
The Asymmetric Approximate Anytime Join: A New Primitive with
Applications to Data Mining

Lexiang Ye Xiaoyue Wang Dragomir Yankov Eamonn Keogh
University of California, Riverside

{lexiangy, xwang, dyankov, eamonn}@cs.ucr.edu

Abstract

It has long been noted that many data mining algorithms

can be built on top of join algorithms. This has lead

to a wealth of recent work on efficiently supporting such

joins with various indexing techniques. However, there are

many applications which are characterized by two special

conditions, firstly the two datasets to be joined are of

radically different sizes, a situation we call an asymmetric

join. Secondly, the two datasets are not, and possibly can

not be indexed for some reason. In such circumstances

the time complexity is proportional to the product of the

number of objects in each of the two datasets, an untenable

proposition in most cases. In this work we make two

contributions to mitigate this situation. We argue that

for many applications, an exact solution to the problem is

not required, and we show that by framing the problem as

an anytime algorithm we can extract most of the benefit

of a join in a small fraction of the time taken by the full

algorithm. In situations where the exact answer is required,

we show that we can quickly index just the smaller dataset

on the fly, and greatly speed up the exact computation. We

motivate and empirically confirm the utility of our ideas with

case studies on problems as diverse as batch classification,

anomaly detection and annotation of historical manuscripts.

1 Introduction.

Many researchers have noted that many data mining
algorithms can be built on top of an approximate join
algorithm. This has lead to a wealth of recent work on
efficiently supporting such joins with various indexing
techniques [3], [5], [24], [27]. However, we argue that
while the classic database use of approximate joins for
record linkage (entity resolution, duplicate detection,
record matching, reduplication, merge/purge processing
database hardening etc.) does require a full join,
many data mining/information retrieval uses of joins
can achieve the same end result with an approximate
join. Here approximate does not refer to the distance
measure or rule used to link two objects, but rather
to the fact that only a small subset of the Cartesian
product of the two datasets needs to be examined.

While the result will not be the same as that of an
exhaustive join, it can often be good enough for the
task at hand. For example, when performing a classic
record linkage, if one dataset contains “John Lennon,
9 October 1940”, and the other contains “John W.
Lennon, 09-Oct-40”, it is clear that these correspond
to the same person, and an algorithm that failed to
link them would be very undesirable. In contrast, for
many data mining applications of joins it is not really
necessary to find the nearest neighbor, it can suffice to
find a near-enough neighbor. Examples of useful tasks
that utilize the detection of near-enough neighbors as
a subroutine include clustering [6], classification [23],
anomaly detection [22] and as we show in Section 3.3,
historical manuscript annotation. Given this, we show
that by framing the problem as an anytime algorithm we
can extract most of the benefit of the full join algorithm
in only a small fraction of the time that it requires.
Anytime algorithms are algorithms that trade execution
time for quality of results [9]. In particular, an anytime
algorithm always has a best-so-far answer available, and
the quality of the answer improves with execution time.
The user may examine this answer at any time, and
then choose to terminate the algorithm, temporarily
suspend the algorithm, or allow the algorithm to run
to completion. Furthermore, we show that although we
are explicitly assuming the data is not indexed at query
time, we can build an index on the fly for the smaller
dataset and greatly speed up the process.

The rest of the paper is organized as follows.
The next section offers more background and explicitly
states our assumptions.

1.1 Background and Assumptions. The Similar-
ity Join (SJ) combines two sets of complex objects such
that the result contains all pairs of similar objects [3].
It is essentially the classic database join which has been
relaxed to allow linkage of two objects that satisfy a
similarity criterion. The related All Nearest Neigh-
bor (ANN) operation takes as input two sets of multi-
dimensional data points and computes for each point in

the first set the nearest neighbor in the second set [5].
Note that this definition allows for points in the second
set to be unmatched. In this work we introduce the
Asymmetric Approximate Anytime Join (AAAJ) which
also allows objects in the second set to be unmatched,
however, it differs from the above in several important
ways:

• We assume that the second set is many orders
of magnitude larger than the first set. In some
cases the second set may be considered effectively
infinite1, for example, this may be the set of all
images on the internet or some streaming data.

• The sheer size of the second set means that it can-
not be indexed, or can only be “weakly” indexed.
For example we cannot index the billions of high
dimensional images on the WWW, but we can use
Google image search to weakly order images on
size, date of creation or most significantly (cf. Sec-
tion 3.3) keywords surrounding them.

• The vast majority of work in this area assumes the
distance metric used is the Euclidean distance [3],
[5], [24], [27]. However, motivated by several real
world problems we need to be able to support more
general measures such as Dynamic Time Warping
(DTW), rotation invariant Euclidean distance, or
weighted combinations of individual measures such
as shape, color and texture similarity.

• Given that the second set may be effectively infi-
nite, we may need to abandon any notion of find-
ing an exact answer; rather we hope to find a high
quality answer. In such circumstances we frame the
problem as an anytime algorithm.

Note that it is critical to the motivation of this work
that we assume that the second set is not indexed, be-
cause there are many excellent techniques for comput-
ing all manner of variations of joins when the data is
indexed [3], [5], [24], [27]. In addition to the reasons
noted above, additional reasons why the data might not
be indexed include the following:

• The input query could be intermediate results of
complex database queries (as noted in [27]), or the
incremental results of a directed web crawl.

• The high dimensionality of the data we need to
consider. For example, the five datasets considered
in [5] have an average dimensionality of 4.8, the

1We call the set of images on the WWW “effectively infinite”

because it is expanded at a rate faster that the download rate of
any one machine.

Time

Q
u
a
lit
y
 o
f

S
o
lu
ti
o
n

Current Solution

Setup Time

S

Interruption Time

Figure 1: An abstract illustration of an anytime algo-
rithm. Note that the quality of the solution keeps im-
proving up to time S, when the algorithm is interrupted
by the user.

datasets considered in [27] are all two dimensional
and even [24] which is optimized for “handling high-
dimensional data efficiently” considers at most
64 dimensions. In contrast we need to consider
datasets with dimensionality in the thousands, and
at least some of these datasets are not amiable to
dimensionality reduction.

