domain i. We now
make one final assumption:
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where gi is some monotonically decreasing function. That is, for
feature domain i, assume that the posterior distribution of
examples from a class decreases monotonically with the distance
from the single example we have of that class. Given that we are
relying on the distance metric for feature domain i, this is a
natural assumption.

Thus, given an example X with label y, we would like to construct
a new example that we feel relatively certain would have the same
label. Thus, the probability that X has label y should be greater
than the probability it has any other label, y’:
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To meet this condition it is sufficient (but not necessary) that
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Thus, if every feature set for our new point is closer to the target
example than to any other example, the new point is more most
likely to have the same label as the target.

So, any example we generate by distorting the domains of the
target toward its nearest neighbors will generate an example that
is most likely to be an example of the target’s class, provided that
warping is less than half the distance between the two objects.
Instead of selecting many such distortions, we choose to select the
single most extreme valid distortion. If this single new example is
correctly classified, then any example generated from a lesser
distortion would also be correctly classified. Our theory states that
we can select any distortion up to, but not including points exactly
halfway between the target and its nearest neighbor. However, we
have found no ill effects of employing a distortion of exactly 0.5,
instead of the theoretical bound of 0.5  .

Nearest neighbor to bi using Combined_Dist,

with w = 1, since i  3, this is misclassified

bi

ai aka1 a3 aja2

... ...

bi

Nearest neighbor to bi using Combined_Dist,

with w = 0, since i = i, this is correctly classified



4. EXPERIMENTS
In this section, we conduct experiments to demonstrate the utility
of our ideas. All experiments are designed to be completely
reproducible, the datasets and additional details can be
downloaded at [23]. We test both the exploiting chirality
approach and the more general Pseudo Example Generation (PEG)
method.

4.1 Pseudo-Example Generation of Insects
We extracted 84 hand-drawn insects from historical manuscripts
either available online or from historical books including [15][18].
The ages of the images in question range from 1658 to 1964. In
spite of their age, almost all of the images are colored, as it was
common practice in centuries past to print books in black and
white, and offer luxury editions that had been hand colored. Since
the majority of insects considered are butterflies, we will denote
this dataset “butterflies”for simplicity.

The extraction of the insects from the original archives was partly
manual, however in a parallel work we are exploring (with
initially promising results) completely automatic methods to
extract objects of interest from arbitrary texts.

With the 84 drawn butterflies as dataset A, we obtain the dataset B
using PEG, as described in Section 3.2. Figure 13 illustrates the
classification accuracy for different values of w on the butterflies
dataset.

Figure 13: Classification accuracy on the butterfly dataset
when the set B is obtained using PEG.

The classification accuracy is maximized when w equals 0.1 or
0.2. The result is similar to (but not exactly the same) as the result
we gain from the experiment on the same dataset using the
chirality method (as discussed below). The results suggest that we
can benefit from a combination of shape and color, and that using
only shape or only color would produce inferior results.

Having discovered the parameter setting, we can use the
Join_by_Combined_Measure algorithm shown in Table 2 to link
our 84 hand-drawn butterflies’dataset (A) with a larger reference
dataset (R). In this case dataset (R) consist of 852 real insect
images collected from various WWW sources, and the parameter
wmax = 0.2 as learned above. We made sure that at least one of
each of the 84 drawn butterflies appears in the larger collection,
base on the insect’s species. However we made no effort to make
sure that the shape, rotation or colors are the same.

Table 2:

Algorithm Join_by_Combined_Measure(A,R, wmax)

1

2
3
4
5
6
7

Calculate the normalized color/shape distance matrices
Distcolor /Distshape between A and R;
Combined_Dis = wmax * Distcolor + (1 - wmax) * Distshape;
for each object i in A

find i’s nearest neighbor j in R;
pair(i) = j;

end
return pair;

For all images used, we identified the species either from the
source material, or we had entomologist Dr. Agenor Mafra-Neto
identify them. With the help of Dr. Mafra-Neto we divided the
results into 3 categories, perfect matches, not perfect but plausible
matches and poor matches. The category “perfect but plausible”is
awarded to matches which are not correct at the species level, but
are in the same genus, or to insects known to be mimics of each
other.

