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ABSTRACT OF THE DISSERTATION

Learning from Time Series in the Presence of Noise: Unsupervised and Semi-Supervised
Approaches

by

Dragomir Dimitrov Yankov

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2008

Dr. Eamonn Keogh, Chairperson

Characteristic for most real-world data mining tasks are the availability of a large num-

ber of unlabeled examples and the large rates of noise obliterating the similarity patterns.

We study datasets with such characteristics collected across a wealth of domains - web

search queries, celestial systems, anthropological artifacts, surveillance footages, etc. Di-

verse as they are, data from these domains turn out to have intuitive time series represen-

tation. As a major theme herein we advocate the belief that the time series representation

is versatile enough to allow for accurate learning in the presence of noise, and when there

are few or no labeled examples available. This is further achieved without compromising

on the efficiency and the scalability of the problems at hand.
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For certain applications the noisy patterns themselves can be of particular interest -

anomalous trajectories, surprising web queries, erroneously recorded light-curves - identi-

fying them, and drawing the domain expert’s attention to them, often leads to unexpected

discoveries. The early chapters of the thesis introduce the time series discords as a notion

of “interesting” outliers in the high dimensional representation space. We develop an effec-

tive and highly efficient discord detection algorithm, which used in a parallel fashion can

handle hundreds of millions of examples in only a few hours. We then turn our attention

to the question of how to decouple the noise from the structured signal within the data.

The problem can be especially hard when the time series are embedded within complex,

non-convex topological spaces. Local manifold reconstruction techniques, such as Isomap

and Locally Linear Embedding, easily fail in the realistic settings of noise. An extension of

the Isomap algorithm is thus derived, that remedies the effect of noise and learns more ac-

curately the data embedding subspaces. As a more principled approach, we further develop

a dual treatment of the time series manifold reconstruction problem. It computes a global

density estimate of the data, which is then regularized locally through the help of multiple

factor analyzer models. This results into smoothly reconstructed time series manifolds, un-

biased by the effect of the noisy examples. Cast within a semi-supervised framework, our

method achieves similar accuracy and several orders of magnitude speed-up over the state

of the art transductive learning approaches.
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Chapter 1

Introduction

1.1 Data mining in the presence of noise

A combination of pure machine learning theory and hands-on data driven practices, data

mining has already shaped as a life changing science for humanity. In medicine, for ex-

ample, lethal illnesses are being detected by exploring relations with early observable pre-

conditions; in environmentology, patterns between human activities and their impact on

the environment are studied to help preserve a greener planet; while in a much evolved

information technology world, daily queries from 20% of the Earth’s population are mean-

ingfully answered through the help of search engines. These, and many more, form a broad

spectrum of vital problems, the study and the resolution of which has been largely attributed

to data mining.
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The two arguably most distinguishing properties of all problems targeted by data min-

ing are the vast amounts of data that they require to be handled, and the non-deterministic,

yet ultimately sufficient, nature of their answers. In contrast, machine learning is concerned

with the theoretical aspects that can help explain more accurately the data and the hidden

dependencies within, while the question of how to make the derived tools practical is often

assumed to be outside of its scope. On the other hand, traditional database systems deal

with large volumes of data, but the queries they answer are marked by the determinism

of the underlying relational algebra. This, while important for a large number of practi-

cal tasks, turns out to be inadequate when more subtle dependencies need to be explored.

Consider questions of the like - “What are the most relevant web documents that contain

the term ‘curved manifolds’?”, “Is a mail legitimate or a spam?”, “How typical is the per-

formance of a stock on the market?”, etc. Approaching these questions requires studying

distribution patterns, performing approximations, resolving ambiguities etc.

Confronted with queries that involve probabilistic treatment of the data, we need suit-

able tools that can derive accurate answers. The notion of suitable here goes beyond the

ability to overcome the scale of the data, but also into the ability to deal with some intrinsic

for most real-world datasets characteristics, such as sparsity within some regions or ran-

domness within certain examples. These characteristics play vital role in the current work.

It is the examples, sampled from the sparse regions of the dataspace or with significant

fraction of randomness added to them, that are the focus of our discussion. Such examples

2



are referred to in the literature, and also in the current text, as pattern noise or simply as

noise [18, 83].

In many applications, the noisy examples can poise the learning process and obscure

the fact that certain patterns of similarity exists in the data. We study instances of those in

Chapter 3 and Chapter 4 of the text. For example, the collection of excavated projectiles

demonstrated in these chapters, contains many exemplars which have deteriorated over

time, deviating from their original shape. Yet, there are others within the collection that

form important distinctive groups of arrowheads, indicative for the evolution of certain cul-

tures. For other applications, the noisy patterns themselves can be of particular interest -

anomalous trajectories, surprising web queries, erroneously recorded light curves - identi-

fying them, and drawing the domain expert’s attention to them, often leads to unexpected

discoveries. Examples of such interesting deviating patterns will be the problem of study

in Chapter 2 of the thesis.

Through the rest of the text we demonstrate how we can develop a set of data mining

approaches, that can efficiently identify the spurious patterns, or can robustly decouple the

pattern noise from the actual signal.
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1.2 Detecting time series patterns: unsupervised and semi-

supervised approaches

In defining tools that scale well and discriminate accurately the noisy examples from the

structured data, we find the choice of data representation to be a central one. Compact rep-

resentations attract with easier interpretability and computational efficiency. Often, how-

ever, a compact representation will crudely approximate the data at hand, and hence will

be a bad compromise of effectiveness, especially in the presence of noise. A restraining

drawback of using complex representations, on the other hand, is that they are memory

demanding and computationally inefficient.

As a major theme herein, we advocate the belief that time series are the one ubiquitous

representation to target all of the above concerns. Through a wealth of examples, in the

chapters to come we demonstrate that time series can be expressive enough to allow accu-

rate discrimination, even when high rates of noise obliterate the structured patterns. Sur-

prisingly though, for the high dimensional representation that they comprise, time series

still remain genuinely intuitive and lead to easily interpretable results. Extremely efficient

methods are also to be derived proving the positive impact of the representation on the scale

of the problems that can be tackled through it.

We start the treatment of the time series pattern recognition problem with the formal

definition to be utilized through the rest of this work:
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Definition 1.2.1. A time series T = t1, . . . , tm, is defined as an ordered set of scalar or

multivariate observations ti, measured at equal intervals in time.

Time series are known to have virtually no alternatives as representation technique

across datasets, such as stock market prices or medical (e.g. EEG or ECG) recordings.

There is, however, a large number of other, not so intuitive but equally important domains,

in which highly descriptive time series representations arise. Celestial systems, anthropo-

logical artifacts, surveillance footages, etc. - all of them turn out to have accurate time

series description (see Figure 1.11).

Figure 1.1: Time series representation for different domains. Top left: shapes converted to time
series by mapping contour points to observations; right: web queries represented through their
search frequencies during one year. Bottom left: Variable star systems (Cepheids and Eclipsing
Binaries) expressed through the magnitude of their brightness during one cycle; right: Facial images
represented as time series by replacing every pixel with its greyscale intensity.

1The first astronomical image shows spiral galaxy NGC 4603 with pulsating Cepheid variables. Image
source: the European homepage for the NASA/ESA Hubble space telescope, www.spacetelescope.org
The second astronomical image is an X-ray image of Eclipsing binaries Sirius A and B from the Chandra
X-ray Observatory. Image source: Marshall Space Flight Center NASA, www.msfc.nasa.gov
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The suitable representation, however, is only one side of the coin when system effec-

tiveness is concerned. The other side is selecting a similarity (i.e. distance) measure, that

can accurately exploit the information encoded in the representation. For most of the al-

gorithms presented here we will specifically focus on a set of measures known under the

common name of Lp-norms, and defined as:

Lp(T,Q) =
( m∑

i=1

|ti − qi|p
)1/p

(1.1)

As a special case, we will extensively consider one of these norms, the L2-norm, more

widely known as the Euclidean distance:

L2(T,Q) =
( m∑

i=1

|ti − qi|2
)1/2

(1.2)

The Euclidean distance has been demonstrated to be one of the most accurate distance

measures for time series pattern recognition [52]. Similarity searches under this measure

also turn out to be extremely efficient, which is due to the fact that it satisfies a set of

conditions defining it further as metric. This will be discussed, and subsequently utilized,

in Chapter 3 of the thesis.

For many of the applications that are studied, the number of observations m within

a time series is going to be significantly high, e.g. in orders of thousands, which partly

explains the effectiveness of the selected representation. Definition 1.2.1, however, also
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points out another key difference between any arbitrary high dimensional vector and a time

series. Namely, the ordering of the observations within the latter. While all of the presented

here algorithms can be equally efficient when applied for any high dimensional represen-

tation, the ordering requirement turns out to be important when effectiveness is concerned.

What this requirement states is that there are dependencies between neighboring observa-

tion. This fact, while not explored by the Euclidean distance, is the primarily reason for the

often more accurate performance of distance measures that can account for certain amount

of warping within the time series. A similarity measure that does this, for example, is the

Dynamic Time Warping (DTW) [76]. If we denote the length of the time series with a

subscript, i.e. Ti = t1, . . . , ti, then the DTW distance can be formalized recursively as:

DTW (Tm, Qn) = L2(tm, qn) + min



DTW (Tm−1, Qn)

DTW (Tm, Qn−1)

DTW (Tm−1, Qn−1)

(1.3)

Both the Euclidean and the DTW distance will be discussed in more detail further in the

text, noting the cases when the derived methods can be applied with either of them. In

Chapter 3 we will also introduce a derivative distance measure of the Euclidean distance,

that proves to be more accurate for rotation invariant similarity comparisons of shapes when

represented as time series. Similarity queries utilizing Gaussian kernels will also be studied

while discussing the density estimation techniques in Chapter 4.
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We now turn our attention to an important question that will dominate this work, i.e.:

given the representation and the similarity measure, is there any structure in the subspace

occupied by the data? Knowledge about the structural properties can help us find out, for

example, whether a web query pattern deviates abnormally from the rest of the web queries,

or how many distinctive groups of species populate certain habitat. If such structure is

unveiled without additional human intervention, but solely based on the representation and

the data placement in space, we then say that we have performed unsupervised learning

from the time series examples [37, 51, 53, 54].

Often unsupervised time series methods are sufficient to infer the generating distribu-

tions. In the presence of high noise rates, however, additional supervision might still be

required, despite of the expressiveness of the time series representation and the accuracy of

the similarity measure. Partially labeled examples for instance have been shown to improve

time series nearest neighbor learners [102], to allow the inference of better clusterings [98],

or to help rebuild more accurately the nonlinear subspaces that are occupied by the high

dimensional patterns [12]. Here we demonstrate that our unsupervised methods for time

series learning in the presence of noise, can also benefit from even small amounts of labeled

data, converting them essentially into semi-supervised approaches. These semi-supervised

approaches will allow us to identify new, class dependent outliers, or to build more robust

time series clustering techniques.
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1.2.1 Detecting outliers in terabyte-sized datasets

In the early sections of the thesis we start an exploration of a method capable of detecting

interesting examples, which appear to be severe outliers within the time series datasets. The

definition of the “most significant time series discord” is introduced as a notion of the out-

lier that is furthest away from all other examples. In Figure 1.2, for instance, the time series

that appear to be the two most deviating examples are the ones derived from shapes A and

E. Here A corresponds to a reptile that is of a more distant genotype compared to the rest

of the species (cf. Chapter 3). Its presence in the database might lead to a surprising dis-

covery, such as the finding that certain species populate uncharacteristic for their genotype

habitat. Note, that while there is not much randomness added to its representation, we still

consider it as a noisy example as it was obviously produced by some randomly interfering

process populating with examples sparser regions of the space. Time series E, on the other

hand, is obviously extracted erroneously, with noise added to the actual representation. A

domain expert should be made aware of it, so that they could correct it or remove it from

the database not to bias any further analysis. In both cases, detecting A and E proves to be

a data mining task of major significance.

While the dataset from Figure 1.2 contains only 5 data points, one can easily iden-

tify domains where discords need to be detected among much larger amounts of data -

astronomers look for celestial anomalies among tens of millions of star-light curves [66],

while daily web logs of search companies comprise multi-terabyte datasets. We therefore
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Figure 1.2: Left: Time series representation of five reptile skulls. Right: Illustrative PCA projec-
tion: outliers within the time series space can help us detect unexpected examples in the dataset,
such as shape A representing a different type of species, or identify noisy shapes, such as shape E
which has been extracted erroneously.

provide in Chapter 2 a discord detection algorithm that scales in reasonable time beyond

any dataset attempted so far in the literature. The algorithm can be applied for an arbi-

trary similarity measure and consumes only a modest amount of memory resources. It is

generally studied as an unsupervised method, which only utilizes the pairwise element sim-

ilarities, as well as the underlying distance distributions. With element class information,

however, it is demonstrated to be easily extendable into a semi-supervised approach that is

able to identify discords specific for particular classes. Straightforward extensions of the

method, such as parallelization will also be discussed further in the text.

The discord detection algorithm, presented in Chapter 2, is intended primarily as a tech-

nique for mining global outliers, i.e. examples which emerge as outliers when a global view

of the entire data is assumed. As argued before, smaller amounts of randomness (noise) are

also a common artifact in real-world data. Accumulated noise causes multiple examples to
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locally deviate from their original prototype. The end result is a much polluted dataset and

subsequently impeded learning process. The question of how to deal with the many noisy

examples has therefore motivated many learning and data mining approaches [18, 83]. It

becomes even more important when data are embedded within non-convex subsets of the

original space. Identifying clusters or class belongings for such noisy non-convex sub-

spaces turns out to be a significant challenge. We thus focus our attention in Chapter 3

at methods that can reconstruct the embedding subspace, and subsequently utilize it in a

number of data mining tasks.

1.2.2 Time series manifold reconstruction

Informally [60] specifies topological manifolds, or simply manifolds, as “curves and sur-

faces that might be of a higher dimension”. A more formal definition in [60] states that

the space X is an n dimensional manifold if for every point of it there is a neighborhood

homeomorphic to Euclidean space in Rn. This implies that there is some structure within

the neighborhood of every point within the space. In general, we will be interested in

structures that are of intrinsically lower dimensionality, than the original high dimensional

space, in which they are embedded.

Manifold reconstruction has been of surging interest in machine learning. The reasons

for that are twofold. Knowing that a dataset is of intrinsically lower dimensionality, allows

for applying different indexing techniques and more tractable computationally algorithms.

Furthermore, in analogy to the accurate priors in Bayesian learning, knowing the proper
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structure of the data always relates to improved learning accuracies. Now the main point

that remains to be answered is probably best summarized in [12], where the authors write

“It is far from clear why the space of documents should be a manifold. However there

is no doubt that it has a complicated intrinsic structure and occupies only a tiny portion

of the representation space”. For many types of datasets, and time series in particular, a

similar question stands open - do they occupy a lower dimensional embedding in the high

dimensional space, and if so, what can this be attributed to? For a number of domains, such

as time series produced by dynamical systems, the answer is known to be positive [104].

In Chapter 3, we surprisingly observe that manifold structures also appear in the space

defined by a special type of pseudo time series - i.e. time series extracted from shapes of

objects. Figure 1.3, demonstrates that a set of diatoms, a type of unicellular plants, can

be represented with shape time series, which using a particular dimensionality reduction

technique form a nearly smooth one dimensional manifold.