At least some anecdotal evidence suggests that many
real world datasets are often not indexed. For example
Protopapas et al. [15] have billions of star light curves
(time series measuring the intensity of a star) which
they mine for outliers, however the data is not indexed
due to its high dimensionality and the relative cost
and difficulty of building an index for a dataset that
may only be queried a few times a year. Additional
examples include NASA Ames, which has archived flight
telemetry for one million domestic commercial flights.
Dr. Srivastava, the leader of the Intelligent Systems
Division notes that linear scans on this dataset take two
weeks, but the size at dimensionality of the data makes
indexing untenable even with state of the art techniques
[19]. Given the above, we feel that our assumption that
the larger of the datasets is not indexed is a reasonable
assumption reflected by many real word scenarios.

The main contribution of this work is to show that
joins can be cast as anytime algorithms. As illustrated
in Figure 1 anytime algorithms are algorithms that
trade execution time for quality of results [9]. In partic-
ular, after some small amount of setup-time an anytime
algorithm always has a best-so-far answer available, and
the quality of the answer improves with execution time.

Zilberstein and Russell [28] give a number of desir-
able properties of anytime algorithms:

• Interruptability: After some small amount of
setup time, the algorithm can be stopped at any-
time and provide an answer.

• Monotonicity: the quality of the result is a non-
decreasing function of the computation time.

• Measurable quality: the quality of an approxi-
mate result can be determined.

• Diminishing returns: the improvement in solu-
tion quality is largest at the early stages of compu-
tation, and diminishes over time.

• Preemptability: the algorithm can be suspended
and resumed with minimal overhead.

As we shall see, we can frame an approximate
asymmetric join as any anytime algorithm to achieve
all these goals. Due to their applicability to real
world problems, there has been increasing interest in
anytime algorithms. For example some recent works
such as [21] and [23] show how to frame nearest neighbor
classification as an anytime algorithm and that top-k
queries can also be calculated in an anytime framework,
and [25] shows how Bayesian network structure can be
learned in an anytime setting.

2 The Asymmetric Approximate Anytime
Join.

For concreteness of the exposition we start by formaliz-
ing the notion of the All Nearest Neighbor query.

Definition 2.1. Given two sets of objects A and
B, an All Nearest Neighbor query, denoted as
ANN query(A,B), finds for each object ai ∈ A an ob-
ject bj ∈ B such that for all other objects bk ∈ B,
dist(bj , ai) ≤ dist(bk, ai).

Note that in general ANN query(A,B) 6=
ANN query(B,A). We will record the mapping from
A to B with a data structure called mapping. We can
discover the index of the object in B that ai maps to by
accessing mapping[i].pointer, and we can discover the
distance from ai to this object with mapping[i].dist.

It is useful for evaluating anytime or approximate
joins to consider a global measure of how close all the
objects in A are to their (current) nearest neighbor. We
call this Q, the quality of the join and we measure it as:
Q =

∑|A|
i=1 mapping[i].dist.

Given this notation we can show the brute force
nested loop algorithm for the All Nearest Neighbor
(ANN) algorithm in Algorithm 2.1

Note that lines 2 to 3 are not part of the classic
ANN algorithm. They simply map everything in A
to the first item in B. However, once this step has
been completed, we can continuously measure Q as the
algorithm progresses, a fact that will be useful when we
consider anytime versions of the algorithm below.

In Algorithm 2.1 we have A in the outer loop and
B in the inner loop, a situation we denote as BF AoB
(Brute Force, A over B). We could, however, reverse

Algorithm 2.1 BruteForceJoin(A,B)
1: for i ← 1 to |A| do
2: mapping[i].dist ← Dist(ai, b1)
3: mapping[i].pointer ← 1
4: for j ← 2 to |B| do
5: d ← Dist(ai, bj)
6: if d < mapping[i].dist then
7: mapping[i].dist ← d
8: mapping[i].pointer ← j
9: return mapping

this situation to have B in the outer loop and A in
the inner loop. For a batch algorithm this makes no
difference to either the efficiency or outcome of the
algorithm. Yet, as we shall see, it can make a big
difference when we cast the algorithm in an anytime
framework.

Before considering our approach in the next section,
we will introduce one more idealized strawman that
we can compare to. Both flavors of the algorithms
discussed above take a single item from one of the two
datasets to be joined and scan it completely against the
other dataset before considering the next item. Recall,
however, that the desirable property of diminishing
returns would like us to attempt to minimize Q as
quickly as possible. For example, assume that we must
scan B in sequential order, but we can choose which
objects in A to scan across B, and furthermore we
can start and stop with different objects from A at
any point. Suppose that at a particular point in the
algorithm’s execution we could either scan a1 across five
items in B to reduce its error from 10.0 to 2.5, or we
could scan a2 across ten items in B to reduce its error
from 11.0 to 1.0. The former would give us a rate of
error reduction of 1.5 = (10.0 - 2.5) / 5, while the latter
choice would give us a rate of error reduction of 1 = (11.0
- 1.0) / 10. In this case, the former choice gives us the
faster rate of error reduction and we should choose it.
Imagine that we do this for every object in A, at every
step of the algorithm. This would give us the fastest
possible rate of error reduction for a join. Of course,
we cannot actually compute this on the fly, we have
no way of knowing the best choices without actually
doing all the calculations. However, we can compute the
best choices offline and imagine that such an algorithm
exists. Fittingly, we call such an algorithm magic, and
can use it as an upper bound for the improvement we
can make with our algorithms.