In this experiment we had 16 perfect matches, 21 plausible
matches and 47 poor matches in total. Figure 14 shows some
representative examples of matches.

Figure 14: Sample matches from the butterfly experiment.
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4.2 Exploiting Chirality of Insects
Given the symmetric nature of insects, we also considered our
technique for exploiting the slight chirality apparent in drawings
of insects.

In this experiment, the set A is the original dataset of 84 hand-
drawn butterflies. Set B is obtained by mirroring all the images of
A from left to right and explained in Section 3.2. We use the
algorithm Learn_Weighting_Parameter shown in Table 1 to learn
the parameter w. Figure 15 shows the classification accuracy as a
function of w ranging from 0 to 1 with steps of 0.1. It shows that
we have the greatest accuracy when wmax = 0.4, which appears to
be significantly better than either of the shape measure only or the
color measure only.

Figure 15: Classification accuracy on the butterfly dataset
when the set B is obtained by exploiting chirality. When w
= 0 all the weight is on the shape features and when w = 1
all the weight is on the color features.

After performing a join with the same 852 real insect images used
in the previous section we had 15 perfect matches, 19 plausible
matches and 50 poor matches in total. This is slightly worst that
the PEG method, but still surprisingly good given the complexity
of the problem.

4.3 Exploiting Chirality of Heraldic Shields
For the heraldic shields dataset we do not currently have a
complete ground truth dataset. For our experiments, we created a
large set random set of shields by taking 25 common shield
patterns and randomly coloring them from a palette of 20 colors.
To make the problem more realistic, we also added Gaussian
noise with mean 0 and variance which is 1% of the original
variance, to the images, and randomly distorted the shape of the
templates by changing their height and width respectively by a
random amount chosen uniformly in the range of -10 to +10%. In
the end we have a dataset of 2,350 synthetic heraldic shields.

The historical archive consists of 100 images extracted from
Treatises on Heraldry, dating to the 15th century. The original
manuscript is housed in the Bodleian Library in Oxford.

Using the 100 hand-drawn images as the set A for the Algorithm
Learn_Weighting_Parameter(A,B) shown in Table 1, we created
the set B using the exploiting chirality Section 3.2. In Figure 16
we show the result of the experiment on this dataset.

Figure 16: Classification accuracy on the heraldic shields
dataset when the set B is obtained by PEG.

As we can see the classification accuracy improves when w
increases from 0 to 1. Figure 16 shows that the classification
accuracy is maximized when w = 1. The above result suggests that
only color information is important in this particular heraldic
shields dataset. This is because these objects have identical
outlines (within the limits of the artist’s ability) whereas their
colors are very diverse. Therefore it is not surprising that we have
greater accuracy when we employ only the color.

We used the algorithm Join_by_Combined_Measure shown in
Table 2 to combine the color and shape features on heraldic
shields dataset, where X is the 100 drawing heraldic shields
images and Y is the 2,350 synthetic heraldic shields, and wmax = 1.

In the absence of ground truth we divided the results into 3
categories, perfect matches, not perfect but plausible matches and
poor matches. Figure 17 shows examples of each type. In total, we
had 16 perfect matches, 19 plausible matches and 65 poor
matches. The vast majority of the poor matches are simply
patterns which did not exist in our database, or where the hand-
drawn historical image was highly degraded.
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Figure 17: Sample matches from the Heraldic shield
experiment.

Experiments using the PEG technique produced near identical
results and are omitted due to space limitations.

4.4 Exploiting Chirality of Projectile Points
In the two previous examples we had a situation where we
expected using just color to be best (heraldic shields), and a
mixture of color and shape to be best (butterflies). For
completeness we now consider a dataset where we strongly
suspect that only shape matters. In particular we examined a set of
drawings of projectile points (arrowheads) from a field
archeologist’s notebook [9]. While the sketches capture the shape
(and to some degree the texture) of the objects in question, they
are clearly devoid of any color information.