We attribute this to the fact, that the original image data follow the manifolds repre-

senting certain geometric transformations, with rotations in particular. Due to the specific

pseudo time series representation, the effect of these transformations is preserved in the

time series space too. Interestingly enough, a manifold structure is present even when a

rotation invariant distance measure is defined over this space. In the text to come we show

that this rotational measure exhibits metric properties, which helps us derive an extremely

efficient algorithm for reconstructing the shape manifolds invariantly to any present rota-
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Figure 1.3: Time series extracted from diatom shapes form almost smooth one dimensional man-
ifolds using b-Isomap embedding of degree one (cf. Chapter 3). Identifying the individual classes
within the manifold, however, is hard without accounting for the possibility of rotations.

tions. The reconstructed manifolds are then used to infer clustering of the shape space, that

is considerably more accurate than the one obtained with traditional clustering techniques,

such as mixtures of Gaussians.

Again, while learning from shape manifolds, as a significant challenge emerges the ef-

fect of the noise. It originates from the lower quality that some of the images may have.

For example, many of the microscope diatom images are blurred, which causes edge de-

tection techniques to degrade and to outline some rough, even inaccurate, object contours.

The obscured examples are then seen as widely spread Gaussian noise distributed along the

main trajectory of the manifold. Manifold reconstruction techniques, such as Isomap [93]

and Locally Linear Embedding (LLE) [79], are known to be highly unstable for such noisy
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manifolds [9]. We thus derive an improved Isomap method capable of isolating the noisy

examples and of following closely the true trajectory of the manifolds. Chapter 3 also

demonstrates how the unsupervised shape manifold reconstruction can be extended into

a semi-supervised clustering approach. Using a sample of labeled data an ensemble of

algorithms is presented that infers more accurate clustering for a wide range of noise rates.

1.2.3 Constraining the time series manifold structures

The problems targeted in Chapter 2 and Chapter 3 achieve two complementary results.

The former identifies individual severe outliers, as they might capture important anomalies

within the data. This is achieved without building a global model, but only by studying the

neighborhoods of the individual examples. The latter chapter, on the other hand, focuses on

the good examples and derives methods that can filter out the noise to improve the learning

process. It also builds a model for the entire dataset - a manifold structure that embeds

the observable data. Still this model simply connects multiple local views into a global

structure, i.e. it builds a neighborhood graph or a minimum spanning tree. A drawback

of this method is that it requires additional supervision in determining how the local views

should be mutually embedded: within the geodesic structure of the neighborhood graph

or within the branches of the minimum spanning tree. In Chapter 4 we overcome this

problem building a model capable of inferring structure without additional supervision. A

novel approach is presented that combines a global view of the data with multiple local

views capable of modeling even large rates of Gaussian distributed noise around the main
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Figure 1.4: PCA projection of a set of light-curve time series (cf. Chapter 4). Left: density
estimation methods alone (e.g. one-class SVM) are unable to smoothly reconstruct the occupied
subspace. Right: Adding a local prospective (e.g. constraints from an inferred mixture of factor
analyzers model) smooths the boundaries of the learned manifolds.

trajectory of the manifold. With the term “global view” here, we refer to one common

density support that is met across the entire data space as illustrated in Figure 1.4.

The density support is estimated using the so called one-class support vector ma-

chines [82, 85]. It computes a global decision functions which outlines contours around

the dense regions in the space. The density estimation method, however, cannot recognize

whether the dense regions are part of an interesting manifold structure, or simply spurious

noisy spots. To facilitate this, a local approach of the data comes into play. We build a

mixture of factor analyzers - Gaussian like models that can capture noise of different vari-

ance along individual dimensions [43]. The analyzers make local decisions of which points

constitute noisy examples and do not conform with the rest of the data within a neighbor-

hood. These decisions are then used to regularize the decision function of one-class support
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vector machines. Through this approach spurious formations become easy to isolate and a

cleaner global structure is revealed (see Figure 1.4 right).

Manifold reconstruction is not the only unsupervised task that can benefit of the dual

view of the data. One-class classification extends naturally into a clustering scheme [14],

called support vector clustering (SVC). One-class SVM possesses all nice theoretical prop-

erties attributed to kernel machines for supervised learning, such as provable bounds on

the complexity of the induced decision function and conformance with one of the founding

principle of the statistical learning theory, namely - the structural risk minimization which

guarantees the good generalization properties of the method [94]. Regardless of this its

extension, the SVC method, is not very attractive as a generic clustering approach, because

it fails to provide for a good control over how many and what clusters are being identified.

In Chapter 4 we demonstrate that our improved one-class SVM algorithm remedies this

effect, and turns SVC into a robust clustering algorithm. Equally important is the effect

of our method on the efficiency of one of the most popular semi-supervised learning tech-

niques - the transductive support vector machines. Generally considered impractical when

more than a few thousand unlabeled examples are available [50], we demonstrate how our

constraint support vector clustering can scale them to efficiently handle several orders of

magnitude lager unlabeled datasets.
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1.3 Contributions

We can summarize the main contributions of the thesis as follows:

• We introduce the most efficient time series outlier detection algorithm known thus

far in the field of data mining. The algorithm is demonstrated with unprecedented

in the literature terabyte-sized datasets. It is shown to be also extremely accurate,

detecting the essential outliers within tens of millions of examples in just a few hours

on a single computer. Additional supervision in the form of class labels adapts the

method for detecting important class dependent outliers.

• We demonstrate a highly efficient approach for accurately computing the similarities

between two-dimensional shapes using a time series representation. A rotationally

invariant distance measure is introduced, for which metric properties are proven. This

allows us to perform rotationally invariant shape similarity searches many orders of

magnitude faster, than the strawman brute force techniques.

• We present an improvement of the Isomap approach that overcomes its instability in

the presence of noise, making the algorithm applicable beyond the instructive scholar

datasets in the literature, but for real-world data mining applications instead. With the

use of a limited number of labels the method is extended into an ensemble procedure

for robustly reconstructing the manifold structure of the datasets regardless of the

rates of noise that obliterate them.
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• Finally, we derive a regularization technique that smooths the density estimate of

one-class support vector machines. Combining local and global views of the data,

our method correctly reconstruct the manifolds that embed the sample space even in

the presence of noise. This also allows for deriving a practically useful clustering

algorithm, generalizing the one-class SVM method. In a semi-supervised setting, we

further show that our method can introduce several orders of magnitude speed-up

in the performance of transductive support vector machines, making them applica-

ble for datasets that contain hundreds of thousands of unlabeled examples without

sacrificing in the achievable accuracy.

This thesis generalizes our own work presented in the following publications [109, 110,

113, 114].

18



Chapter 2

Disk Aware Discord Discovery: Finding

Unusual Time Series in Terabyte Sized

Datasets

The chapter discusses the problem of detecting largely deviating time series. These are

time series that are either corrupted with large rates of additive noise or are generated by

a randomly interfering process that populates with examples otherwise sparse parts of the

representation space. In both cases we treat the examples as excessively noisy.

The problem of finding such unusual time series has recently attracted much attention,

and several promising methods are now in the literature. However, virtually all proposed

methods assume that the data reside in main memory. For many real-world problems this
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is not be the case. For example, in astronomy, multi-terabyte time series datasets are the

norm. Most current algorithms faced with data which cannot fit in main memory resort to

multiple scans of the disk/tape and are thus intractable. Here we show how one particular

definition of unusual time series, the time series discord, can be discovered with a disk

aware algorithm. The proposed algorithm is exact and requires only two linear scans of the

disk with a tiny buffer of main memory. Furthermore, it is very simple to implement. We

use the algorithm to provide further evidence of the effectiveness of the discord definition

in areas as diverse as astronomy, web query mining, video surveillance, etc., and show

the efficiency of our method on datasets which are many orders of magnitude larger than

anything else attempted in the literature.

2.1 Introduction

The problem of finding unusual (abnormal, novel, deviant, anomalous) time series has re-

cently attracted much attention. Areas that commonly explore such unusual time series

are, for example, fault diagnostics, intrusion detection, and data cleansing. There, how-

ever, are other more uncommon yet interesting applications too. For example, a recent

paper suggests that finding unusual time series in financial datasets could be used to allow

diversification of an investment portfolio, which in turn is essential for reducing portfolio

volatility [100].
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Despite its importance, the detection of unusual time series remains relatively unstud-

ied when data reside on external storage. Most existing approaches demonstrate efficient

detection of anomalous examples, assuming that the time series at hand can fit in main

memory. However, for many applications this is not be the case. For example, multi-

terabyte time series datasets are the norm in astronomy [66], while the daily volume of

web queries logged by search engines is even larger. Confronted with data of such scale

current algorithms resort to numerous scans of the external media and are thus intractable.

In this chapter, we present an effective and efficient disk aware algorithm for mining un-

usual time series. The algorithm is exact and requires only two linear scans of the disk with

a tiny buffer of main memory. Furthermore, it is simple to implement and does not require

tuning of multiple unintuitive parameters. The introduced method is used to provide fur-

ther evidence of the utility of one particular definition of unusual time series, namely, the

time series discords. The effectiveness of the discord definition is demonstrated for areas

as diverse as astronomy, web query mining, video surveillance, etc. Finally, we show the

efficiency of the proposed algorithm on datasets which are many orders of magnitude larger

than anything else attempted in the literature. In particular we show that our algorithm can

tackle multi-gigabyte datasets containing tens of millions of time series in just a few hours.
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2.2 Related work and background

The time series discord definition was introduced in [54]. Since then, it has attracted con-

siderable interest and follow-up work. For example, [32] provide independent confirma-

tion of the utility of discords for discovering abnormal heartbeats, in [5] the authors apply

discord discovery to electricity consumption data, and in [103] the authors modify the def-

inition slightly to discover unusual shapes.

However, all discord discovery algorithms, and indeed virtually all algorithms for dis-

covering unusual time series under any definition, assume that the entire dataset can be

loaded in main memory. While main memory size has been rapidly increasing, it has not

kept pace with our ability to collect and store data.

There are only a handful of works in the literature that have addressed anomaly de-

tection in datasets of anything like the scale considered in this work. In [33] the authors

consider an astronomical dataset taken from the Sloan Digital Sky Survey, with 111,456

records and 68 variables. They find anomalies by building a Bayesian network and then

looking for objects with a low log-likelihood. Because the dimensionality is relatively small

and they only used 10,000 out of the 111,456 records to build the model, all items could

be placed in main memory. They report 3 hours of CPU time (with a 400MHz machine).

For the secondary storage case they would also require at least two scans, one to build the

model, and one to create anomaly scores. In addition, this approach requires the setting of
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many parameters, including choices for discretization of real variables, a maximum number

of iterations for EM (a sub-routine), the number of mixture components, etc.

In a sequence of papers Otey and colleagues [44] introduce a series of algorithms for

mining distance based outliers. Their approach has many advantages, including the ability

to handle both real-valued and discrete data. Furthermore, like our approach, their approach

also requires only two passes over the data, one to build a model and one to find the outliers.

However, it also requires significant CPU time, being linear in the size of the dataset but

quadratic in the dimensionality of the examples. For instance, for two million objects with a

dimensionality of 128 they report needing 12.5 hours of CPU time (on a 2.4GHz machine).

In contrast, we can handle a dataset of size two million objects with dimensionality 512 in

less than an hour, most of which is I/O time.

Distance based outliers are also the problem of study in Knorr et al. [58] and Tao et

al. [91]. Both works discuss a quadratic (in the dataset size) nested loop algorithm for out-

lier detection and subsequently suggest ways for its improvement. Knorr et al. [58] propose

an algorithm that performs three scans through the database and also requires significant

amount of main memory. The algorithm further uses a partitioning scheme, whose per-

formance deteriorates in higher dimensions. Tao and colleagues sample the data space to

build a set of partitions which they later use to prune non-outlier examples. They explic-

itly require that the distance function used be a metric, but for time series data non-metric

functions have been demonstrated to be often superior [106]. The method again is intended
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for a lower dimensional datasets and is demonstrated to require two linear scans of the data

base.

Another method that scales to large disk resident datasets, requiring only two linear

scans of the disk, was recently proposed by Angiulli and colleagues [8]. An extension

of the method for online detection of distance based outliers from streaming data [7] has

also been presented by the same authors. To perform faster range queries, the algorithm

again builds an index in main memory, based on the concept of pivot points. Apart of the

already pointed problems of degrading efficiency in higher dimensions and the requirement

of metric distance function, using pivots for indexing poses additional challenges too. For

example, selecting good pivot points might itself require to first detect a set of outliers.

This is so, because as Shapiro [86] suggests good pivots tend to be points that are far from

any dense region in the data.

The problem of outliers detection in higher dimensional spaces was target in an influ-

ential paper by Jagadish et al. [48]. They propose to find unusual time series (which they

call deviants) with a dynamic programming approach. Again this method is quadratic in

the length of the time series, and thus it is only demonstrated on kilobyte sized datasets.

The discord introducing work [54] suggests a fast heuristic technique (termed HOT-

SAX) for pruning quickly the data space and focusing only on the potential discords. The

authors obtain a lower dimensional representation for the time series at hand and then build

a trie in main memory to index these lower dimensional sequences. A drawback of the
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approach is that choosing a very small dimensionality size results in a large number of dis-

cord candidates, which makes the algorithm essentially quadratic, while choosing a more

accurate representation increases the index structure exponentially. The datasets used in

that evaluation are also assumed to fit in main memory.

In order to discover discords in massive datasets we must design special purpose algo-

rithms. The main memory algorithms achieve speed-up in a variety of ways, but all require

random access to the data. Random access and linear search have essentially the same time

requirements in main memory, but on disk resident datasets, random access is expensive

and should be avoided where possible. As a general rule of thumb in the database commu-

nity it is said that random access to just 10% of a disk resident dataset takes about the same

time as a linear search over the entire data. In fact, recent studies suggest that this gap is

widening. For example, [78] notes that the internal data rate of IBM’s hard disks improved

from about 4 MB/sec to more than 60 MB/sec. In the same time period, the positioning

time only improved from about 18 msec to 9 msec. This implies that sequential disk access

has become about 15 times faster, while random access has only improved by a factor of

two.

Given the above, efficient algorithms for disk resident datasets should strive to do only

a few sequential scans of the data.
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2.3 Notation

We now utilize Definition 1.2.1, which formalizes a time series as a sequence of m evenly

spaced ordered observations. When m is very large, looking at the time series as a whole

does not reveal much useful information. Instead, one might be more interested in subse-

quences C = tp, . . . , tp+n−1 of T with length n << m (here p is an arbitrary position, such

that 1 ≤ p ≤ m− n + 1).

Working with time series databases there are usually two scenarios in which the exam-

ples in the database might have been generated. In one of them the time series are generated

from short distinct events, e.g. a set of astronomical observations (see Section 2.6.1). In the

second scenario, the database simply consists of all possible subsequences extracted from

the time series of a long ongoing process, e.g. the yearly recordings of a meteorological

sensor. Knowing whether the database is populated with subsequences of the same process

is essential when performing pattern recognition tasks. The reason for this is that two sub-

sequences C and M extracted from close positions p1 and p2 are very likely to be similar

to one another. This might falsely lead to a conclusion that the subsequence C is not a rare

example in the database. In these cases, when p1 and p2 are not “significantly” different,

the subsequences C and M are called trivial matches [31]. The positions p1 and p2 are sig-

nificantly different with respect to a distance function Dist, if there exists a subsequence

Q starting at position p3, such that p1 < p3 < p2 and Dist(C, M) < Dist(C, Q).
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With the above notation in hand, we can now present the formal definition of time series

discords:

Definition 2.3.1. Time Series Discord: Given a database S, the time series C ∈ S is called

the most significant discord in S if the distance to its nearest neighbor (or its nearest non-

trivial match in case of subsequence databases) is largest. I.e. for an arbitrary time series

M ∈ S the following holds: min(Dist(C, Q)) ≥ min(Dist(M, P )), where Q,P ∈ S (and

Q,P are non-trivial matches of C and M in case of subsequence databases).