2.1 Augmented Orchard’s Algorithm. While the
statement of the problem at hand explicitly prohibits us
from indexing the larger dataset B, nothing prevents us

from indexing the smaller set A. If A is indexed, then
we can simply sequentially pull objects bj from B and
quickly locate those objects in A that are nearer to bj

than to their current best-so-far.
While there is a plethora of choices for indexing

dataset A, there are several special considerations which
constrain and guide our choice. The overarching re-
quirement is generality, we want to apply AAAJ to very
diverse datasets, some of which may be very high di-
mensional, and some of which, for example strings un-
der the edit distance, may not be amiable to spatial
access methods. With these considerations in mind we
decided to use a slightly modified version of Orchard’s
algorithm [14], which requires only that the distance
measure used be a metric. Orchard’s algorithm is not
commonly used because its quadratic space complexity
is simply untenable for many applications. However, for
most of the practical applications we consider here this
is not an issue. For example, assume that we can record
both the distance between two objects and each of the
values in the real valued vectors with the same num-
ber of bits. Further we assume have a feature vector
length of n per object. Given this, the dataset A it-
self requires O(|A|n) space, and Orchard index requires
O(|A|2) space. Concretely, for the Butterfly example
in Section 3.3 the space overhead amounts to approxi-
mately 0.04%, and for the light curve example the over-
head is approximately 2.8%. Because Orchard’s algo-
rithm is not widely known we will briefly review it in
the next section. We refer the interested reader to [14]
for a more detailed treatment.

2.1.1 A Review of Orchard’s Algorithm. The
basic idea of Orchard’s algorithm is to quickly prune
non-nearest neighbors based on the triangular inequal-
ity. In the preprocessing stage the distance between
each two items in the dataset A is calculated. As shown
in Figure 2 left, given a query q, if the distance between
q and an item ai in dataset A is already known as d, then
those items in dataset A whose distance is larger than
2d to ai can be pruned. The distance between these
items and q is guaranteed to be larger than d which di-
rectly follows the triangular inequality. Therefore, none
of them can become the nearest neighbor of q.

Specifically, for every object ai ∈ A, Orchard’s
algorithm creates a list P [ai].pointer which contains
pointers to all other objects in A sorted by distance
to ai. I.e., the list stores the index, denoted as
P [ai].pointer[k]), of the kth nearest neighbor to ai

within dataset A, and the distance P [ai].dist[k] between
ai and this neighbor.

This simple array of lists is all that we require
for fast nearest neighbor search in A. The algorithm,

d

2d ?

q

a
j

d1

d2

a

qbest_so_far distance

bound

d

2d ?

q

a
i

d1

d2
b
j

a
nn

a
i

qbest_so_far distance

bound

Figure 2: Left) The triangular inequality is used in
Orchard’s Algorithm to prune the items in A that
cannot possibly to be the nearest neighbor of query
q. Right) Similarly the triangular inequality is used
in Augmented Orchard’s Algorithm to prune the items
in A that are certain to have a better best-so-far match
than the current query q.

Algorithm 2.2 Orchards(A, q)
1: nn.loc ← random integer between 1 and |A|
2: nn.dist ← Dist(ann.loc, q)
3: index ← 1
4: while P [ann.loc].dist[index] < 2 × nn.dist and

index < |A| do
5: node ← P [ann.loc].pointer[index]
6: d ← Dist(anode, q)
7: if d < nn.dist then
8: nn.dist ← d
9: nn.loc ← node

10: index ← 1
11: else
12: index ← index + 1
13: return nn

as outlined in Algorithm 2.2, begins by choosing some
random element in A as the tentative nearest neighbor
ann.loc, and calculating the distance nn.dist between the
query q and that object (lines 1 and 2). Thereafter, the
algorithm inspects the objects in list P [ann.loc].pointer
in ascending order until one of three things happen.
The end of the list is reached, or the next object on
the list has value that is more than twice the current
nn.dist (line 4). In either circumstance the algorithm
terminates. The third possibility is that the item in
the list is closer to the query than the current tentative
nearest neighbor (line 7). In that case the algorithm
simply jumps to the head of the list associated with
this new nearest neighbor to the query and continues
from there (lines 8 to 10).

We can see that a great advantage of this algorithm
is its simplicity; it can be implemented in a few dozen

lines of code. Another important advantage for our
purposes is its generality. The function Dist can be any
distance metric function. In contrast, most algorithms
use to index data in order to speed up joins explicitly
exploit properties that may not exist in all datasets. For
example they may require the data to be real valued
[5],[27] or may be unable to handle mixed data types.

Note that this algorithm finds the one nearest
neighbor to a query q. However, recall that we have a
data structure called mapping which records the nearest
item to each object in A that we have seen thus far.
So we need to adapt the classic Orchard’s algorithm
to update not only the nearest neighbor to q in A (if
appropriate) but all objects ai such that Dist(ai, q) <
mapping[i].dist. We consider a method to adapt the
algorithm in the next section.

2.1.2 Augmented Orchard’s Algorithm. The re-
sults from the previous section together with the map-
ping structure built for dataset A can be utilized into an
extended scheme for approximate joins, which exhibits
the properties of an anytime join algorithm too. We
term this scheme Augmented Orchard’s Algorithm (see
Algorithm 2.3).

The algorithm starts with an initialization step
(lines 1 to 4) during which the table of sorted neigh-
borhood lists P [ai] is computed. At this point all ele-
ments in A are also mapped to the first element in the
larger dataset B. To provide for the interruptability
property of anytime algorithms, we adopt a B-over-A
mapping between the elements of the two sets. The
approximate join proceeds as follows: Dataset B is se-
quentially scanned from the second element on, improv-
ing the best-so-far match for some of the elements in
dataset A. For this purpose, we first invoke the classic
Orchard’s algorithm which finds the nearest neighbor
ann.loc to the current query bj and also computes the
distance between them (i.e. nn.dist, line 6). If the
query improves on the best-so-far match of ann.loc, then
we update the element’s nearest neighbor as well as its
distance (lines 8 and 9).