In this experiment, 30 images of hand-drawn arrowheads, taken
from historical documents [9], are used as the set A for the
algorithm Learn_Weighting_Parameter. As before, we produce the
set B by reversing the 30 drawn arrowheads of set A from left to
right. Figure 18 shows when w goes up above 0.5, the
classification accuracy drops dramatically. The figure implies that

the shape information is of greater importance than the color
information in this application.

Figure 18: Classification accuracy on the arrowheads
dataset when the set B is obtained by exploiting chirality.

Note that we have the problem here of breaking ties, since the
accuracy is maximized over the range of w = [0, 0.5]. Ties may be
common using our technique, given that the range of values for
the classification accuracy is a relatively small integer (i.e. |A|).

We can break ties by choosing the value in the maximizing range
of w that minimizes the sum of all distances to the nearest
neighbors for just the correctly classified examples.

We linked our 30 images with a collection of 310 arrowheads
from URL [26]. Figure 19 shows examples of the five best
matches as measured by the Combined_Dist function.

Figure 19: Sample matches from the projectile point
experiment. a) Zella-Grahm-Mentzer, b) Delhi-Perry, c)
Firstview, d) Williams-t1525, e) Zorra-1802

Experiments using the PEG technique produced near identical
results are omitted from brevity.

5. CONCLUSIONS
In this work we consider the problem of annotating images in
historical archives, a problem sure to gain more attention as
increasing numbers of books are digitally archived. We showed
that a critical issue is determining the appropriate mix of
shape/color/texture to consider, and we introduced a novel
algorithm to determine this. Future work will consider efficiency
issues, which will become more important as we attempt to scale
our ideas to larger datasets.

6. REFERENCES
[1] T. Adamek, N. E. O'Connor, and A. F. Smeaton. Word

matching using single closed contours for indexing
handwritten historical documents. IJDAR 9(2-4): 153-165
(2007).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
15

20

25

30

ALL SHAPE w ALL COLOR

A
c
c
u
ra

c
y

Perfect matches

Not perfect, but plausible

Poor matches
a b c d e



[2] M. Agosti, N. Ferro, and N. Orio. Annotations as a Tool for
Disclosing Hidden Relationships Between Illuminated
Manuscripts. AI*IA 2007: 662-673.

[3] A. Antonacopoulos, and A. C. Downton. Special issue on the
analysis of historical documents. IJDAR 9(2-4): 75-77
(2007).

[4] X. Chen, and T-J. Cham. Learning Feature Distance
Measures for Image Correspondences. CVPR (2) 2005: 560-
567.

[5] S. F. Denton (1890). Report of the Fish and Game
commission of The State of New York. Seventh Report.

[6] C. D’Orbigny (1849). Dictionnaire Universel d’Histoire
Naturelle. Renard & Martinet, Paris.

[7] A. Ernst-Gerlach, N. Fuhr (2007) Retrieval in text
collections with historic spelling using linguistic and spelling
variants. JCDL 2007: 333-341

[8] P. S. Fres (1991). The Illustrated Encyclopedia of the
Butterfly World, by, 1991. Tiger Books International PLC,
London or 1989, Crescent Books, Crown Publishers Inc, NY.

[9] P. Gregory. (1958). Guide to the identification of certain
American Indian projectile points. The Norman Society.
Special bulletin no. 4 of the Oklahoma Anthropological
Society.

[10] M. Herwig (2007). GOOGLE'S TOTAL LIBRARY: Putting
the World's Books on the Web.
http://www.spiegel.de/international/.

[11] T. Joachims. Making large-scale support vector machine
learning practical. In Advances in Kernel Methods: Support
Vector Machines. MIT Press, Cambridge, MA, 1998.

[12] K. Kelly (2006). Scan This Book! N.Y. TIMES, May 14, § 6
(Magazine), at 42.

[13] E. Keogh, L. Wei, X. Xi, S. H. Lee, and M. Vlachos.
LB_Keogh Supports Exact Indexing of Shapes under
Rotation Invariance with Arbitrary Representations and
Distance Measures. In Proceedings of Very Large Databases
(VLDB’06), 2006, pp 882-893.