Similarly, one could define the second-most significant or higher order discords in the

database. To capture the case of a small group of examples in the space that are close to

each other but far from all other examples, we might want to generalize Definition 2.3.1 so

that the distance to the k-th instead of the first nearest neighbor is considered:

Definition 2.3.2. Kth Time Series Discord: Given a database S, the time series C ∈ S is

called the most significant k-th discord in S if the distance to its k-th nearest neighbor (or

its k-th nearest non-trivial match in case of subsequence databases) is largest.

The generalized view of discords (Definition 2.3.2) is equivalent to another notion of un-

usual time series that is frequently encountered in the literature, i.e. the distance based out-

liers [58]. The definition can be generalized further to compute the average distance to all

k nearest neighbors, which is in fact the non-parametric density estimation approach [87].

The algorithm proposed in the next sections can easily be adapted with any of these outlier
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definitions. We use Definition 2.3.1 because of its intuitive interpretation. Our choice is

further justified by the effectiveness of the discord definition demonstrated in Section 2.6.1.

Unless otherwise specified we will use as a distance measure the Euclidean distance (cf.

equation (1.2)), still the derived algorithm can be utilized with any distance function which

may not necessarily be a metric, such as the dynamic time warping (equation (1.3)) or the

uniform scaling distance [112]. In computing Dist(C, M) we expect that the arguments

have been normalized to have mean zero and a standard deviation of one. Throughout

the empirical evaluation of the chapter we assume that all subsequences are stored in the

database in the above normalized form. This requirement is imposed so that the nearest

neighbor search is invariant to transformations, such as shifting or scaling [52].

2.4 Finding discords in secondary storage

So far we have introduced the notion of time series discords, which is the focus of the

current chapter. Here, we are going to present an efficient algorithm for detecting the top

discords in a dataset. Firstly, the simpler problem of detecting what we call range discords

is addressed, i.e. given a range r the presented method efficiently finds all discords at

distance at least r from their nearest neighbor. As providing r may require some domain

knowledge, the next section will demonstrate a sampling procedure that will solve the more

general problem of detecting the top dataset discords without knowing the range parameter.
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The discussion is limited to the case where the database S contains |S| separate time

series of length n. If instead the database is populated with subsequences from a long

time series the fundamental algorithm remains unchanged, with some additional minor

bookkeeping to discount trivial matches.

2.4.1 Discord refinement phase

The range discord detection algorithm has two phases: a candidate selection phase (phase1),

and a discord refinement phase (phase2). For clarity of exposition we first outline the sec-

ond phase of the algorithm.

The discord refinement phase accepts as an input a subset C ⊂ S (built in phase1),

which is assumed to contain all discords Cj at distance C.distj ≥ r from their nearest

neighbor in S, and possibly some other time series from S. If this is case, then the following

simple algorithm can be used to prune the set C to retain only the true discords with respect

to the range r:

Although all discords are assumed to be in C, prior to starting Algorithm1 it is unknown

which items in C are true discords, and what their actual discord distances are. Initially, all

these distance are set to infinity (line 2). The above algorithm simply scans the disk resident

database, comparing the list of candidates to each item on disk. The actual distance is com-

puted with an optimized procedure which uses an upper bound for early termination [54]

(line 9). For example, in the case of Euclidean distance, the EarlyAbandon procedure will

stop the summation Dist(Si, Cj) =
∑n

k=1

√
(sik − cjk)2 if it reaches k = p, such that
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Algorithm 1 Discord Refinement Phase
procedure [C, C.dist]=DC Refinement(S, C, r)
in: S: disk resident dataset of time series

C: discord candidates set
r: discord defining range

out: C: list of discords
C.dist: list of NN distances to the discords

1: for j = 1 to |C| do
2: C.distj = ∞
3: end for
4: for ∀Si ∈ S do
5: for ∀Cj ∈ C do
6: if Si == Cj then
7: continue
8: end if
9: d = EarlyAbandon(Si, Cj, C.distj)

10: if (d < r) then
11: C = C \ Cj

12: C.dist = C.dist \ C.distj
13: else
14: C.distj = min(C.distj, d)
15: end if
16: end for
17: end for

1 ≤ p ≤ n for which
∑p

k=1(sik − cik)
2 ≥ C.dist2j . If this happens then the new item Si

obviously cannot improve on the current nearest neighbor distance C.distj , and thus the

summation may be abandoned.

Based on the distance calculations, for each Si there are three situations:

1. The distance between the discord candidate in C and the item on disk is greater than

the current value of C.distj . If this is true we do nothing.
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2. The distance between the discord candidate in C and the item on disk is less that r.

If this happens it means that the discord candidate can not be a discord, it is a false

positive. We can permanently remove it from the set C (line 11 and line 12).

3. The distance between the discord candidate in C and the item on disk is less than the

current value of C.distj (but still greater than r, otherwise we would have removed

it). If this is true we simply update the current distance to the nearest neighbor

(line 14).

It is straightforward to see that upon completion of Algorithm1 the subset C contains

only the true discords at range at least r, and that no such discord has been deleted from

C, provided that it has already been in it. The time complexity for the algorithm depends

critically on the size of the subset size |C|. In the pathological case where |C| = |S|, it

becomes a brute force search, quadratic in the size |S|. Obviously, such candidate set could

be produced if the range parameter r is equal to 0. If, however, the candidate set C contains

just one item, the algorithm becomes essentially a linear scan over the disk for the nearest

neighbor to that one item. A very interesting observation is that if the candidate set C

contains two or three items instead of one, this will most likely not change the time for the

algorithm to run. This is so, because for a very small |C| the CPU required calculations will

execute faster than the disk reading operations, and thus the running time for the algorithm

is just the time taken for a linear scan of the disk data. To summarize, the efficiency of

Algorithm1 depends on the two critical assumptions that:
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1. For a given value of r, we can efficiently build a set C which contains all the discords

with a discord distance greater than or equal to r. This set may also contain some

non-discords, but the number of these “false positives” must be relatively small.

2. We can provide a “good” value for r which allows us to do ‘1’ above. If we choose

too low of a value, then the size of set C will be very large, and our algorithm will

become slow, and even worse, the set C might no longer fit in main memory. In

contrast, if we choose too large a value for r, we may discover that after running the

algorithm above the set C is empty. This will be the correct result; there are simply

no discords with a distance of that value. However, we probably wanted to find a

handful of discords.

2.4.2 Candidates selection phase

In this section we address the first of the above assumptions, i.e. given a threshold r we

present an efficient algorithm for building a compact set C with a small number of false

positives. A formal description of this candidate selection phase is given as Algorithm2.

The algorithm performs one linear scan through the database and for each time series Si

it validates the possibility for the candidates already in C to be discords (line 5). If a can-

didate fails the validation, then it is removed from this set. In the end, the new Si is either

added to the candidates list (line 11), if it is likely to be a discord, or it is omitted. To show

the correctness of this procedure, and hence of the overall discord detection algorithm, we
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Algorithm 2 Candidates Selection Phase
procedure [C]=DC Selection(S, r)
in: S: disk resident dataset of time series

r: discord defining range
out: C: list of discord candidates

1: C = {S1}
2: for i = 2 to |S| do
3: isCandidate = true
4: for ∀Cj ∈ C do
5: if (Dist(Si, Cj) < r) then
6: C = C \ Cj

7: isCandidate = false
8: end if
9: end for

10: if (isCandidate) then
11: C = C ∪ Si

12: end if
13: end for

first point out an observation that holds for an arbitrary distance function:

Proposition 2.4.1. Global Invariant. Let Si be a time series in the dataset S and dsi
be the

distance from Si to its nearest neighbor in S. For any subset C ⊂ S the distance dci
from

Si to its nearest neighbor in C is larger or equal to dsi
, i.e. dci

≥ dsi
.

Indeed, if the nearest neighbor of Si is part of C then dsi
= dci

. Otherwise, as C does not

contain elements outside of S, the distance dci
should be larger than dsi

.

Using the above global invariant, we can now easily justify the following proposition:

Proposition 2.4.2. Upon completion of Algorithm2, the candidates list C contains all dis-

cords Si at distance dsi
≥ r from their nearest neighbors in S.

Proof. Let Si be a discord at distance dsi
≥ r from its nearest neighbor in S. From the
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global invariant it follows that the distance dci
from Si to its nearest neighbor in C is larger

or equal to dsi
. Therefore, the condition on line 5 of the algorithm will never be satisfied

for Si and hence it will be added to the candidates list (line 11).

Proposition 2.4.2 together with the analysis presented for the refinement phase demonstrate

the overall correctness of the algorithm. More formally, the following proposition holds:

Proposition 2.4.3. Correctness. The candidates selection and the refinement steps detect

the discords and only the discords at distance dsi
≥ r from their nearest neighbor in S.

The time complexity of the presented discord detection algorithm is upper-bounded by the

time necessary to scan the database twice plus the time necessary to perform all distance

computations, which has complexity O(f=max(|C|)|S|). In the experimental evaluation

we will demonstrate that, for a good choice of the range parameter, the function f is essen-

tially linear in the database size |S|.

2.5 Finding a good range parameter

The range discord detection algorithm presented in the previous section is deterministic in

the sense suggested by Proposition 2.4.3, i.e. it finishes by either identifying all discords

at range r, or by returning an empty set which indicates that no elements have the required

property. Providing a good value for the threshold parameter, however, may not be very

intuitive. Furthermore, it may also be the case that the users would like to detect the top

k discords regardless of the distance to their neighbors. In those cases, specifying a large
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threshold will result in an empty set, while a very small range parameter may have high

time and space complexity. With this in mind, a reasonable strategy to detect the top k

discords would be to start with a “relatively large” r and if in the end |C| < k, to restart

the algorithm with a smaller parameter. Such iterative restarts will increase the number of

database scans, yet we argue that with a sampling procedure we can obtain a good estimate

for r that decreases the probability of having multiple scans of the database. We further

provide a way to reevaluate the range parameter, so that if a second run of the algorithm is

required, the new value of r with high probability will lead to a solution.

A good estimate for the range parameter can easily be obtained by studying the nearest

neighbor distance distribution (nndd) of the dataset, and more precisely the number of

elements that fall in its tail. Computing the nndd, however, is hard, especially in high

dimensional spaces as is the case with time series [16, 90]. The available methods require

that random portions of the space are sampled and the nearest neighbor distances in those

portions to be computed. Unfortunately, for a robust estimate, this requires scanning the

entire database once, regardless of whether an index is available, and also involves some

extensive computations [90]. Another drawback of this approach is that the nndd is also

dependent on the number of elements in the data, which means that if new sequences are

added to the dataset the whole evaluation procedure should be performed again. Consider

for example the graphs in Figure 2.1.
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Figure 2.1: Points sampled from the same normal distribution produce different nearest neighbor
distance distributions. The mean and the volume of the tail cut by r decrease with adding more data.

Both graphs show the nndd for a normally distributed two dimensional dataset S ∈

N (0, 1). Graph A represents the probability density function when |S| = 103, while graph

B shows the function when |S| = 104. Intuitively, the mean of the distribution shifts

to zero as new points are added, because for larger percentage of the points their nearest

neighbors are likely to be found in close proximity to them. For infinite tail data distribu-

tions though (as the normal), increasing the sample size also increases the chance of having

elements sampled from its tail. These elements will be outliers and are likely to be far from

the other examples. Therefore, their nearest neighbor distances will fall in the tail of the

corresponding distance distribution too.

Using the above intuition, rather than sampling from the distance distribution, we per-

form the less expensive sampling from the data distribution and compute the nndd of this

sample. The exact steps of the sampling procedure are:
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1. Select a uniformly random sample S ′ from S. In the evaluation, for datasets of size

|S| ≥ 106 we choose |S ′| = 104. For the smaller datasets we use |S ′| = 103.

2. If the user requires that k discords are detected in their data, then using a fast memory

based discord detection method (e.g. [103]) detect the top k discords in S ′. Order

the nearest neighbor distances di, i = 1..k for these discords in S ′. I.e. we have

d1 ≥ d2 ≥ . . . ≥ dk.

3. Set r = dk.

Note that S ′ is an unbiased sample from the data and it can be used if new examples

generated by the same underlying process are added to the database. This means that we

do not need to run the sampling procedure every time that the dataset is updated.

It is relatively easy to see that the above procedure is unlikely to overflow the available

memory, regardless of the data distribution. To demonstrate this, consider for example the

case when |S| = 106 and |S ′| = 104. The probability that none of the top 103 discords fall

in S ′ is p̂ =
(
106−103

104

)
/
(
106

104

)
, which using Stirling’s approximation gives p̂ ∼ e−10. This

implies that S ′ almost certainly contains one of the top 103 discords. If that discord is Si,

from the global invariant in Section 2.4.2 it follows that its nearest neighbor distance ds′i
in

S ′ is larger or equal to its nearest neighbor distance dsi
in S. But we also have that d1 ≥ ds′i

,

which leads to d1 ≥ dsi
. This means that if we set r to d1 (or equivalently to dk, for small k),

it is very likely that r will be larger than the nearest neighbor distance of the 103-th discord

in S. As will be demonstrated in the experimental evaluation, the majority of the time
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series that are not discords and enter C during the candidate selection phase get removed

from the list very quickly which restricts its maximum size to at most several orders of

magnitude the size of the final discord set. Therefore, for the above example the maximum

amount of memory required will be linear in the amount of memory necessary to store 103

time series. Slightly relaxed, but still reasonable, upper bounds can be demonstrated even

when S contains an order of 108 examples.

The more challenging case is the one when at the end of the discord detection algorithm

we have |C| < k. In this situation we will need to restart the whole algorithm, yet this time

a better estimate for the threshold r can be computed, so that no other restarts are necessary.

For the purpose, prior to running the algorithm, a second sample S ′′ of size 100 is drawn

uniformly at random from S ′. During the candidates selection phase, for every element

Si in the database, apart of updating the candidates list C, we also update the nearest

neighbor distances S ′′.distq, q = 1..100. As the size of S ′′ is relatively small, this will not

increase significantly the computational time of the overall algorithm. At the same time,

the list S ′′.dist will now contain an unbiased estimate of the true nearest neighbor distance

distribution. Selecting a threshold r′ = maxq=1..100(S
′′.distq) will lead to C having on

average 1% of the examples. Finally, if k is much smaller than 1% the size of S, but still

larger than the size |C| obtained for the initial parameter r, we might further consider an

intermediate value r′′, such that r′ < r′′ < r and one that will increase sufficiently the

initial size |C|.
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2.6 Experimental evaluation

In this section we conduct two kinds of experiments. Although the utility of discords has

been noted before, e.g. in [5, 32, 40, 54, 103], we first provide additional examples of its

usefulness for areas where large time series databases are traditionally encountered. Then

we empirically demonstrate the scalability of our algorithm.

2.6.1 The utility of time series discords

Star light-curve dataset

Globally there are myriads of telescopes covering the entire sky and constantly recording

massive amounts of valuable astronomical data. Having humans to supervise all observa-

tions is practically impossible [66].

The goal for this evaluation is to see to what extent the notion of discords, as specified in

Definition 2.3.1, agrees with the notion of astronomical anomalies as suggested by methods

used in the field. The data used in the evaluation are light-curve time series from the

Optical Gravitational Lensing Experiment [1]. A light-curve is a real-valued time series of

light magnitude measurements. The series are derived from telescopic images of the night

sky taken over time. Astronomers identify each star in the image and convert the star’s

manifestation of light into a light magnitude measurement. The set of measurements from

all images for a given star results in a light-curve. The light-curves that we obtained for

this study are pre-processed (containing a uniform number of points) by domain experts.
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The entire dataset contains 9236 light-curves of length 1024 points. The curves are pro-

duced by three classes of star objects: Eclipsed Binaries - EB (2580 examples); Cepheids -

Ceph (1329), and RR Lyrae variables - RRL (5326) (see Figure 2.2). Both Ceph and RRL

stars have very similar pulsing pattern which explains the similarity in their light-curve

shape.