In addition to improving the best match for ann.loc,
the query example bj may also turn out to be the best
neighbor observed up to this point for some of the other
elements in A. However, we do not need to check the
distances between all ai and the query bj . Instead, we
can use the pre-computed distance list P [ann.loc] and
once again apply the triangle inequality to prune many
of the distance computations. Concretely, we need to
compute the actual distance between bj and any ai ∈ A
only if the following holds: mapping[i].dist > |nn.dist−
Dist(ann.loc, ai)|. Figure 2 right gives the intuition
behind this pruning criterion. The ”distance bound”

Algorithm 2.3 AugmentOrchards(A,B)
1: for i ← 1 to |A| do
2: Build P [ai]
3: mapping[i].dist ← Dist(ai, b1)
4: mapping[i].pointer ← 1
5: for j ← 2 to |B| do
6: nn ← Orchards(A, bj)
7: if nn.dist < mapping[nn.loc].dist then
8: mapping[nn.loc].dist ← nn.dist
9: mapping[nn.loc].pointer ← j

10: for index ← 1 to |A| − 1 do
11: node ← P [ann.loc].pointer[index]
12: bound ← |nn.dist− P [ann.loc].dist[index]|
13: if mapping[node].dist > bound then
14: d ← Dist(anode, bj)
15: if d < mapping[node].dist then
16: mapping[node].dist ← d
17: mapping[node].pointer ← j
18: return mapping

represents the right term of the above inequality. If it is
larger or equal to the bound obtained with the best-so-
far query to ai, then the new query bj cannot improve
the current best match of ai. Note that all terms in
the inequality are already computed as demonstrated on
line 12 of the algorithm, so no distance computations are
performed for elements that fail the triangle inequality.
Finally, it is important to point out that a näıve
implementation of both Orchard’s algorithm and our
extension may attempt to compute the distance between
the query bj and the same element ai more than once, so
we keep a temporary structure that stores all elements
computed thus far and the corresponding distances for
each query bj . The memory overhead for bookkeeping
the structure is negligible and at the same time allows
us to avoid multiple redundant computations.

We conclude this section by sketching the intuition
behind the pruning performance of the Augmented
Orchard’s Algorithm. Choosing a vantage (center) point
is a common technique in many algorithms that utilize
the triangular inequality, such as [4], [18], [26], etc.
In all of these works one or more center points are
selected and the distance between them and all other
elements in the dataset are computed. These distances
are subsequently used together with the triangular
inequality to efficiently find the nearest neighbors for
incoming queries. As to what points constitute good
centers, i.e. centers with good pruning abilities, depends
on several factors [18], e.g. dataset distribution, position
of the centers among the other points, as well as the
position of the query in the given data space. The two
common strategies in selecting the centers are random

Log(Q/Max(Q))
BF_AoB
BF_BoA
Magic
AAAJ

Number of calls to Euclidean distance function

0 1 2 3 4 5 6 7 8 9 10

x 108

-14

-12

-10

0

AAAJ

Terminates

-2

-6

-4

-8

Figure 3: The log of Q as a function of the number of
calls to the Euclidean distance.

selection [4], [26] or selection based on some heuristic,
e.g. maximal remoteness from any possible cluster
center [18]. In the Augmented Orchard’s Algorithm we
follow a different approach. Namely, for every query
bj we select a different center point ann.loc. This is
possible as in the initialization step we have computed
all pairwise distances among the elements in A. The
algorithm also heavily relies on the fact that the P [ai]
lists are sorted in ascending order of pairwise distance.
The assumption is that bj may impact the best-so-far
match only for elements that are close to it, i.e. its
nearest neighbor ann.loc and the closest elements to that
neighbor which are the first elements in the P [ann.loc]
list. All remaining elements in this list are eventually
pruned by the triangular inequality on line 12 of the
algorithm.

3 Experiments and Case Studies.

In this section we consider examples of applications
of AAAJ for several diverse domains and applica-
tions. Note that in every case the experiments are
completely reproducible, the datasets may be found at
http://www.cs.ucr.edu/∼lexiangy/AAAJ/Dataset.html.

3.1 A Sanity Check on Random Walk Data. We
begin with a simple sanity check on synthetic data to
normalize our expectations. We constructed a dataset of
one thousand random walk time series to act as database
A, and one million random walk times to act as database
B. All time series are of length 128.

Figure 3 shows the rate at which the measure Q
decreases as a function of the number of Euclidean
distance comparisons made. Note that this figure does
include the setup time for AAAJ to build the index, but
this time is so small relative to the overall time that it
cannot be detected in the figure (It can just be seen in
Figure 5, where |B| is much smaller relative to |A|).

We can see that not only does AAAJ terminate 3
times faster than the other algorithms, but the rate at
which it minimizes the error is much greater, especially
in the beginning. This of course is the desirable

diminishing returns property for anytime algorithms.
Note in particular that the rate of error reduction for
AAAJ is very close to magic, which is the optimal
algorithm possible, given the assumptions stated for it.

3.2 Anytime Classification of Batched Data.
There has been recent interest in framing the classifi-
cation problem as an anytime algorithm [21], [25]. The
intuition is that in many cases we must classify data
without knowing in advance how much time we have
available. The AAAJ algorithm allows us to consider
an interesting variation of the problem which to our
knowledge has not been addressed before. Suppose that
instead of been given one instance to classify under un-
known computational resources we are given a collection
of unlabeled instances. In this circumstance we can triv-
ially use AAAJ as an anytime classifier.

Suppose we are given k objects to classify, and we
intend to classify them using the One Nearest Neigh-
bor (1NN) algorithm with training set B. However,
it is possible that we may be interrupted at any time
(Paper [21] discusses several real world application do-
mains where this may happen). In such a scenario it
would make little sense to use the classic brute force
algorithm in Algorithm 2.1 to classify the data. This
algorithm might perfectly classify the first 20% of the
k objects before interruption, but then its overall ac-
curacy, including the default rate on the 80% of the
data it could not get to in time, would be very poor.
Such a situation can arise in several circumstances, for
example robot location algorithms are often based on
classifying multiple “clues” about location and combin-
ing them into a single best guess, and robot navigation
algorithms are typically cast as anytime algorithms [9].