[14] S. Mahamud (2002). Discriminative distance measures for
object detection. Doctoral dissertation, CMU. www-
2.cs.cmu.edu/ mahamud/recognition/recognition.html.

[15] T. Moffett [Muffet] (1658). The Theatre of Insects; or,
Lesser living Creatures, as Bees, Flies, Caterpillars, Spiders,
Worms, etc., a most Elaborate Work in vol. 2 of Edward
Topsell, The History of Four-footed Beasts and Serpents:
Describing at Large Their True and Lively Figure, their
several Names, Conditions, Kinds, Virtues (both Natural and
Medicinal) Countries of their Breed, their Love and Hatred
to Mankind. Collected out of the writings of Conradus
Gesner and other authors, by Edward Topsell. Whereunto is
now added, The Theater of Insects… . by T. Muff et, 2 vols.
London: printed by E. Cotes, for G. Sawbridge, T. Williams,
and T. Johnson, 1658.

[16] G. P. Nguyen, M. Worring, and A. W. M. Smeulders.
Interactive search by direct manipulation of dissimilarity

space. IEEE Transactions on Multimedia. VOL. 9, NO. 7,
Nov 2007.

[17] C. B. Richard Ng, G. Lu, and D. Zhang. Performance Study
of Gabor Filters and Rotation Invariant Gabor Filters. MMM
2005: 158-162.

[18] A. Seba (1734). Locupletissimi rerum naturalium thesauri
accurata descriptio Naaukeurige beschryving van het
schatryke kabinet der voornaamste seldzaamheden der
natuur. Amsterdam, 1734-1765. 4 vols. 2º. - 394 B 26-29,
vol. 3, plate XXXV.

[19] W. Smith. (1853) British Diatomaceae. Volume 1. John Van
Voorst, London: xxxiv+89pp.

[20] S. Squire. (1998) Learning a Similarity-Based Distance
Measure for Image Database Organization from Human
Partitionings of an Image Set. IEEE Workshop on
Applications of Computer Vision (WACV'98), pp.88-93,
1998.

[21] Varde, A., Rundensteiner, E., Javidi, G., Sheybani, E. and
Liang J. (2007). Learning the Relative Importance of
Features in Image Data. In Proceedings of IEEE ICDE's
DBRank-07, Istanbul, Turkey, April 2007, pp. 237 - 244

[22] R. C. Veltkamp, and L. J. Latecki. Properties and
Performance of Shape Similarity Measures. In Proceedings
of IFCS 2006 Conference: Data Science and Classification.
July, 2006.

[23] X. Wang, L. Ye, E. Keogh, and C. Shelton (2008).
www.cs.ucr.edu/~xwang/historical_shapes/index.html
(While this work is still under review, this page will be
password protected. Username ucr, Password 12345)

[24] www.entomo.pl/lepidoptera/galeria_motyli/motyle_nocne.ht
m Visited on 26-Oct-07.

[25] www.temple-of-flora.com/natural_history.htm Visited on 28-
Oct-07.

[26] www.texasarrowheads.com/ Visited on 15-Jan-08.

Appendix A:

To reduce visual clutter and enhance the flow of the text, we
avoided naming all the insects in the experiments shown in Figure
14. For completeness we do that here.

In the top section we have 6 pairs of insects, which are, from top
to bottom, left to right: {Anaea thebais}, {Attacus atlas},
{Morpho menelaus}, {Eurytides marcellus}, {Geometra
papilionaria}, {Graphium androcles}.

In the center section we have 6 pairs of insects, which are, from
top to bottom, left to right: {Actias maenas, Argema mittrei},
{Danaus plexippus, Speyeria idalia}, {Hemaris thysbe,
Macroglossia fuciformis}, {Hestia lyncea, Papilio veiovis},
{Papilio cresphontes, Papilio machaon},{Troides amphrysus,
Troides oblongomaculatus}.

In the bottom section we have 2 pairs of insects, which are, from,
left to right: {Tacua speciosa, Salvanza imperialis}, {Urbanus
proteus, Telesilaus telesilaus}.