Figure 2.2: Typical examples from the three classes of lightcurves: Left) Eclipsed Binary, Right
Top) Cepheid, Bottom) RR Lyrae.

Having information about all or part of the labels, can convert the presented in this

chapter unsupervised method into an effective and efficient supervised or semi-supervised

outlier detection approach. To evaluate its application as such, in the following experiment

we assume all labels are available. We now compare our method with an outlier detection

technique developed by domain experts. More precisely, for each of the three classes we

also compute the ranking of their examples for being anomalous based on the results of

the first method presented in [75]. This gives us, for instance, for the topmost anomaly in

every class the ranking 0, the second anomaly has ranking 1, and so on. The method is an

O(n2) algorithm that exhaustively computes the similarity (via cross correlation) between
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each pair of light-curves. The anomaly score for each light-curve is simply the weighted

average of its n− 1 similarity scores.

We then compute the top ten discords in each of the three classes and compare them

with the top ten anomalies inferred with the above ranking. The sampling procedure de-

scribed in Section 2.5 is performed with a set S ′ of size 103 elements and the threshold r

is selected so that at least ten elements from each class fall in the tail of the distance dis-

tribution computed on S ′ (we obtained r = 6.22 using Euclidean distance). Running the

discord finding algorithm produces a discord set C of size 1161. Figure 2.3 shows several

examples of the most significant discords in each class.

Figure 2.3: Top light-curve discords in each class. For each time series on the top right corner are
indicated its discord rank : anomaly rank.

One of the top ten EB discords is also among the top ten EB anomalies, three of the top

ten RRL discords are among the top ten RRL anomalies and six of the CEPH discords are

among the corresponding anomalies. The poor consensus between the one nearest neighbor

discords and the anomalies for the EB class results from the fact that the Euclidean distance
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does not account well for the small amount of warping that is present between the two

magnitude spikes. Substituting the Euclidean distance with a phase invariant or a dynamic

time warping distance function may improve on this problem. For the other two classes

the discord definition is more consistent with the expert opinion on the outliers. Even for

elements where they disagree significantly, the discord algorithm still returns some intuitive

results. For example, the second most significant RRL discord (see Figure 2.3, bottom

right) deviates greatly from the expected RRL shape.

Web queries dataset

Another domain where large scale time series datasets are observed daily are the search

engines query logs. For example, we studied a dataset consisting of MSN web queries

made in 2002. A casual inspection reveals that most web query logs seem to fall into a

handful of patterns. Most have a “background” periodicity of seven days, which reflects the

fact that many people only have access to the web during the workweek. This background

weekly pattern is sometimes augmented by seasonal effects or bursts due to news stories.

The two curves labeled “Stock Market” and “Germany” in Figure 2.4 are such examples.

Another common type of pattern we call the anticipated burst; it consists of a gradual build

up, a climax and a fall off. This is commonly seen for seasonally related items (“Easter”,

“Tour de France”, “Hanukkah”) and for movie releases as in “Spiderman” and “Star Wars”.

Also common is the unanticipated burst, which is seen after an unexpected event, such

as the death of a celebrity. This pattern is characterized by a near instantaneous burst,
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Figure 2.4: Some examples of typical patterns in web query logs in 2002. Most patterns are domi-
nated by a weekly cycle, as in “stock market” or “Germany”, with seasonal deviations and bursts in
response to news stories. The anticipated burst is seen for movie releases such as “Spiderman/Star
Wars”, or for seasonal events.

followed by a tapering off. Given that both anticipated and unanticipated bursts can happen

at any point in the year, we use phase invariant Euclidian distance as discord distance

measure. The number one discord is shown in Figure 2.5.

Figure 2.5: The number one discord in the web query log dataset is “Full Moon”. The first full
moon of 2002 occurred on January 28th at 22:50 GMT. The periodicity of the subsequent spikes is
about 29.5 days, which is the length of the synodic month.

This discord makes perfect sense with a little hindsight. Unlike weather or cultural

events which are intrinsically local, the phases of the moon are perhaps the only changing

phenomena that all human beings can observe. While some other queries have a weak

periodicity corresponding to calendar months, this query has a strong periodicity of 29.5

days, corresponds to the synodic month.
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Population growth dataset

We can further demonstrate the utility of discords by examining datasets for which we need

external sources of knowledge to evaluate findings. We examined a dataset of population

growth rates of 206 countries covering 1965 to 2005. We wanted to know the most dramatic

5-year events in this dataset, so we queried the data for the top 5-year discords. Figure 2.6

shows the top two such discords, together with some other representative counties (Ar-

gentina, Belgium, Cameroon, Canada, Honduras, Hong Kong, Iceland, India, Indonesia,

Ireland) for contrast.

Figure 2.6: The top two 5-year discords discovered in a growth rate database covering 206 counties
over 40 years. Ten other counties are shown for contrast (thin lines).

The dramatic differences shown by the discords have intuitive and poignant explana-

tions [2]. The extreme drop in population is clearly understood, but why is it followed in

both cases by a spike in growth rate? We conjecture that this corresponds to refugees that
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fled during the worst of the crises later returning to their homelands. Note that in this case

the brute force algorithm would be fast enough to produce these results in reasonable time.

Trajectory dataset

We obtained two trajectory datasets used in [69] and [74] respectively, which have been

purposefully created to test anomaly detection in video sequences. The time series are two

dimensional (comprised of the x and y coordinates for each data point), and are further nor-

malized to have the same length. In both datasets several deliberately anomalous sequences

are created to have a ground truth. The datasets contain 156 [69] and 239 [74] trajectories,

with 4 and 2 annotated anomalous sequences respectively. Figure 2.7 shows the number

one discord (2D version of the Euclidean distance has been used) found in the dataset of

[69]. It is one of the labeled anomalies too.

Figure 2.7: Left) The number one discord found in a trajectory data (bold line) with 50 trajectories.
It is difficult to see why the discord is singled out unless we cluster all the non-discord trajectories
and compare the discord to the clustered sets. Right) When the discord is shown with the clustered
trajectories, its unusual behavior becomes apparent (just one cluster is shown here).

On both datasets the discord definition achieves perfect accuracy, as do the original

authors. Since all the data can easily fit in main memory our algorithm takes much less
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than one second. We do not compare efficiency directly with the original works, but note

that [69] requires building a SOM, which are generally noted for being lethargic, while [74]

is faster, requiring O(m log(m)n) time, with m being the number of time series and n their

dimensionality. Neither algorithm considers the secondary storage case.

Throughout this text we have omitted discussion of determining when a discord is truly

anomalous/unusual. We plan to address this issue in a separate work. However, in Fig-

ure 2.8 we hint at one possible line of research. The Pokrajac video surveillance dataset

[69] is created with two anomalous trajectories (sequences 225 and 237). If we run our

algorithm to discover the top sixteen discords, we find that the top two have significantly

greater discord distances than all the rest.

Figure 2.8: The discord distances for the planted anomalies differ notably from the discord dis-
tances of the rest 14 top discords. The fact can be used to evaluate the significance of the detected
discords.

2.6.2 Scalability of the discord algorithm

We test the scalability of the method on a large heterogeneous dataset of real-world time

series and on three synthetically generated datasets of size up to a third of a terabyte. Two

aspects of the algorithm were the focus of this evaluation. Firstly, whether the threshold
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selection criterion from Section 2.5 can be justified empirically (at least for certain underly-

ing distributions) for data of such scale. Secondly, we were interested on how efficient our

algorithm is, provided that a good threshold is selected. For both, the synthetic and the real

time series datasets, the data are organized in pages of size 104 examples each. All pages

are stored in text format on an external Seagate FreeAgent hard drive of size 0.5Tb with

7200 RPM and a USB2.0 connection to a computer using Pentium D 3.0 GHz processor.

Our implementation of the algorithm loads one page for 5.6 secs.: 0.4 secs. for reading the

data and 5.2 secs. for parsing the text matrices. The algorithm was coded in Java.

Random walk dataset

We generated three datasets with random walk time series. The datasets contain 106, 107

and 108 examples respectively. The length of the time series is set to 512 points. Addition-

ally, six non-random walk time series are planted in each of the datasets (see Figure 2.9).

Figure 2.9: Planted non-random walk time series with their nearest neighbors. The top two time
series are among the top discords, the bottom two time series fail the range threshold. |S| = 106.
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To compute the threshold a sample of size |S ′| = 104 is used. We set the threshold

to the nearest neighbor distance of the tenth discord, hoping to detect some of the planted

anomalies among the top ten discords in the entire datasets. Thus it was obtained r = 21.45.

The time series in the three datasets come from the same distribution and therefore, as

mentioned in Section 2.5, the same sample S ′ (and hence the same threshold r) can be used

for all of them. Note that this threshold selection procedure requires less than a minute.

After the discord detection algorithm finishes, the set C contains 24 discords for the dataset

of size 106, 40 discords for the dataset of size 107 and 41 discords for the dataset of size

108. The running time for the three cases is summarized in Table 2.1.

Table 2.1: Randomwalk dataset. Time efficiency of the algorithm.
Examples Disk Size I/O time Total time
1 million 3.57Gb 19min 28min

10 million 35.7Gb 3h 12min 5h 43min
100 million 0.35Tb 31h 18min 66h 17min

In all cases the list C contains the required number of 10 discords, so no restart is

necessary. From the planted time series three are among the top 10 discords and for the

other three a random walk nearest neighbor is found that is relatively close (see Figure 2.9

for examples). This does not decrease the utility of the discord definition, and is expected

as the random walk time series exhibit some extreme properties with respect to the discord

detection task, i.e. they cover almost the entire data space that can be occupied by all

possible time series of the specified length.
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Figure 2.10: Randomwalk dataset (|S| = 106). Number of examples in C after processing each
of the 100 pages during the two phases of the algorithm. The method remains stable even if we
select a slightly different threshold r during the sampling procedure.

We further note, that the time necessary to find the nearest neighbor for an arbitrary

example is 8.5 minutes for the dataset of size one million and approximately 18 hours for

the dataset of size 100 million. This means that our algorithm detects the most significant

discords in less than four times the time necessary to find the nearest neighbor of a single

example only.

Figure 2.10 demonstrates the size |C| after processing each database page. The graphs

also show how the size varies when changing the threshold. The plots demonstrate that

with a 2% − 5% change in its values we still detect the required 10 discords with just two

scans, while the maximum memory and the running time do not increase drastically. It

is interesting to note how quickly the memory drops after the refinement step is initiated.

This implies that most of the non-discord elements in the candidates list get eliminated after

scanning just a few pages of the database. From this point on the algorithm performs a very

limited number of computation to update the nearest neighbor distances for the remaining

candidates in C. Similar behavior was observed throughout all datasets studied.
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Heterogeneous dataset

Finally we check the efficiency of the discord detection algorithm on a large dataset of

real-world time series coming from a mixture of distributions. To generate such dataset we

combined three datasets each of size 4x105 (1.2 million elements in total). The time series

have length of 140 points. The three datasets are: motion capture data, EEG recordings of

a rat, and meteorological data from the Tropical Atmosphere Ocean project (TAO) [3].

Table 2.2: Heterogeneous dataset. Time efficiency of the algorithm.
Examples Disk Size Time(Phase1) Time(Phase2)

1.2 mill. 1.17Gb 8min. 45secs. 9min. 15secs.

Table 2.2 lists the running time of the algorithm on the heterogeneous dataset. Again we

are looking for the top 10 discords in the dataset. On the sample the threshold is estimated

as r = 12.86. After the candidate selection phase the set C contains 690 elements, and at

the end of the refinement phase there are 59 elements that meet the threshold r. No restarts

of the algorithm were necessary for this dataset either. The discords detected are mostly

from the TAO class as its time series exhibit much larger variability compared to the time

series for the other two classes.

Parallelization of the discord detection algorithm

Recently there has been an emerging interest in scaling some of the best off-the-shelf ma-

chine learning algorithms, through the means of parallelization across grids of multiple

computers. A limited number of works target the parallel outlier detection problem too.
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For example, Hung et al. [46] introduce a parallel version of the quadratic nested loop

algorithm for distance based outliers, discussed in [58]. Lozano et al. [65] propose two

algorithms for parallel mining of distance and density based outliers. The distance based

algorithm is a parallel modification of Bay’s randomized nested loop algorithm [10], and

the density based version is a modification of the popular local outlier factor (LOF) al-

gorithm [22]. Both parallel variants proceed in a similar fashion: First the data space is

partitioned across different computers and outliers, local for each computer, are identified.

Subsequently, the results from all computers are merged within a ‘master process’ and a

global anomaly score is assigned to each outlier.

A common problem with many parallel data mining approaches is that they require

implementing specific distributed architectures, as well as distributed indexing structures.

The technical overhead of this prohibits the adoption of these methods across the global

data mining community. Recently, however, an intuitive yet extremely scalable framework

for parallel data mining has emerged, namely the MapReduce framework [34]. MapReduce

is quickly turning into a parallel data mining standard and is already adopted by large

companies, such as Google, Yahoo! and Microsoft. The framework operates in two steps.

All examples in the data that can be part of the final solution are first mapped to some

corresponding keys. Then a user specified function is called to reduce the key-value pairs

to a set that contains only the final answer.
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We conclude the efficiency and scalability evaluation of our algorithm by demonstrating

that both of its phases can easily fit into the MapReduce framework, where the overhead of

the parallelization remains relatively small and a nearly linear (in the number of machines

used) speed-up is achieved.

Figure 2.11: Parallelization of the disk aware discord detection algorithm with m computers.

For the experiments, we assume that the input dataset S is split evenly across m com-

puters as shown in Figure 2.11. The candidate selection phase of the discord detection

algorithm is then run simultaneously on all computers with input parameters S = Si and

the same threshold parameter r, producing m distinct candidate sets Ci. This concludes

the mapping function of the first phase, and the reducing function then simply combines

all candidate sets into one C =
⋃

i=1..m Ci. Note that when constructing Ci we use only

the data from Si, which means that it might introduce to the union C examples that would

be pruned, had we used a single computer that scans the entire dataset S. Therefore, the

combined candidate set C for m computers is actually larger than the one that would be
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obtained with one computer and below we show the overhead introduced by this increased

candidate set size. What is essential at this point, though, is the fact that Proposition 2.4.2

remains valid, i.e. no false dismissals are introduced by the parallel modification of the

candidate selection phase.

Once the union operation is performed, the combined candidate set C is distributed

to all computers and the candidate refinement phase is run simultaneously on all of them

with input parameters S = Si, C, and r. This can again be represented by a mapping

function that produces refined sets Ci, i = 1..m. We now make the observation that the

true discords, and only the true discords, with respect to the range parameter r and the

entire dataset S, will be present in every refined set Ci. Hence, the final result requires

that we reduce the refined candidates Ci by performing an intersect among all of them (see

Figure 2.11). The final discords are thus given by the set C =
⋂

i=1..m Ci.

We simulate the above parallel implementation with m = 1, 2, 4, 8 computers each

having the same specification as indicated in the beginning of Section 2.6.2. Figure 2.12

demonstrates the running time of the entire algorithm and the candidate set size |C| af-

ter the first phase, for the random walk dataset with |S| = 106 elements. The running

time (Figure 2.12, left) is the combined running time for the slowest computer during the

first phase, plus the running time for the slowest computer during the second phase. The

communication time (broadcasting Ci at the end of each phase, and distributing C at the

beginning of the second phase) is not included, yet it is negligible as |C| is much smaller
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Figure 2.12: Randomwalk dataset (|S| = 106). Left: Running time of the disk aware discord
detection algorithm (DDD) with 1, 2, 4 and 8 computers. Right: Size of the discord candidates set
after the first phase of the algorithm. Refer to the text for details.

than |S| and also we do not need to broadcast the entire time series but only their indices.