The Letter dataset has 26 class labels corresponding
to the letters from A to Z. The task here is to recognize
letters given 16 features extracted from image data.
There are a total of 20,000 objects in the dataset. We
decided on a 30-letter familiar phrase, and randomly
extracted 30 objects from the training set to spell that
phrase. We ran AAAJ with the 30 letters corresponding
to A, and the 19,970 letters remaining in the training
set corresponding to B. Table 1 shows a trace of the
classification results as the algorithm progresses.

After the first 30 distance comparisons (correspond-
ing to lines 1 to 4 of Algorithm 2.3), every letter in our
phrase points to the first letter of dataset B, which hap-
pens to be “T”. Thereafter, whenever an item in A is
joined with a new object in B, its class label is updated.
When the algorithm terminates after 305,794 distance
calculations, the target phrase is obvious in spite of one
misspelling (“HAND” instead of “BAND”). Note, how-
ever, that after the AAAJ algorithm has performed

Table 1: An abridged trace of the current classification
of the 30 characters of the stri ng “SGT PEPPERS LONELY
HEARTS CLUB BAND” vs. the number of distance calcu-
lations made

TTT TTTTTTT TTTTTT TTTTTT TTTT TTTT 30
TTT TTITTTT TTTTTT TTTTTT TTTT TTTT 436
TTT TTIITTT TTTTTT TTTTTT TTTT TTTT 437
...
...
...

...
...
...
...
...
...
...

...
...
...
...
...
...

...
...
...
...
...
...

...
...
...
...

...
...
...
...

...
SBT PSPPERS LONEOY REARTF CLUB BANG 21166
SBT PSPPERS LONEGY REARTF CLUB BANG *22350
SBT PSPPERS LONEGY REARTF CLUN BANG 23396
...
...
...

...
...
...
...
...
...
...

...
...
...
...
...
...

...
...
...
...
...
...

...
...
...
...

...
...
...
...

...
SGT PEPPERS LONELY HEARTZ CLUB HAND 182405
SGT PEPPERS LONELY HEARTS CLUB HAND 305794

0.2

0.4

0.6

0.8

1

0 2,000,000 4,000,000 6,000,000

Q/Max(Q)

0 2,000,000 4,000,000 6,000,000

Accuracy

BF_AoB
BF_BoA

Magic

AAAJ

Number of calls to Euclidean distance function Number of calls to Euclidean distance function

0.4

0.5

0.6

0.7

0.8

0.9

AAAJ

Terminates

AAAJ

Terminates

Figure 4: Left) The normalized value of Q as a function
of the number of calls to the Euclidean distance. Right)
The accuracy of classification, averaged over the 30
unknown letters, as a function of the number of calls
to the Euclidean distance.

just 7.3% of its calculations, its string “sbt psppers
lonegy reartf club bang” is close enough to the cor-
rect phrase to be autocorrected by Google, or to be
recognized by 9 out of 10 (western educated) profes-
sors at UCR. Figure 4 gives some intuition as to why
we can correctly identify the phrase after performing
only a small fraction of the calculations. We can see
that AAAJ behaves like an ideal anytime algorithms,
deriving the greatest changes in the early part of the
algorithms run.

In this experiment the improvement of AAAJ over
BF BoA is clear but not very large. AAAJ terminates
with 433,201 calculations (including the setup time for
the Orchard’s algorithms), but the other algorithms
only take 598,801. However, this is because the size of
A was a mere 30, as we shall see in the next experiment
the improvement becomes more significant for larger
datasets.

In Figure 5 we see the results of a similar experi-
ment, this time the data is star light curves (discussed

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 200,000 400,000 600,000

Q/Max(Q)

0 200,000 400,000 600,000

Accuracy

BF_AoB
BF_BoA

Magic

AAAJ

Number of calls to Euclidean distance function Number of calls to Euclidean distance function

Figure 5: Left) The normalized value of Q as a function
of the number of calls to the Euclidean distance. Right)
The accuracy of classification, averaged over the 1,000
star light curves, as a function of the number of calls to
the Euclidean distance.

in more detail in Section 3.4), with |A| = 500 and |B|
= 8,736. Each time series was of length 1,024.

At this scale it is difficult to see the advantage
of the proposed algorithm. However, consider this.
After performing 1,000,000 distance calculations the
AAAJ algorithm has reduced the normalized value
of Q to 0.1640. On the other hand, the BF BoA
algorithm must perform 4,342,001 distance calculations
to reduce the normalized Q to the same level. The
following observation is worth noting. While all 4
algorithms have identical classification accuracy when
they terminate (by definition), the accuracy of AAAJ is
actually slightly higher while it is only 80% completed.
This is not an error, it is simply the case that this
particular run happened to have a few mislabel objects
towards the end of dataset B, and those objects cause
several objects in A to be mislabeled.

3.3 Historical Manuscript Annotation. Recent
initiatives like the Million Book Project and Google
Print Library Project have already archived several
million books in digital format, and within a few years a
significant fraction of world’s books will be online [10].
While the majority of the data will naturally be text,
there will also be tens of millions of pages of images.
Consider as an example the lithograph of the “Day”
butterfly shown in Figure 6.

The image was published in 1658, therefore predat-
ing the binomial nomenclature of Linnaeus by almost
a century. So a modern reader cannot simply find the
butterfly species by looking it up on the web or reference
book2. However, the shape is well defined, and in spite
of being in black and white the author’s helpful notes
tell us that it is “for the most part yellowiSh, thoSe places
and parts excepted which are here blacked with inke”.

2There is a ”Day moth” (Apina callisto), however it looks
nothing like the insect in question.

Figure 6: Page 967 of ”The Theatre of Insects; or, Lesser
living Creatures...” [13], published in 1658, showing the
”Day” butterfly.

With a combination of information retrieval tech-
niques and human insight we can attempt to discover
the true identify of the species illustrated in the book.
Note that a query to Google image search for ”But-
terfly” returns approximately 4.73 million images (on
9/12/2007). A large fraction of these are not images of
butterflies, but of butterfly valves, swimmers doing the
butterfly stroke, greeting cards etc. Furthermore, of the
images actually depicting butterflies, many depict them
in complex scenes that are not amiable to state-of-the-
art segmentation algorithms. Nevertheless, a surprising
fraction of the images can be automatically segmented
with simple off the shelf tools (we use Matlab’s stan-
dard image processing tools with default parameters).
As illustrated in Figure 7, for those images which can
be segmented into a single shape, we can convert the
shapes into a one dimensional representation and com-
pare them to our image of interest [11].

While the above considers just one image, there are
many online collections of natural history which have
hundreds or thousands of such images to annotate. For
example, Albertus Seba’s 18th century masterwork [17]
has more than 500 drawings of butterflies and moths,
and there are at least twenty 17th and 18th century
works of similar magnitude (see [7], page 86 for a partial
list).

“Day Butterfly”

Eastern tiger swallowtail

(Papilio glaucus)

Figure 7: We can compare two shapes by converting
them to one-dimensional representations and using an
appropriate distance measure, in this case Dynamic
Time Warping.

We believe that annotating such collections is a
perfect application of AAAJ. We have a collection of
a few hundred objects, that we want to link to a subset
of a huge dataset (the images on the internet). An
exhaustive join is not tenable, nor is it needed. We don’t
need to find the exact nearest match to each butterfly,
just one that is near-enough to likely be the same or
related species.

Once we have a near-enough neighbor we can use
any meta tags or text surrounding the neighbor to an-
notate our unknown historical images. The basic frame-
work for annotation of historical manuscripts in this
way has been the subject of extensive study by several
groups, most notably at the University of Padova3 [1].
However, the work assumes unlimited computation re-
sources and a high degree of human intervention. Here
we attempt to show that AAAJ could allow real time
exploration of historical manuscripts. We can simply
point to an image and right-click and choose annotation-
search. At this point the user can provide some text
clues to seed the search. In this case we assume the
word ”butterfly” is provide to the system, which then

3The work at the University of Padova and related

projects consider mostly religious texts, in particular illuminated

manuscripts. We know of no other research effort that considers
historical scientific texts.

0 2 4 6 8 10 12 14 16
0.2

x 105

BF_AoB

BF_BoA

Magic

AAAJ

Q/Max(Q)

Number of calls to Euclidean distance function

1.0

0.4

0.6

0.8

Figure 8: The normalized value of Q as a function of
the number of calls to the Euclidean distance.

issues a Google image search.
While there are still some image processing and web

crawling issues to be resolved we consider this problem
an ideal one to test the utility of AAAJ, so we conducted
the following experiment.

Dataset A consists of 35 drawings of butterflies.
They are taken from manuscripts as old as 1783 and as
recent as 1968. In every case we know the correct species
label because it either appears in the text (in some
cases in German or French which we had translated
by bilingual entomologists) or because the entomologist
Dr. Agenor Mafra-Neto was able to unambiguously
identify it for us. Data B consist of 35 real photographs
of corresponding insects, plus 691 other images of
butterflies (including some duplicates of the above) plus
44,215 random shapes. The random shapes come from
combining all publicly available shape datasets, and
include images of fish, leafs, bones, fruit, chicken parts,
arrowheads, tools, algae, and trademark logos. Both
datasets are randomly shuffled.

While we used Dynamic Time Warping as the dis-
tance measure in Figure 7, it is increasingly understood
that for large datasets the amount of warping allowed
should be reduced [16], [19]. For large enough datasets
the amount of warping allowed should be zero, which is
simply the special case of Euclidean distance.

Figure 8 shows the rate of reduction of Q on the
butterfly dataset.

While we can see that the rate of error reduction is
very fast, it is difficult to get context for the utility of
AAAJ from this figure. Consider therefore Figure 9.
Here we show in the leftmost column the original
historical manuscripts (note that at this resolution they
are very difficult to differentiate from photographs).
After 10% of the eventual time had passed we took
a snapshot of the current nearest neighbors of A.
Figure 9 (center) shows the top eight, as measured by
mapping[i].dist. In the rightmost column we show the
final result (which is the same for all algorithms). It
is difficult to assign a metric to these results, since
precision/recall or accuracy cannot easily be modified

to give partial credit for discovering a related species (or
a mimic, or convergently evolved species). However, we
can intuitively see that much of the utility of conducting
this join is captured in the first 10% of the time.

3.4 Anytime Anomaly Detection. In certain do-
mains data observations come gradually over time and
are subsequently accumulated in large databases. In
some cases the input data rate may be very high or data
may come from multiple sources, which makes it hard
to guarantee the quality of the stored observations. Still
we may need to have some automatic way to efficiently
detect whether incoming observations are normal or rep-
resent severe outliers, with respect to the data already in
the database. A simple means to achieve this is to apply
the nearest neighbor rule and to find out whether there
is some similar observation stored so far. Depending on
the accumulated dataset size and the input rate, pro-
cessing all incoming observation in online manner with
the above simple procedure may still be intractable. At
the same time it is often undesirable and, as we demon-
strate below, unnecessary to wait for the whole process
to finish and then run offline some data cleaning proce-
dure. What we can use instead is an anytime method
that computes the approximate matches to small sub-
sets of elements in a batch mode, before the next subset
of observation has arrived. Below we demonstrate how
our AAAJ algorithm can help us with this.