The union and intersect operations can also be ignored. In our implementation for both of

them we used hashing which requires time linear in the size |C|.

Figure 2.12 left, shows that with 8 computers the algorithm finishes in 240 seconds (the

same threshold r = 21.45 was used as in Section 2.6.2). The red curve with diamonds

on the plot shows simply a division of the time for the algorithm on one computer by x

(i.e. if we had x computers and no parallelization overhead). From the plot it is visible

that, for example, with 8 computers this ‘perfect’ running time would be 180 seconds. This

means that the increased candidate set size contributes for approximately 30% running

time loss when the discord detection algorithm is run with 8 computers. This is due to
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the approximately five times larger candidate size, obtained at the end of the first phase

(see Figure 2.12 right, the blue curve for 8 computers). Just for comparison we have also

plotted the function f = |C1| ∗ x, where |C1| is the candidate set size when using only one

computer, to indicate that adding x computers does not necessarily increase the candidate

set size x times. Overall the main memory requirement remains admissible for a fairly large

number of computers, while the gain in speed-up is enormous. With a single computer, as

indicated in Section 2.6.2, the total running time is approximately 28 minutes while now

with 8 computers it takes only 4 minutes.

2.7 Discussion

In a sense, the approach taken here may appear surprising. Most data mining algorithms

for time series use some approximation of the data, such as DFT, DWT, SVD etc. Pre-

vious (main memory) algorithms for finding discords have used SAX [54, 103], or Haar

wavelets [40]. However, we are working with just the raw data. It is worth explaining why.

Most time series data mining algorithms achieve speed-up with the Gemini framework (or

some variation thereof) [37]. The basic idea is to approximate the full dataset in main mem-

ory, approximately solve the problem at hand, and then make (hopefully few) accesses to

the disk to confirm or adjust the solution. Note that this framework requires one linear scan

just to create the main memory approximation, and our algorithm requires a total of two

linear scans. So there is at most a factor of two possibility of improvement. However, it
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is clear that even this cannot be achieved. Even if we assume that some algorithm can be

created to approximately solve the problem in main memory. The algorithm must make

some access to disk to check the raw data. Because such random accesses are ten times

more expensive than sequential accesses [78], if the algorithm must access more that 10%

of the data it can no longer be competitive. In fact, it is difficult to see how any algorithm

could avoid retrieving 100% of the data in the second phase. For all time series approxi-

mations, it is possible that two objects appear arbitrarily close in approximation space, but

be arbitrarily far apart in the raw data space. Most data mining algorithms exploit lower

bound pruning to find the nearest neighbor, but here upper bounds are required to prune

objects that cannot be the furthest nearest neighbor. While there has been some work on

providing upper bounds for time series, these bounds tend to be exceptionally weak [99].

Intuitively this makes sense, there are only so many ways two time series can be similar to

each other, hence the ability to tightly lower bound. However, there is a much larger space

of possible ways that two time series could be different, and an upper bound must some-

how capture all of them. In the same vein, it is worth discussing why we do not attempt to

index the candidate set C in main memory, to speed up both the phase one and phase two

of our algorithm. The answer is simply that it does not improve performance. The many

time series indexing algorithms that exist [37, 99] are designed to reduce the number of

disk accesses, they have little utility when all the data resides in main memory (as with the

candidate set C). For high dimensional time series in main memory it is impossible to beat
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a linear scan; especially when the linear scan is highly optimized with early abandoning.

Furthermore, in phase one of our algorithm every object seen in the disk resident dataset is

either added to the candidate set C or causes an object to be ejected from C, this overhead

in maintaining the index more than nullifies any possible gain.

2.8 Concluding remarks

The chapter introduced a highly efficient algorithm for mining range discords in massive

time series databases. The algorithm performs two linear scans through the database and

a limited amount of memory based computations. It is intuitive and very simple to imple-

ment. We further demonstrated, that with a suitable sampling technique the method can be

adapted to robustly detect the top k discords in the data. The utility of the discord defini-

tion combined with the efficiency of the method suggest it as a valuable tool across multiple

domains, such as astronomy, surveillance, web mining, etc. Experimental results from all

these areas have been demonstrated.

While here we focused on the problem of how to find interesting and excessively noisy

examples, we now turn our attention to the opposite task. Namely, in the next chapter we

demonstrate a method that tries to identify good, non-noisy examples, which are then used

to reconstruct an embedding subspace for the data, if such exists. A major issue in this

manifold reconstruction process is how to decouple the the noisy examples from the actual

structured signal in the time series datasets.

57



Note: We would like to thank Dr. M. Vlachos for providing us the web query data,

Dr. P. Protopapas for the light-curves, Dr. A. Naftel and Dr. L. Latecki for the trajectory

datasets.

58



Chapter 3

Manifold Clustering of Shapes

The chapter demonstrates that shapes of object have a surprising, yet very effective rep-

resentation as a special type of pseudo time series. The time series representation can be

utilized in a number of unsupervised task, with clustering in particular. Shape clustering

can significantly facilitate the automatic labeling of objects present in image collections.

For example, it could outline the existing groups of pathological cells in a bank of cyto-

images; the groups of species on photographs collected from certain aerials; or the groups

of objects observed on surveillance scenes from an office building.

Here we demonstrate that a nonlinear projection algorithm such as Isomap can attract

together the time series representation of shapes describing similar objects, suggesting the

existence of isometry between the time series space and a low dimensional nonlinear em-

bedding. Whenever there is a relatively small amount of noise in the data, the projection

forms compact, convex clusters that can easily be learned by a subsequent partitioning
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scheme. We further propose a modification of the Isomap projection based on the concept

of degree-bounded minimum spanning trees. The proposed approach is demonstrated to

move apart bridged clusters and to alleviate the effect of noise in the data.

3.1 Introduction

The effectiveness of object recognition and content-based image retrieval systems is highly

dependent on the accurate identification of shapes. Features such as color, texture, po-

sitioning etc., though important, are insufficient to convey the information that could be

obtained through shape analysis [13, 64, 81, 96]. In this chapter we propose an algorithm

for clustering of 2D shapes. The method is invariant to basic geometric transformations,

e.g. scale, shift, and most importantly, rotation. It is robust to noise, sparsity in the data

and outliers that may bridge clusters representing more similar classes.

Figure 3.1: Cytology images. Top: Plasmodium ovale is one of the four malaria agents that
can affect humans. The infected blood cells become larger with oval shape. Bottom: Diatoms are
aquatic eukaryote plants, that appear in multiple shapes. Several types of diatoms can inhabit the
same habitat.
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The shape clustering problem is of practical importance in many areas where image or

video data collections are used. Labeling objects in such collections usually requires manu-

ally examining huge volumes of data. Consider for example the field of cytology or the task

of video data analysis. For many medical projects large banks of microscope cell images

need to be processed (Figure 3.1 top)1. The ability to cluster different types of cells (normal

cells or cells corresponding to pathologies and diseases) without human supervision could

considerably facilitate the medical analysis. Botanists, on the other hand, are interested in

detecting and documenting the genotypes populating certain aerials (Figure 3.1 bottom).

In tasks such as automatic surveillance or content exploration, the detection of different

groups of objects that appear in scene sequences is usually required. Again, for these ap-

plications, an unsupervised shape clustering approach would be extremely beneficial.

Constructing a robust clustering algorithm is not trivial, as it should consider certain

specifics of the shape data and the intuitively expected outcome. One natural requirement in

shape recognition is to detect similarities invariant to basic geometric transformations. For

example, in Figure 3.1 top, we would like to distinguish just two classes of cells - a normal

and a pathological one, regardless of the many sizes and orientations that elements of each

class could have. And while the scale and shift invariance are easily achievable with a

suitable representation, the rotational invariance is much harder to deal with [63]. Important

factors, that should be noted when dealing with rotational invariance, are how effective and

1The malaria images are part of the Hoslink medical databank: http://www.hoslink.com/, and the diatoms
images are part of the collection used in the ADIAC project [23]

61



efficient an algorithm is, as well as what level of control over the admissible rotations it

provides. For example, in cytology analysis, we would like to consider all possible rotations

when identifying the shape clusters, but in the case of handwritten character recognition we

might need to confine the admissible rotations within the interval [−15 ◦; 15 ◦]. Otherwise

we would detect as similar shapes that correspond to the digits “6” and “9” or the letters

“b” and “q”.

Another challenge in the shape clustering task is introduced by the high dimensional-

ity of the input space. Accurate shape representations generally require selecting a large

number of features [55]. Additionally, there is significant amount of noise for many of the

features, which is either related to the complexity of the studied shapes or is accumulated

during certain preprocessing steps as image filtering and edge detection. Therefore, the re-

sulting space is very high dimensional, with a lot of noise and possibly outliers. Clustering

in such a space is practically meaningless, so a suitable dimensionality reduction should be

applied.

A promising direction towards the outlined problems, relies in the fact that object data

usually resides in some nonlinear embedding of the original space, that has a relatively low

dimensionality [79, 93]. Nonlinear reduction techniques such as Isomap [93] or Locally

Linear Embedding [79] are particulary suitable for projecting such data. Here we focus on

the Isomap algorithm and demonstrate that it groups well shapes from equivalent classes,

using a very low (two or three) dimensional representation. This suggests that shapes data
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are also isometric to some nonlinear embedding of the original space. Furthermore, as the

classes tend to form compact, convex clusters, they are easy to learn with a subsequent

partitioning algorithm, e.g the classical Expectation-Maximization (EM).

However, if different regions have different densities, or if there is considerable amount

of noise, Isomap fails to reconstruct correctly the exact structure of the embedding. In

sparse regions the embedding becomes disconnected, while in dense regions ”short cir-

cuits” are formed between otherwise geodetically distant parts of the embedded surface [9].

As a result, some clusters representing elements from the same class are separated, while

clusters representing different classes are often merged.

To project the shape data in cases of noise, bridged or partially overlapping clusters, we

introduce the idea of degree-bounded Isomap. The algorithm constructs a degree-bounded

minimum spanning tree to approximate the underlying embedding. It is demonstrated to

move further apart clusters corresponding to more similar classes and to decrease the effect

of noise in the data.

The contributions in this chapter can be summarized as:

1. The problem of clustering rotationally invariant shapes is studied and a robust ap-

proach for its solution is proposed.

2. An isometry between the shape space and a nonlinear low dimensional embedding is

demonstrated, suggesting that nonlinear reduction algorithms should be preferred in

learning from shape data for different tasks.
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3. The question of Isomap’s topological stability is revised and a method is proposed

that avoids the problem of having multiple disconnected components in the projec-

tion or forming short circuits between geodetically distant regions of the embedding.

The rest of the chapter is organized as follows. In Section 3.2 we briefly review the

shape recognition and manifold learning literature. Section 3.3 describes the selected rep-

resentation and introduces the rotationally invariant metric, used for evaluating the shapes

similarity. The proposed manifold clustering approach is described in Section 3.4. Sec-

tion 4.6 provides an evaluation of the approach on several publicly available datasets. Sec-

tion 3.6 concludes the discussion and outlines some directions for future research.

3.2 Related work and background

A key factor in the efficiency of shape recognition systems is the selected shape represen-

tation. If the representation is not robust to noise, is ambiguous, or does not adapt to geo-

metric transformations, then the clustering quality will be naturally poor. Here we briefly

outline the possible shape representation techniques and point out some of their strengths

and drawbacks. For more detailed information on the topic, we refer the reader to extensive

surveys such as [25, 95, 116].

As outlined by Zhang et al. [116], the representation methods could roughly be divided

into contour and region based. Region based methods extract features from the two dimen-

sional image information, e.g. geometric moments, enclosed area or shape covering convex
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Figure 3.2: Global contour representation. Shapes can be converted to “time series”. The distance
from every point on the profile to the center is measured and treated as the Y-axis of the time series.

hulls. Some of the region based methods are computationally intensive and often require

tracing the contour as well, so that better accuracy could be achieved. Others, such as the

moment invariants, are not so robust to distortions and might be ambiguous if the shapes

have more complex boundaries.

Here we adopt a global contour representation, in which the entire contour is converted

to a 1D time series (see Figure 3.2, also Section 3.3). The representation is shift invariant,

and by resampling all time series to the same length, or by using a warping metric to

compare them, one could achieve invariance with respect to scale too.

Contour based representations in general construct a feature vector using only the points

from the shape boundary. To obtain better efficiency, certain contour methods extract a very

limited number of features that are either rotation invariant [72], or allow a corresponding

alignment [17]. Both of the approaches, while suitable for particular settings, do not have

good discriminative ability in the presence of noise and distortions [55, 116, 117]. For

example, the alignment approach (also called landmarking) often uses the two principle
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axes of a shape to determine the features. This however is prone to ambiguities, as shapes

from different classes may turn out to have similar axes [55] (see Figure 3.3).

Figure 3.3: Top: Two skulls of lizards from the same genus, and a primate skull are hierarchically
clustered using both the landmark rotation beginning at the major axis, and the best rotation. Bottom:
The landmark-based alignment of A and B demonstrates why the landmark-based clustering is
unsuitable: a small amount of rotation error results in a large difference in the distance measure.

To resolve the problem, one should rather consider all possible rotations of the com-

pared representations [4, 101], which renders a computationally intensive method. A poten-

tial way to remedy the problem is to consider the spectral information of the extracted time

series by applying a Fourier transformation [30, 57, 97]. Charalampidis [30] and Klassen

et al. [57] further utilize the transformation in partitioning and hierarchical shape clustering

schemes. They demonstrate accuracy in performance, for cases when all rotations need to

be considered. As we pointed out, however, we would like the approach to give us control

over which rotations are admissible and which should be excluded.

66



Another drawback of a more complex representation as the global contour one, apart of

its computational complexity, is that many of the features might be irrelevant or noisy. To

decrease the detrimental effect of such features, a suitable dimensionality reduction should

be applied. Manifold approaches have been demonstrated to be particularly suitable for

projecting image extracted data [21, 79, 88, 93]. In their clustering approach Srivastava

et al. [89], also observe the manifold structure of the shape data. The authors implic-

itly assume a 2D structure for the embedding and build a Markov model to partition the

reconstructed 2D surface. Instead, we allow for a nonlinear reduction algorithm to auto-

matically detect the best dimensionality for projecting the space. In particular, we focus

on the Isomap [93] algorithm and demonstrate that clustering on the Isomap projection

significantly outperforms clustering on the linearly projected data.

3.3 Measuring shape similarity

Formally, a shape representation technique transforms the shape space S into the vector

space V through a particular mapping function φ:

φ(si) = vi ∈ V, ∀si ∈ S

where φ constructs an ordered set of n descriptive features: vi = (vi,1, vi,2, . . . , vi,n) [116].

With this ordering requirements in hand, vi can be treated as a pseudo times eries. Indeed,

all features vi,j can be assumed to be observation evenly recorded in time, which makes
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our representation comply with Definition 1.2.1. The size n of the vectors depends on

how many distinct features are necessary for the technique to describe the shapes in S.

As we pointed out, many existing techniques target lower dimensionality in V in order

to obtain better computational efficiency. The downside, however, is poor discriminative

ability observed in multiple domains.

Here we adopt a global contour based representation, where every dimension vi,j cor-

responds to a point on the shape contour as illustrated in Figure 3.2. More precisely, here

φ is the function that maps every contour point si,j to the distance between this point and

the shape’s mass center. This representation is known as centroid-based approach and has

been introduced by Chang et al. [26]. The space V now consists of all time series extracted

from shapes with the above mapping. The time series are further standardized to have mean

zero and standard deviation one. The dimensionality of V is usually rather high, but we

will demonstrate that a suitable nonlinear reduction in that space can preserve accurately

the pairwise element similarities. It is interesting to note that, if several highly descriptive

features do exist for a particular dataset, which is what landmarking relies upon, they will

most likely be identified during the nonlinear reduction process automatically. If however

such features are not present or are ambiguous, because of the shapes’ complexity or the

presence of noise, the nonlinear reduction can still determine a suitable set of representative

features on which to project V .
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Figure 3.4: MDS projection of the diatoms dataset (Section 3.5.1). Left: the Euclidean distance
fails to capture the similarities in the presence of rotations. Right: Using the rotationally invariant
measure rd, elements of the same class are grouped together.

3.3.1 Rotationally invariant distance measure

It is easy to see that due to the centroid-based representation, the selected mapping φ is

shift invariant. Standardization alone, however, is insufficient to achieve scale invariance.

Different object sizes or different image resolutions are likely to result in shape contours

of variable lengths too. Scale invariance could be achieved on the representation level

by augmenting φ with a simple resampling step, during which all extracted time series

are resized to the same length n. Another approach is to use a warping distance measure

(equation (1.3)) that will find the best alignment between the series and thus compensate for

the different lengths. Using a warping distance, however, has been demonstrated to intro-

duce little improvement over the basic resampling step followed by an Euclidean distance

estimate [55].
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A more difficult challenge is presented by rotation invariance. Even with the resapm-

ling step, φ is still unable to capture any possible similarities if rotations are present. As

an example, consider Figure 3.4 left, which demonstrates the Multidimensional Scaling

(MDS) projection for the diatoms dataset (see Section 3.5.1). Given a matrix of pair-wise

distances, MDS tries to compute the coordinates for the data that approximate best the in-

formation in the matrix. Once the coordinates are identified, the algorithm performs an

eigen decomposition of the data, and projects it along the dimensions determined by the

top few eigenvectors.

Here, the distances provided to MDS are the Euclidean distances between the resampled

time series. The three dimensional projection was selected as the most accurate for the

dataset. All elements have been uniformly randomly rotated, which leads to the spherical

form of the projection (or circular if 2D projection was to be selected). The larger the angle

of rotation, the further the examples from a single class are projected. At the same time,

elements from different classes that should appear distant, are placed close to each other.

As expected, the resulting clustering is essentially meaningless.

To approach the problem, it is important to notice that all rotations of a shape si can

be approximated by a suitably selected circular shift vr
i (also called time series rotation) of

the original vector vi, where a circular shift is defined as:

vr
i = (vi,r+1, vi,r+2, . . . , vn, vi,1 . . . , vi,r), r ∈ [0..n− 1]
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Detecting the clusters invariantly to shape rotations requires measuring the pairwise shape

distances with respect to all possible rotations. In the vector space V this is equivalent to

computing the minimum distance between all possible circular shifts of the two represen-

tative vectors:

rd(vi, vj) = min
0≤r≤n−1

d(vr
i , vj) (3.1)

In the following discussion the distance d(vi, vr
j) is set to be the Euclidean distance be-

tween the corresponding vectors. For clarity of the exposition, to discriminate between the

rotational distance rd and the distance d, we will refer to the latter as inner distance. By

computing the minimum only over subintervals [p, q] ⊂ [0, n − 1], we can further restrict

the admissible rotations. In this way, for example, we can avoid grouping together the

shape representations of the handwritten digits “6” and “9”.

Using the newly introduced rotationally invariant distance, we apply again MDS to

project the four class diatom dataset. The result is depicted in Figure 3.4 right. Unlike the

non-rotated distance case, now the elements from the same class are grouped together. This

demonstrates that a meaningful approach towards rotationally invariant shape clustering

should consider the rd distance, rather than a simple application of the distance d. Yet, there

is large overlap between some of the projected classes, which will deteriorate the accuracy

of an arbitrary clustering scheme. In Section 3.4 we show that a nonlinear dimensionality

reduction can mitigate this effect by separating better the projected clusters.
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To justify the effectiveness of the adopted shape representation and the rotational in-

variant distance measure we also used supervision, measuring the accuracy on a number

of labeled datasets. Table 3.1 shows the error rate of one-nearest neighbor classification as

measured using leaving-one-out evaluation.

Table 3.1: The classification error of the rotationally invariant distance with time series extracted
from all contour points. The utilized inner measure is the Euclidean distance.

Name Classes Instances Class. Error
Face 16 2240 3.839%
SwedishLeaf 15 1125 13.33%
Chicken 5 446 19.96%
MixedBag 9 160 4.375%
OSU Leaves 6 442 33.71%
Diatoms 37 781 27.53%
Aircraft 7 210 0.95%
Fish 7 350 11.43%
Yoga 2 3300 4.70%

Recall that Euclidean distance has no parameters, once the time series are extracted. For

the Face and leaf datasets the (approximate) correct rotation was known. We removed this

information by randomly rotating the images. The MixedBag dataset is small enough to run

the more computationally expensive Chamfer [19] and Hausdorff [71] distance measures.

They achieved an error rate of 6.0% and 7.0% respectively (see also [97]), slightly worse

than Euclidean distance. Likewise the Chicken dataset allows us to compare directly to

[68], which used identical experiments to test six different algorithms based on discrete

sequences extracted from the shapes. The best of these algorithms had an error rate of

20.5%. For the Diatom dataset, the results are competitive with human experts, whose

72



Figure 3.5: Hierarchical clustering of fourteen reptile skulls using the adopted representation.

error rates ranged from 57% to 13.5% [49], and only slightly worse than the Morphological

Curvature Scale Spaces (MCSS) approach of [49], which got 26.0%. Note, however, that

the MCSS has several parameters to set.

Finally, we also performed extensive “sanity check” experiments using a large database

of reptile skulls. We performed a hierarchal clustering, where no dimensionality reduc-

tion was used but rather the agglomerative building of the hierarchy was performed in the

original time series space. This was done to illustrate that the clusters do not emerge when

shrinking the data in the lower dimensional space, but rather exists as reasonable formations

in the high dimensional space too. The result was compared with the current consensus on

reptilian evolution as suggested by DNA evidence [45, 47]. Figure 3.5 shows a typical

example. Two things should be noted: the clustering is subjectively sensible and clearly

is rotation invariant. Furthermore, while the global clustering does not perfectly agree

with the evolutionary consensus, all the major groups are clustered together as we have

annotated in Figure 3.5. In other words, the shape measurements do produce high quality
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morphological phenograms, although convergent evolution prevents us from obtaining the

true global phylogenetic tree from just an examination of skulls.

We now look into a property of the distance measure rd that will be used to allow us

for the efficient computation of this measure, and hence for the feasible reconstruction of

the underlying embedding, on which the non-linear projection operates.

3.3.2 Metric properties of rd

As pointed out, searching for the most similar shape to a given query in the dataset V can

easily become intractable as its size increases. We demonstrate a simple property of the

rotation invariant distance that allows one to perform highly efficient best-match searches,

regardless of the size of the dataset. Namely, that the rotation invariant distance rd(vi, vj)

defines a pseudo-metric over the space V .

The distance function d(vi, vj) is said to be a metric over the space V , if for arbitrary

elements vi, vj, vk ∈ V it satisfies the following three properties:

- Positivity: d(vi, vj) ≥ 0, with equality iff vi = vj

- Symmetry: d(vi, vj) = d(vj, vi)

- Triangle inequality: d(vi, vj) + d(vk, vj) ≥ d(vi, vk)

When only the second and the third of the above properties are satisfied, d(vi, vj) is said to

define a pseudo-metric. Showing that a distance function satisfies the triangle inequality is

of particular importance when working with large datasets, as it can significantly decrease
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the searching time by excluding from consideration many of the dataset elements. A num-

ber of techniques that utilize the triangle inequality have been proposed over the years, e.g.

[24, 41], as well as some popular indexing structures as the Vantage Point trees [115]. Here

we show that, provided the inner distance d(·, ·) satisfies the triangle inequality, the rotation

distance satisfies it too.

Proposition 3.3.1. If the inner distance d(vi, vj) is a pseudo-metric over the space of the

shape time series V , then the rotation invariant distance rd(vi, vj) also defines a pseudo-

metric over V .

Proof. Without loss of generality, assume that vr0
i is the rotation of vi that has a minimal

inner distance to vj , i.e. rd(vi, vj) = d(vr0
i , vj). Similarly, let rd(vk, vj) = d(vr1

k , vj) and

rd(vi, vk) = d(vr2
i , vk).

Symmetry: We first note that the alignment (vr0
i , vj), where the first time series is rotated,

corresponds to an alignment (vi, v
x
j ), where the second time series is rotated. And as d is

symmetric we have rd(vi, vj) = d(vr0
i , vj) = d(vi, v

x
j ) = d(vx

j , vi). This, together with

formulation (3.1), implies rd(vj, vi) ≤ d(vx
j , vi) = rd(vi, vj). Analogously, we can show

that rd(vi, vj) ≤ rd(vj, vi). Hence, rd(vi, vj) = rd(vj, vi).

Triangle inequality: The following holds:

rd(vi, vj) + rd(vk, vj) = d(vr0
i , vj) + d(vr1

k , vj)

≥ d(vr0
i , vr1

k ) ≥ d(vr2
i , vk) = rd(vi, vk)
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The first inequality above is true as d satisfies the triangle inequality, and the second one

follows from the fact that d(vr2
i , vk) is the distance between the optimal alignment of vi and

vk, while (vr0
i , vr1

k ) also corresponds to an alignment between the same time series.

The symmetry property is important as it allows us to perform only unidirectional com-

putation of the distances between the series, which is essential for the overall efficiency.

Requiring d to satisfy the triangle inequality may seem restrictive for the rotation distance.

However, some of the distance functions that have been demonstrated to perform best for

time series analysis are metrics, e.g. the Lp-norms (equation (1.1)) with the Euclidean dis-

tance in particular. Even if the distance function d does not satisfy the triangle inequality, it

can still be used as a pruning criterion provided that there exists a lower bounding function

LB D (i.e. LB D(vi, vj) ≤ d(vi, vj),∀vi, vj ∈ V ) which is a metric. For example, for the

dynamic time warping (equation (1.3)), such a metric bounding function has been demon-

strated to be the LB Kim [56] lower bound. In general, the tighter the lower bounding

metric that we find, the better the pruning capability of any algorithm utilizing the triangle

inequality.

Next we demonstrate how the obtained result can be used for building an efficient best-

match searching algorithm for rotation invariant shapes.
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3.3.3 Efficient best-match shape searching

This section introduces a scheme for fast rotation invariant best-match searching in the

subspace of all shapes S. The speed-up in the scheme results from several levels of pruning

different distance computations:

1. Pruning of rotation distance computations. The previously derived property allows

us to avoid computing a large percentage of the rd distances between the query vq

and the elements of the dataset S.

2. Pruning of inner distance computations. As the inner distance d also satisfies the

triangle inequality, for every time series vi that was not pruned on the previous level,

only part of the inner distances between vq and the rotated versions of vi need to be

computed.

3. Pruning of primitive distance operations. Using a simple technique, called early

abandon (to be described later), one can further speed up the inner distance compu-

tations that were not pruned in the previous step, by skipping some of the primitive

pairwise computations between the scalar elements of the compared time series.

All three levels contribute to the speed-up of the nearest neighbor searches in the rotation

invariant space, but it is the pruning of rotation distance computations that becomes of

particular importance especially as the dataset size grows very large. While the pruning of

inner distance computations and primitive operations still requires that all m dataset time

77



series are retrieved, the pruning of rotation distances makes it feasible for comparing only

part of them. This makes the simple result from the previous section extremely important

for cases when large amounts of streaming data should be processed or disk retrievals and

indexing are required.

Lastly, it is important to note that, as a pruning criterion is applied only when the

distance to an element is guaranteed to be larger than some already found distance, the

algorithm is guaranteed to make no false dismissals.

Best-match searching algorithm

The proposed scheme is an adaptation of Burkhard-Keller’s fast file searching algorithm

described in [24]. Here we assume that all rotation distances from the elements of V to

a preselected center point vr (see Section 3.3.3) are computed and stored in a sorted list

RL. We also precompute the self-distances between vi and its rotations and store them in a

sorted n-dimensional vector DLi, i.e. DLi = {d(v1
i , v

j
i )}, ∀j ∈ [1..n]. Maintaining all m

self-distance vectors is necessary for the second level inner distances pruning and increases

twice the memory requirement for the proposed scheme compared to the simple brute force

search. This linear increase in space complexity is a reasonable and acceptable overhead,

as it refers to the compact 1D time series representation rather than the 2D original images.

The pseudo-code with a detailed explanation of the rotation invariant searching is presented

as Algorithm 3. For clarity of presentation the described algorithm returns only the best-

match to a given query and the optimal distance. An extension finding the k most similar
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time series to the query is straightforward. We have also introduced the notation Vi to

indicate the set of all circular shifts of the vector vi.

Algorithm 3 Rotation invariant best-match search
Preprocessing:

1: vr ∈ V - preselected center
2: RL = {rd(vr, vi)} - sorted list, i ∈ [1..m]
3: DLi = {d(v1

i , v
j
i )} - sorted lists, i ∈ [1..m], j ∈ [1..n]

Search:
4: ∀vq: [bm Q, Min Dist] = RI Search(V, vr, RL, rd)

procedure [bm, ξ]=RI Search(Cnd, C, L, df)
in: Cnd: candidates; C: center; L: list of distances;

df : distance function
out: bm: best-match; ξ: minimal distance

5: ξ = df(C, vq)
6: bm = C
7: Cnd = Cnd \ C
8: while Cnd 6= ∅ do
9: using the sorted L, select vi ∈ Cnd such that:

|df(vi, C)− df(vq, C)| ≤ |df(vj, C)− df(vq, C)|,
∀vj ∈ Cnd, i 6= j

10: if df == rd then
11: [bmfake, ξtmp] = RI Search(Vi, v

1
i , DLi, d)

12: else
13: /* df is a reference to the inner distance d */
14: ξtmp = EarlyAbandon(vi, vq, ξ)
15: end if
16: if ξtmp < ξ then
17: ξ = ξtmp

bm = vi

18: end if
19: ∀vl ∈ Cnd ∧ |df(vl, C)− df(vq, C)| > ξ:

Cnd = Cnd \ vl

20: end while

For every incoming query the search routine RI Search is invoked with: a best-match

candidates list Cnd initialized as the whole dataset V ; the list RL of the precomputed
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rotation distances from all dataset elements to the center point; and the type of distance

function set to rd. The distance function is also used to differentiate between the first and

second levels of pruning. RI Search sets the initial best-match element bm to the center

point and the current minimal distance ξ to the distance between the query and the center.

The iterative search of the candidates list then proceeds in three steps.

While the list is not empty, a new candidate is selected (line 9), using the heuristic

suggested by Burkhard and Keller (described below). If the distance to the new candidate

is smaller than the current minimal distance, then the best-match so far is updated to the

new candidate (line 17). Finally, the triangle inequality is applied (line 19) to prune all

candidates that are guaranteed to be further from the query than ξ. More precisely, as

df = rd or d which both satisfy the triangle inequality, the following two inequalities

hold: df(vq, vl) + df(vq, C) ≥ df(vl, C) and df(vq, vl) + df(vl, C) ≥ df(vq, C), or in a

more compact form df(vq, vl) ≥ |df(vl, C)− df(vq, C)|. Therefore, if the difference of the

already computed df(vl, C) and df(vq, C) is larger than the currently minimal distance ξ,

then the distance from the query to the candidate vl is guaranteed to be also larger than ξ,

and there is no need to explicitly compute it.