As a concrete motivating example consider star
light curves, also known as variable stars. The American
Association of Variable Star Observers has a database of
over 10.5 million variable star brightness measurements
going back over ninety years. Over 400,000 new variable
star brightness measurements are added to the database
every year by over 700 observers from all over the world
[12], [15]. Many of the objects added to the database
have errors. The sources of these errors range from hu-
man error, to malfunctioning observational equipment,
to faults in punch card readers (for attempts to archive
decade old observations) [12]. An obvious way to check
for errors is to join the new tentative collection (A) to
the existing database (B). If any objects in A are un-
usually far from their nearest neighbor in B then we can
single them out for closer inspection. The only problem
with this idea is that a full join on the 10.5 million ob-
ject database takes much longer than a day. As we shall
see, doing this with AAAJ allows us to spot potentially
anomalous records much earlier.

For this experiment we use a collection of star light
curves donated by Dr. Pavlos Protopapas of Time Series
Center at Harvard’s Initiative for Innovative Comput-
ing. The dataset that we have obtained contains around
9,000 such light curves from different star classes. Each

Agrias

sardanapalus

Agrias

sardanapalus

Agrias beata

Troides amphrysus Troides amphrysus Troides magellanus

Papilio ulysses Papilio karna Papilio ulysses

Parides philoxenus Pachlioptera polyphontes Pachlioptera

polyeuctes

Papilio antimachus Heliconius melpomene Papilio antimachus

Papilio krishna Papilio karna

iruana

Papilio karna

iruana

Papilio demodocus Papilio bromius Graphium sarpedon

Papilio hesperus Papilio blumei Papilio ascalaphus

Dataset A 10% Time 100% Time

Figure 9: Left column) Eight sample images from the
dataset, a collection of butterfly images from histori-
cal manuscripts. Center column) The best matching
images after AAAJ has seen 10% of the data. Right
column) The best matching images after AAAJ has seen
all of the data.

200 400 600 800 1000

-2

0

2

4

6

200 400 600 800 1000

-2

0

2

4

6

200 400 600 800 1000

-2

0

2

4

6

200 400 600 800 1000

-2

0

2

4

6

(a) (b)

(c) (d)

Figure 10: Various light curve vectors in the dataset. (a)
and (b) are normal ones. And (c) and (d) are outliers.

example is a time series of size 1,024. Figure 10 shows
four different light curve shapes in the data. Suppose
that a domain expert considers as outliers examples
whose nearest neighbor distance is more than a prede-
fined threshold of t standard deviations away from the
average nearest neighbor distance [15]. For the light
curve data we set t = 5 standard deviations, which cap-
tures most of the anomalies as annotated by the expert
astronomers. Examples (c) and (d) in Figure 10, show
two such light curves, while (a) and (b) are less than
5 standard deviations from their nearest neighbors and
therefore are treated as normal.

Now assume that the light curve observations are
recorded in batch mode 100 at a time. We can apply
the AAAJ algorithm to every such set of incoming light
curves (representing dataset A in the algorithm) and
find its approximate match within the database (set
B) interrupting the procedure before the next subset of
light curves arrives. If the maximal approximate nearest
neighbor distance in A is more than the threshold of 5
standard deviations from the average nearest neighbor
distance, then before combining A with the rest of the
database we remove from it the outliers that fail the
threshold.

To demonstrate the above procedure we conduct
two experiments. In the first one dataset A consists of
100 randomly selected examples among the examples
annotated as normal. For the second experiment, we
replace one of the normal examples in A (selected at
random) with a known outlier. This outlier is not
believed to be a recording or transcription error, but
an unusual astronomical object. Figure 11 shows the

0 100,000 200,000 300,000 400,000

10

20

30

40

50

mean+std

mean

maximum

0 200,000 300,000 400,000

10

20

30

40

50

100,000

mean- std

Number of calls to Euclidean distance function

Statistics for the nearest neighbor distance of AAAJ

Figure 11: Average nearest neighbor distance with re-
spect to the performed Euclidean distance comparisons.
Top) A is composed only of normal elements. Bottom)
A contains one outlier.

improvement in the average nearest neighbor distance
in dataset A, again as a function of the performed
Euclidean distance computations. The maximal nearest
neighbor distance is also presented in the graphs. The
top graph corresponds to the experiment where dataset
A is composed only of normal elements, and the bottom
one is for the dataset with one outlier. The experiment
shows how efficiently the AAAJ algorithm can detect
the outliers. The average distance drops quickly after
performing only a limited number of computations.
After that the mean value stabilizes. At this point we
can interrupt the algorithm and compute the deviation
for each element in A. The elements that fail the
expert provided threshold t are likely to fail it had we
performed a full join too. In the second example we are
able with high confidence to isolate the outlier in only
a few thousand distance computations.

4 Conclusions and Future Work

In this work we have argued that for many data mining
problems an approximate join may be as useful as an
exhaustive join. Given the difficulty of figuring out
exactly “how approximate” is sufficient, we show that
we can cast joins as anytime algorithms, in order to use
as much computational resources as are available. We
demonstrated the utility of our ideas with experiments
on diverse domains and problems.

As we have shown for the domains considered we
can extract most of the benefit of a join after doing only
a small fraction of the work (the diminishing returns re-
quirement of [28]), and we can use internal statistics
(as in Section 3.4) to achieve the measurable quality re-

quirement [28]. The interruptability and preemptability
requirements are trivially true, we can stop the AAAJ
algorithm at anytime and we only need to save the rela-
tively tiny mapping data structure if we want to pick
up where we stopped at a later date. Finally, with
regards to Zilberstein and Russell’s requirements, the
monotonicity property is clearly observed in Figures 3,
4, 5, 8 and 11.

Future work includes extending Orchard’s algo-
rithm to non-metric measures and an enormously scaled
up version of the butterfly dataset which also considers
color and texture information.

Acknowledgements

We would like to thank all the donors of datasets. In
particular, Dr. Agenor Mafra-Neto for his entomologi-
cal assistance, and Dr. Pavlos Protopapas for his help
with the star light curve dataset.