For the first step, the candidate selection, Burkhard and Keller suggest choosing an

element vi still in the candidates list, for which the difference |df(vi, C) − df(vq, C)| is

minimal (line 9). Note that this difference is a lower bound for the distance df(vq, vi),

thus it is likely that by choosing the element with the minimal difference we are also
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choosing an element that is closer to the final solution. In the experimental evaluation

we found out that the heuristic is essential for the pruning capability of the algorithm and

its faster convergence to the solution. As the distance list L is sorted, the first candidate

can be selected in logarithmic time. Suppose the binary search for a candidate shows that

df(vi, C) < df(vq, C) < df(vi+1, C), where i corresponds to the position of df(vi, C) in

the sorted list L. This means that the heuristic will return as candidate either vi or vi+1.

On subsequent iterations, one does not need to perform the binary search again but rather

select the candidate that is still in the candidates list and whose distance to the center is

closest to df(vq, C) in either direction left (i.e. vi, or vi−1 if vi was previously selected) or

right (i.e. vi+1, or vi+2 if vi+1 was previously selected).

When the algorithm is invoked with the rotation distance rd as distance function, i.e.

we are on the first pruning level, the selected candidate vi needs to be rotated n times and

the inner distances d(vj
i , vq), j ∈ [1..n] need to be computed. We can do this again by

applying the RI Search procedure (line 11, second pruning level), this time with a center

v1
i , sorted list of distances to the center DLi, and the inner distance d as a distance function.

The list of candidates is now composed of every rotation of vi, which is simply the rotation

matrix Vi. When a candidate vj
i for an inner distance computation is identified, the actual

inner distance d(vq, v
j
i ) can be optimized further by computing it with an early abandon

technique (line 14, third pruning level).
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Early abandon

The early abandoning is a simple, yet extremely efficient technique for speeding up the

computations of a distance function. Later on we demonstrate that the running time of the

brute force search can be improved with more than a factor of two, by simply modifying

it with an early abandon criterion. The method uses a threshold ξt and computes the inner

distance d by accumulating the primitive pairwise distances as long as the sum is smaller

than the threshold. If the threshold is reached, the computation of the inner distance is

abandoned.

Algorithm 4 Early abandon for Lp-norms
procedure ξ=EarlyAbandon(C, Q, ξt)
in: C = (c1, . . . , cn); Q = (q1, . . . , qn); ξt: threshold
out: ξ: Lp(C,Q) terminated by threshold ξt

1: ξ = 0; ξt = (ξt)
p; i = 1

2: while (ξ < ξt) ∧ (i ≤ size(C)) do
3: ξ += |ci − qi|p
4: i += 1
5: end while
6: ξ = p

√
ξ

For completeness of the presented searching scheme we list the early abandon method,

for the case when the inner distance is an Lp-norm (see Algorithm 4). The algorithm is

specific for the distance function used, as different functions might pair different scalar

elements. For example in the case of Dynamic Time Warping, ci might be paired with qj

(i 6= j). Still, an equivalent early abandoning cut-off criterion can be applied to prune some

of the paths in the dynamic programming matrix used by the DTW algorithm.
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Center selection

The percentage of distance computations that are excluded from consideration, and thus the

performance of the algorithm, is highly dependent on the pruning capability of the selected

center point vr. In the original Burkhard-Keller algorithm, the selection is made at random.

There are two factors that determine how good vr is, namely, its position in the space V with

respect to the other dataset points, and its position with respect to the queries. A suitable

center point will have a small difference |rd(vj, vr) − rd(vq, vr)| for just a few dataset

points vj . Shapiro [86] argues that good centers can be points which are further from the

center of any cluster that might be present in the dataset. This is so, because points close

to the cluster centers will be in close proximity to many other points, and for most of those

neighbors the above difference will be small. Shapiro suggests an extension of Burkhard-

Keller’s searching algorithm in which k random centers, rather than one, are used. While

this has the potential to mitigate the effect of choosing one inappropriate center, it also

comes at the cost of increasing the memory requirements k times, if we would like to apply

it for the second level of inner distance pruning too.

In our implementation we still use a single center point, but rather than randomly select-

ing it, we use subsampling. For the purpose, the preprocessing step (line 1, Algorithm 3) is

modified as follows. A small training and validation subsets, are randomly selected from

V . The center vr is set to the point from the training subset that has the best pruning ca-

pability for the queries from the validation set. Using subsampling in the center selection
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process implicitly takes into consideration the specific data distribution, which leads to

better pruning ability and smaller variance as compared to random center selection.

The above preprocessing is performed only for the first pruning level. For the second

pruning level we always use as centers the original series, i.e. v1
i . Still, as seen from the effi-

ciency evaluation below, the variance in the performance is very small, which suggests that

any rotation vj
i is an equally suitable center. An intuition of the phenomenon is provided

by the observation that for Lp-norms the following equality is true: d(vj1
i , v

(j1+k)mod(n)
i ) =

d(vj2
i , v

(j2+k)mod(n)
i ), j1, j2, k ∈ [1..n]. The fact implies that every rotation vj

i is distributed

in the same way among the rest of the rotations of vi. The small variation in the perfor-

mance results from the difference in the mutual positions of the query and the different

rotations, but on average every rotation will have similar pruning power.

We conclude this section with a brief empirical demonstration of the efficiency of the

presented rotation invariant shape search algorithm.

Efficiency of the shape search algorithm

The dataset that we explore represents a collection of arrowheads with various shapes and

sizes. Figure 3.17 depicts some representative classes from the data.

We have further augmented the dataset with new images by scaling, deforming and

rotating some of the original shapes. The overall size of the resulting dataset is 15000

samples. After extracting the time series from the shapes, we resample them to n = 250

time points, which for this dataset seems to preserve the accurate representation. Prior to
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Figure 3.6: Arrowheads dataset. Left: Representative examples. Right: Some of the extracted
shapes.

storing, all resampled time series have further been normalized to have a mean zero and

standard deviation one. This is done so that the nearest neighbor search could be invariant

to transformations, such as shifting or scaling [52]. To measure the performance with

respect to the dataset size, we also extract uniformly random samples of sizes from 32 up

to 8000 elements from the original dataset.

The percentage improvement of our approach over the BruteForce search in terms of

performed primitive distance computations is illustrated on Figure 3.7. Results for both

applying the method with (RI Search) and without (RI SearchNoEA) the EarlyAban-

don optimization are presented. The performance of simply applying the EarlyAbandon

technique is also included for comparison.

There are several important aspects to observe in the result. Increasing the space den-

sity, i.e. introducing more samples in the dataset, increases the pruning power of the algo-

rithm. The effect is expected as with more elements the chance of finding a sample that is
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Figure 3.7: Arrowheads dataset. Expected percentage of primitive operations to be performed.

very close to the query is higher. Such samples minimize significantly the cut-off threshold

ξ, and a lot of the remaining elements start failing the triangle inequality test. The same is

true for the EarlyAbandon cut-off criterion. Still, the RI Search algorithm performs far

less operations than EarlyAbandon - less than half of the operations for the smallest dataset

size (5.48% - RI Search vs 12.04% - EarlyAbandon), and twenty times less operations

for the largest dataset size (0.19% - RI Search vs 3.88% - EarlyAbandon). For all dataset

sizes of 500 elements and above the RI Search algorithm performs less than 1% of the

operations performed by the exhaustive BruteForce search algorithm.

As previously noted, the time improvement does not correlate exactly to the operations

improvement because of language and implementation specifics (see Figure 3.8). Even

though EarlyAbandon executes less than 10% of all primitive operations, in our implemen-

tation it hardly speeds up the search algorithm more than twice for any value of m. We
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Figure 3.8: Arrowheads dataset. Expected running time improvement over BruteForce search.

believe this results from the fact that the time for accessing all training samples and their

rotations dominates the time for loop computations over array structures as executed by

the language. The time improvement for the RI Search algorithm is also smaller than the

operations improvement, which is due mainly to overheads from supporting the sorted can-

didates and distances lists. Additional, very small slow-down is also caused by the binary

search of the first candidate and the traversal of the lists for excluding candidates that fail

the triangle inequality. Overall, the proposed algorithm is from four (m = 32) to more

than fifty (m = 15000) times faster than the BruteForce search. The graph once again

demonstrates that simple bounding techniques, such as EarlyAbandon, which need to go

through the entire dataset, thought useful, cannot accomplish the enormous improvement

that can be achieved by pruning vast parts of the data space (especially for large datasets).

We have included the EarlyAbandon optimization as part of our algorithm (RI Search)
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mostly for reasons of completeness. Yet, what it introduces as time improvement over the

method without it (RI SearchNoEA) is not that significant, which is partially due to the

fact that the distribution for pruned with the triangle inequality time series is different from

the original data distribution. For clarity of exposition in the remaining experiments we

demonstrate results with the RI Search algorithm and omit RI SearchNoEA.

It is important to understand how much each pruning component contributes for the

final operations improvement introduced by the algorithm. Fewer computations of the

rotation distance imply accessing fewer shapes, which is essential especially when indexing

is applied. And fewer inner distances to be considered suggest less memory accesses to

different elements, which is also of primary importance. Table 3.2 gives a break-up for

RI Search into levels of pruning.

Table 3.2: Arrowheads dataset. Percentage of performed operations. Row1: Percentage of com-
puted rotation distances. Row2: Percentage of computed distances out of all possible inner distances
after level one was performed. Row3: Percentage of primitive operations out of all possible remain-
ing operations after level two was performed.

Pruning Mean(Deviation) of Performed Operations(%)
Level m = 250 m = 1000 m = 15000

1-st 52.1(12.3) 34.1(10.0) 22.7(5.81)
2-nd 19.9(0.85) 15.5(0.79) 9.81(0.31)
3-rd 16.0(0.91) 11.4(0.38) 8.61(0.30)

The table illustrates how powerful the triangle inequality is, especially for larger datasets.

For example, when m = 15000 the algorithm avoids examining almost 80% of the shapes.

The second and the third pruning levels are presented with respect to the possible opera-

tions after the previous pruning level has been performed. For example, after eliminating
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some rotation and inner distances, the early abandoning subroutine executes 8.61% of the

remaining primitive operations.

Finally, the standard deviation in the performed operations for each pruning level is

also presented in the table. The small variance in the second pruning level suggests that all

rotated versions of a time series vi are equivalent in a certain sense, as the rest of the rotated

series are similarly distributed around them. Therefore, as discussed in Section 3.3.3, any

rotation vj
i can be considered an equally suitable choice for an inner distance center.

3.4 Manifold clustering of shapes

The previous section gave an efficient algorithm for computing the rotation invariant dis-

tances rd. We now return to our original problem of how to use it to infer more accurate

clusters in the shape spaces. We have already demonstrated that, when applied to the matrix

of rotationally invariant distances, MDS provides a natural choice for a simple reduction

of the time series space. Often, however, the data lies on a low dimensional nonlinear

embedding (also called manifold), which linear projections cannot identify. The distances

measured on the surface of the embedding are called geodesic distances. It may turn out

that points that have large geodesic distance, and therefore should be treated as dissimilar,

are very close in Euclidean sense. Linear projections operate in the Euclidean space and

are inadequate to reconstruct the structure, implied by the geodesic distances. As a result,

MDS might move apart otherwise similar (with respect to the manifold) elements or bring
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closer elements that come from different classes (again with respect to the manifold). This

effect is the reason for the poor separability between the clusters demonstrated in Figure 3.4

right.

Vision data are often shown to reside on such nonlinear embedding [79, 93]. We demon-

strate that shapes data also lie on an embedded space that could be reconstructed with a

suitable nonlinear dimensionality reduction technique. In particular, we study the perfor-

mance of Isomap. After discussing briefly the specifics of the algorithm, we propose a

modification for the cases when data are noisy, or when multiple bridging elements be-

tween different clusters deteriorate the stability of Isomap’s projection.

3.4.1 Dimensionality reduction with Isomap

To improve the chances for a subsequent clustering algorithm to detect any existing clusters,

we need to preserve the compactness achieved by the MDS algorithm. For the elements

of distinct clusters, however, the distances should be augmented and the clusters should be

moved further apart. We obtain the effect by applying the Isomap projection algorithm.

For clarity of discussion a summary of the Isomap’s steps, utilizing the rotationally

invariant distance, is provided below:

1. Build the distance matrix Mm,m for the data as follows: For all elements vi, i ∈

[1..m], if vj is among the k-nearest neighbors to vi, set M(i, j) = rd(vi, vj). Other-

wise set M(i, j) = inf.
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2. In the graph defined by M , solve the all pairs shortest path problem (e.g. by ap-

plying Floyd-Warshall’s algorithm). For all elements vi, i ∈ [1..m] set M(i, j) =

shortest path(vi, vj)

3. Run MDS on M obtained from the previous step.

The first step constructs a k-neighborhood graph as an approximation of the manifold

surface and assigns small distances to pairs of elements that are very close on that surface.

This is later preserved by the MDS reduction (step 3) in the projected space too. On the

contrary, elements from different classes are less likely to be part of each others neighbor-

hoods, and thus will be moved apart in the projection. The second step approximates the

actual geodesic distances on the surface of the manifold with the shortest paths in the k-

neighborhood graph. The 3D projection of the diatom dataset using Isomap is presented in

Figure 3.9. A neighborhood of size k = 16, optimal for the projection (see Section 3.5.1),

has been used. As seen from the figure, the clusters now are moved further apart, which

supports the previous conjecture of an existing isometry between the shape space and a

lower dimensional nonlinear embedding.

An important aspect to note is that the goodness of the geodesic distance approximation

depends on the right choice of the neighborhood size k. Selecting k larger may result in

”short circuits” between distant elements, with respect to the manifold, similarly to the

case when only Multidimensional Scaling is applied. In fact, in the asymptotic case when

k → m, Isomap is reduced simply to the MDS algorithm. On the other hand, selecting
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Figure 3.9: Isomap projection of the diatoms dataset. Clusters are better separated suggesting
isometry between the shape space and a nonlinear embedding.

k too small may infer multiple disconnected components when building the neighborhood

graph. In those cases MDS cannot reconstruct correctly the coordinates of the points. This

results in a poor projection and thus in low clustering quality. And finally, depending

on the sampling process, it may turn out that there is no one single k that is uniformly

best across the whole dataset. For some samples a neighborhood of two elements may be

most suitable, while for others, ten neighbors should be preferred. This dependence of the

projection quality upon parameter k is referred to as topological instability of the Isomap

algorithm. The impact, in the case of the shape clustering problem, can be observed in

Figure 3.9, where the clusters of Stauroneis and Flagilaria diatoms are still not separated

well, so that a clustering algorithm could discriminate them properly.
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3.4.2 Stability of the Isomap projection

Balasubramanian et al. [9] argue that increasing the amount of noise in the data or hav-

ing a comparatively sparse sample can cause multiple short circuits when Isomap tries to

evaluate the correct geodesic distances. Softening the effect by selecting smaller neighbor-

hood size k proves to be a poor solution, as in this case the constructed graph is split into

multiple disconnected components. All distances between examples of two disconnected

components are set by the algorithm to infinity and thus MDS cannot approximate correctly

the coordinates for the elements. As a result, the MDS projection deteriorates significantly.

The solution Tenenbaum suggests [9] is to optimize a tradeoff function between the

percentage of elements omitted from the largest connected component and the variance in

the distances, as computed on the manifold surface and in the Euclidean projection. Using

large number of neighbors will decrease the percentage of omitted elements, but will also

lead to improper evaluation of the right dimensionality. Decreasing k will lead to smaller

variance, but will increase the percentage of not accounted elements. The globally optimal

value of k, with respect to those two criteria, should be selected for the projection.