References

[1] M. Agosti, N. Ferro and N. Orio, Annotations as a
Tool for Disclosing Hidden Relationships Between Il-
luminated Manuscripts, AI* IA 2007, Proc. of 10th
Congress of the Italian Association for Artificial In-
telligence. Artificial Intelligence and Human-Oriented
Computing , pp. 662–673, 2007.

[2] B. Arai, G. Das, D. Gunopulos, and N. Koudas,
Anytime measures for top-k algorithms, VLDB 2007,
Proc. of 33rd international onference on Very Large
Data Bases, pp. 225–237, 2007.

[3] C. Böhm and F. Krebs, High performance data mining
using the nearest neighbor join, ICDM 2002, Proc. of
2nd International Conference on Data Mining, pp. 43–
50, 2002.

[4] W. Burkhard and R. Keller, Some approaches to best-
match file searching, Communications of the ACM, 16
(1973), pp. 230–236.

[5] Y. Chen and J. M. Patel, Efficient evaluation of all-
nearest-neighbor queries, ICDE 2007, Proc. of IEEE
23rd International Conference on Data Engineering,
pp. 1056–1065, 2007.

[6] C. Elkan, Using the triangle inequality to accelerate k-
means, ICML 2003, Proc. of International Conference
on Machine Learning, 2003.

[7] P. Smart, The illustrated encyclopedia of the butterfly
world, in Salamander Books London, London, 1975.

[8] K. Fujisawa, S. Hayakawa, and T. Aoki, Real time
search for autonomous mobile robot using the frame-
work of anytime algorithm, AROB 4th’99, Proc. of 4th
Int Symp on Artificial Life and Robotics , pp. 291–296,
1999.

[9] J. Grass and S. Zilberstein, Anytime algorithm develop-
ment tools, ACM SIGART Bulletin, 7 (1996), pp. 20–27

[10] M. Herwig, Google’s total library:

putting the world’s books on the web,
http://www.spiegel.de/international/, 2007.

[11] E. Keogh, L. Wei, X. Xi, S. H. Lee, and M. Vlachos,
LB Keogh supports exact indexing of shapes under rota-
tion invariance with arbitrary representations and dis-
tance measures, VLDB 2006, Proc. of 32nd interna-
tional conference on Very Large Data Bases-Volume
32, pp. 882–893, 2006.

[12] K. H. Malatesta, S. J. Beck, G. Menali, and E. O.
Waagen, The AAVSO Data Validation Project, The
Journal of the American Association of Variable Star
Observers, 2006.

[13] T. Mouffet, The theater of insects., Volume 2, Da Capo
Press, New York, USA, 1958.

[14] M. T. Orchard, A fast nearest-neighbor search algo-
rithm, ICASSP’91, Proc. of International Conference
on Acoustics, Speech, and Signal Processing, pp. 2297–
2300, 1991.

[15] P. Protopapas, J. M. Giammarco, L. Faccioli, M. F.
Struble,and R. Dave, and C. Alcock, Finding outlier
light curves in catalogues of periodic variable stars,
Monthly Notices of the Royal Astronomical Society,
369 (2006), pp. 677–696.

[16] C. A. Ratanamahatana, and E. Keogh, Three myths
about dynamic time warping data mining, SDM’05,
Proc. of SIAM International Conference on Data Min-
ing, 2005.

[17] A. Seba, Locupletissimi rerum naturalium thesauri
accurata descriptio Naaukeurige beschryving van het
schatryke kabinet der voornaamste seldzaamheden der
natuur, Amsterdam, 4 vols. 394 B pp. 26–29, vol.3,
1734-1765.

[18] M. Shapiro, The choice of reference points in best-
match file searching, Communications of the ACM, 20
(1977), pp. 339–343.

[19] Y. Shi, and T. Mitchell, and Z. Bar-Joseph, Inferring
pairwise regulatory relationships from multiple time
series datasets, Bioinformatic, 23 (2007), Oxford Univ
Press, pp. 755–763, 2007.

[20] A. Srivastava, Personal Communication, 2007.
[21] K. Ueno, X. Xi, E. Keogh, and D. J. Lee, Anytime Clas-

sification Using the Nearest Neighbor Algorithm with
Applications to Stream Mining, ICDM 2006, Proc. of
6th International Conference on Data Mining, pp. 623–
632, 2006.

[22] L. Wei, E. Keogh, and X. Xi, A Saxually explicit
images: finding unusual shapes, ICDM 2006, Proc. of
6th International Conference on Data Mining, pp. 18–
22, 2006.

[23] X. Xi, E. Keogh, C. Shelton, L. Wei, and C. A.
Ratanamahatana, Fast time series classification using
numerosity reduction, ICML 2006, Proc. of 23rd in-
ternational conference on Machine learning, pp. 1033–
1040, 2006.

[24] C. Xia, H. Lu, B. C. Ooi, and J. Hu, GORDER: An
Efficient Method for KNN Join Processing, VLDB04,
Proc. of 30th International Conference on Very Large
Data Bases, pp. 756–767, 2004.

[25] Y. Yang, G. Webb, K. Korb, and K. M. Ting, Clas-
sifying under computational resource constraints: any-
time classification using probabilistic estimators, Ma-
chine Learning, 69 (2007),pp. 35–53.

[26] P. N. Yianilos, Data structures and algorithms for near-
est neighbor search in general metric spaces, SODA’93,
Proc. of the 4th annual ACM-SIAM Symposium on
Discrete algorithms, pp. 311–321, 1993.

[27] J. Zhang, N. Mamoulis, D. Papadias and Y. Tao,
All-nearest-neighbors queries in spatial databases, SS-
DBM 2004, Proceedings. 16th International Confer-
ence on Scientific and Statistical Database Manage-
ment, pp. 297–306, 2004.

[28] S. Zilberstein and S. Russell, Approximate reasoning
using anytime algorithms, Imprecise and Approximate
Computation, Kluwer Academic Publishers, 11 (1995).