If, however, regions with different densities exist in the sample, the problem still per-

sists. In denser regions the compromise globally optimal k might again lead to short cir-

cuits, while sparse regions will result in disconnected components. Wu et al. [105] suggest

a different approach, in which the smallest distance edge between the disconnected compo-

nents is identified and is added to the k-neighborhood graph. The authors demonstrate that
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the method is suitable for identifying multiple classes in data, where different classes reside

in relatively distant regions on the manifold surface and even on different embeddings. The

scheme is generalized by Yang [107], who argues that single edges between disconnected

components do not reconstruct smoothly the surface of the manifold. He proposes building

an l-connected graph in which for any possible split of the vertices into two groups there

exist at least l edges connecting those groups.

Note that all of the above cases still lack flexibility in choosing the right neighborhood

size k for individual graph nodes. Ideally we would like a method that defines stronger

connectivity in dense regions of the data, but will loosen the requirement for the number

of neighbors in sparser regions. Next we suggest one such approach based on degree-k-

bounded minimum spanning trees.

3.4.3 Degree-bounded Isomap

The degree-k-bounded minimum spanning tree (k-MST) is an approximation of the MST

of a connected graph, in which every vertex is allowed to have degree at most k [73]. The

problem has emerged in the context of network modeling, where a network with minimum

flow is needed but there is a limit imposed on the capacity of flow that can go through each

node.

In the case of Isomap dimensionality reduction, we would like to approximate the k-

neighborhood graph with a structure that will ensure connectivity between all vertices. For

that purpose, a MST could be constructed. In a MST, however, the local information is not
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guaranteed to be preserved correctly. Many nodes can be of degree one, while few nodes

(especially if residing in dense regions of the data) may end up with some very high degree

(e.g. forming stars). The k-MST avoids such undesired effects by restricting the degree

of every vertex to be at most k. This also allows for the spanning tree to preserve better

the locality around each node approximating the behavior of the k-neighborhood graph.

In summary, the k-MST implicitly targets both of the problems outlined in the previous

section, i.e. no disconnected components could be produced and there is no globally fixed

neighborhood size k for all vertices.

Unfortunately, building the MST structure is a hard problem. In the case of k = 2,

finding the k-MST is equivalent to the traveling salesman problem, which means that it

is NP-complete. It has been demonstrated that constructing 3- and 4-MST is also NP-

complete [73]. This may render the manifold representation with a k-MST impractical,

yet we are going to approach the problem by making use of the metric properties derived

earlier for the rotational distance rd.

Ravi et al. [77] prove that when the distance between the edges of a graph satisfies

the triangle inequality, there exists a polynomial time algorithm for building an arbitrary

k-MST with total cost at most twice the cost of the MST. We provide an outline of the

algorithm below.

1. Build the MST for the data described by the distance matrix Mm,m (e.g. we use

Prim’s algorithm). Select a root node r for the tree.
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2. Starting from r do recursively for all non-leaf nodes v: Assume that (v, v1), (v, v2),

. . . , (v, vd), are the edges in increasing weight from v to its children. If degree(v) >

k, replace the edges (v, v2), (v, v3), . . . , (v, vd−k+2) with the edges (v1, v2), (v1, v2),

. . . , (vd−k+1, vd−k+2)

Step 2 above removes from v as many edges to child nodes as necessary to keep its

degree exactly k. The procedure is repeated recursively for all child nodes too, producing

a degree-k-bounded tree. The fact that the cost of the edges is at most two times that of the

MST follows from the ordering of the edges and the validity of the triangle inequality. For

example, we have rd(v1, v2) ≤ rd(v, v1) + rd(v, v2) ≤ 2rd(v, v2), which implies that the

cost of every added edge is at most twice the cost of the deleted one.

We will term the Isomap algorithm in which the k-neighborhood graph is replaced with

a degree-bounded MST as b-Isomap (from bounded Isomap). The b-Isomap projection of

the diatoms dataset is presented in Figure 3.10. In this example k has been set to 4.

The figure shows that the Stauroneis and Flagilaria classes are moved further apart as

desired; the classes have less overlapping and just a few bridging elements between the

clusters. The clusters are elongated, revealing that most of the elements from a certain

class are represented by degree 2 nodes in the k-MST. One negative effect of the projection

is that the clusters are not convex as in the case of the Isomap projection. Instead, there

might be several elongated branches rooted as a subtree, representing elements from the

same class. When multiple such branches exist, there is a higher chance that some of them
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Figure 3.10: b-Isomap projection of the diatoms dataset. Sparser regions are loosely connected,
which leads to better separability of bridged clusters such as the Stauroneis and Flagilaria ones.

will be assigned to different clusters degrading the quality of the clustering.

3.4.4 Shape clustering algorithm

We summarize the proposed clustering of rotationally invariant shapes in an end-to-end

algorithm (see Algorithm 5). The algorithm builds on top of the introduced rotationally

invariant distance metric rd, and uses a nonlinear projection to discover the inherent di-

mensionality of the shape data at hand.

The clustering scheme can be used as both unsupervised or semi-supervised algorithm

(step 2). In the evaluation we use a semi-supervised approach in which the cluster quality is

checked upon the apriory known true labels of the elements. In an unsupervised procedure

the mean square error with respect to the cluster centers could be tested instead.
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Algorithm 5 Manifold Shape Clustering
procedure [D Labels] = ShapeClustering(D, C)
in: D: dataset of converted to time series shapes;

C: number of clusters
out: D Labels: cluster labels

Projection Step:
1: k = Refine k(D, C); /*num.neighbors or degree*/
2: Checking the performance on a representative labeled subset choose between:

Alternative1: D′ = Isomap(D, k); /*projected data*/
Alternative2: D′ = b-Isomap(D, k); /*projected data*/

Clustering Step:
3: IC = Refine Seeds(D′, C); /*initial seeds*/
4: D Labels = Cluster EM(D′, IC, C);

As seen later from the experimental evaluation, which alternative performs better (Isomap

or b-Isomap) depends on a number of things. As a general rule of thumb if no labeled in-

formation or other prior knowledge is available, the Isomap projection should be preferred

as the more consistent of the two (see Section 4.6). It should also be preferred when the ex-

isting classes of shapes are known to be relatively distinct and with small amount of noise.

If the existing classes are believed to be comparatively similar (i.e. with large amount of

overlap or bridging elements), or there is large amount of noise in the data, then the b-

Isomap projection should be applied. The projection parameter k, neighborhood size in the

case of Isomap and maximum degree in the case of b-Isomap, can be selected again us-

ing additional supervision (if labels are available) and cross-validation (the approach used

in our experiments) with subsamples of the data, or by applying the tradeoff optimization

criterion discussed by Tenenbaum [9]. We decided to select a partitioning clustering algo-
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rithm, and EM in particular, as the clusters defined by Isomap and often by b-Isomap are

convex and comparatively compact. The k-means algorithm in this setting is likely to fail

due to the elongated structure of the clusters, while a k-medoid approach will have lower

efficiency. The initial centers for the EM algorithm are selected as the best random seeds

out of 10 runs again on subsamples of the data. An alternative approach is discussed by

Fayyad et al. [38], which draws a set of very small subsamples and evaluates the centers

that maximize the likelihood of the data based on those subsamples.

3.5 Experimental evaluation

We test the performance of the two manifold approaches and the MDS projection on three

publicly available datasets - diatoms, marine creatures and arrowheads. The datasets are

selected to have different characteristics in terms of noise, sparsity in the data and similarity

between the available classes. The actual labels of the samples are known and are used in

measuring the accuracy of clustering.

The following evaluation procedure has been applied for all methods. A 10 times ran-

dom sampling is used with 80% random subsamples from the original dataset. For each

subsample, after the data is projected with the corresponding method, an EM clustering is

performed. As EM relies on the correct initial center selection, it is repeated 10 times, each

time with randomly selected centers. The accuracy from the best of the 10 clusterings is

reported as accuracy of the method for this subsample.
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3.5.1 Diatoms dataset

Diatoms are eukaryote plants that live in aquatic environment. The dataset we use is col-

lected as part of the ADIAC project [23]. It contains approximately 360 images of diatoms

from four classes - Eunotia, Stauroneis, Gomphonema, Flagilaria (see Figure 3.11). All

time series for the dataset are resampled to a length of 345 points.

Figure 3.11: Diatoms dataset: original images - top, extracted shapes - middle, and time series
representation - bottom. The four classes are relatively distinct with small similarities between some
Stauroneis and Flagilaria diatoms.

To determine the number of dimensions that should be used in the projection, we mea-

sure the residual variance for any of the reduction methods as suggested by Tenenbaum et

al. [93] (see Figure 3.12).

The ”elbow” of the curve indicates the dimension beyond which adding new dimen-

sions does not increase significantly the variance in the data, and thus no improvement in

the projection can be expected. In the case of Isomap and b-Isomap, the variance also de-
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Figure 3.12: Detecting the intrinsic dimensionality of the data according to the three projections.
The ”elbow” of the curve points to the optimal number of dimensions to be used.

pends on the number of neighbors or the bounding degree parameter, still the structure of

the curves remains similar for other values of the parameter too. The other datasets tested

in the evaluation produced residual variance curves that differ in the speed with which they

decay, but overall the best dimensions remain the same. Therefore, for all the datasets we

tested the clustering accuracy, considering the 2D and 3D projections obtained by the three

methods. The fact that two or three dimensions are descriptive for the data is not surpris-

ing, given the chosen representation. The time series usually have several extreme points,

corresponding to those contour points that are closest/furthest from the shape centroid. It

is the extreme points (global or in some case local extrema) that are usually detected as the

most discriminative dimensions for the data.

Table 3.3 summarizes the details for the best accuracy obtained on the four class diatom

dataset. Both nonlinear projections outperformed MDS with more than 20%. The best per-

101



Table 3.3: Clustering accuracy for the four class diatoms data.
Proj. Dime- Parameter Average Std

Method nsions k Accuracy (%) (%)
MDS 3 N/A 62.3 5.2

Isomap 3 16 86.2 3.0
b-Isomap 3 4 83.0 3.6

formance was obtained with the Isomap algorithm using three dimensional projection. The

best number of neighbors for Isomap is relatively high (16), which implies that there is

little noise and overlapping between the clusters (except for the Stauroneis and Flagilaria

classes). The b-Isomap reduction performed slightly worse on average, and was also less

consistent across the subsamples, which is represented by the larger variance in the accu-

racy (3.6%, column 5). An illustration of why b-Isomap’s projection was outperformed is

presented for the two dimensional projection in Figure 3.13.

The figure compares the true labels (left graphs) with the labels as identified by the EM

algorithm (right graphs). The elipses drawn around each cluster have radii equal to twice

the standard deviation along the corresponding dimension. Some of the Stauroneis and

Gomphonema “branches” in the b-Isomap projection are incorrectly identified by EM to be

part of the distribution for the Flagilaria class. The effect is not that strong for the Isomap

projection because of the convex shape of the clusters.

We also compared the clustering accuracy between the two most overlapping classes, in

which we additionally added to the time series Gaussian noise with mean zero and standard

deviation 0.1.
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Figure 3.13: Clustering obtained from the 2D projections of Isomap (top) and b-Isomap (bottom).
On the left are the true labels for the data, and on the right - the labels as computed by the EM
algorithm. Note that the best projection is three dimensional, here two dimensions are shown for
illustration only.

The two dimensional projection in this case and the EM clustering are shown in Fig-

ure 3.14. The clusters produced by b-Isomap now have higher density, compared to the

Isomap clusters, and are easier to detect with the EM algorithm. The sparsity in the Isomap

clusters results from the multiple short circuits between the two similar classes. The clus-

tering obtained with b-Isomap is almost perfect when three dimensional projection is used

Table 3.4. Isomap performs better in three dimensions too (the best 2D accuracy for the

algorithm is 89%), but still it is dominated by b-Isomap’s performance.
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Figure 3.14: Clustering obtained from the 2D projections of Isomap (top) and b-Isomap (bottom)
of the Stauroneis and Flagilaria classes only. On the left are the true labels for the data, and on the
right - the labels as computed by the EM algorithm.

Table 3.4: Clustering accuracy for the two class diatom data.
Proj. Dime- Parameter Average Std

Method nsions k Accuracy (%) (%)
MDS 3 N/A 90.2 1.3

Isomap 3 5 92.7 1.3
b-Isomap 3 3 98.3 0.9

The example demonstrates that significant improvement over Isomap can be achieved

with the b-Isomap approach in the case of noise and when there is no strong distinction

between the existing classes.
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3.5.2 Marine creatures dataset

We used the prototype database of marine creatures discussed by Mokhtarian et al. [67].

The images for four classes of different types of fish were selected, with each class con-

taining 50 examples (Figure 3.15).

Figure 3.15: Marine creatures dataset: fish shapes - top, their time series representation - bottom.

The time series extracted from the shape contours are again resampled to 345 time

points (see Figure 3.15, bottom). For this dataset there is significant amount of within-

class variability too. The contour of the shapes has more complex structure than that of the

diatoms, which is reflected in the representation too. The time series contain more noise

and there is no strong visual distinction between some elements from different classes. For

example, Class1 appears visually similar to Class4, while some elements of Class2 are

similar to elements of Class3. This similarity is a prerequisite for the formation of bridging

elements between the projected clusters. In this sense, the dataset is similar to the two class
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diatom case. As expected, in this setting the b-Isomap projection is better than the one

obtained with Isomap (Figure 3.16).

Figure 3.16: Marine creatures dataset: Isomap projection (left) compared to b-Isomap projection
(right).

On average, clustering with b-Isomap is 2%-3% more accurate than clustering on the

Isomap projection (Table 3.5). Again, the EM algorithm, applied on any of the nonlinear

projections, significantly outperforms the clustering on the MDS projection. Yet, it is worth

noting the larger variance of the nonlinear projections and especially of Isomap across the

ten subsamples. This is partially due to the smaller number of examples (approximately 40

examples from each class are present in the subsamples), and partially to the larger amount

of noise in the data.
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Table 3.5: Clustering accuracy for the Marine creatures dataset.
Proj. Dime- Parameter Average Std

Method nsions k Accuracy (%) (%)
MDS 2 N/A 61.0 3.0

Isomap 3 4 77.6 11.8
b-Isomap 3 4 80.0 7.8

3.5.3 Arrowheads dataset

The arrowheads dataset was described earlier in this chapter. For the current clustering

evaluation we use a uniformly random subset of it containing 600 images with randomly

rotated arrowheads. The arrowheads are representative of 6 distinct classes (Figure 3.17),

with each class of 100 elements. All time series have been resampled to 250 time points.

Figure 3.17: Arrowheads dataset: representative examples of the six classes and the corresponding
time series representation.

The purpose of this evaluation was to test the behavior of the projections and the clus-

tering algorithm when there is larger number of classes. Figure 3.18 demonstrates the 2D

and 3D projections of Isomap and b-Isomap for the data.
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Figure 3.18: Arrowheads dataset: Isomap projection (left) compared to b-Isomap (right).

The performance of the three projections is summarized in Table 3.6. As the classes are

distinct, and there is enough data from each class in the subsamples, Isomap reconstructs

well the embedded structure and projects the classes in well defined sufficiently distant

clusters. The two dimensional b-Isomap projection with bounding parameter k = 6 per-

formed similarly well (85.1% accuracy). This is a result of the convexity of the clusters for

this dataset. For most classes the degree-bounded spanning tree forms single long branches,

which allows for all examples to be subsequently identified as coming from the same clus-

ter. The b-Isomap clustering was also more consistent for the dataset, with twice smaller

deviation as compared to Isomap. Both approaches again outperformed linear MDS.
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Table 3.6: Clustering accuracy for the arrowheads dataset.
Proj. Dime- Parameter Average Std

Method nsions k Accuracy (%) (%)
MDS 3 N/A 75.6 5.7

Isomap 3 14 85.2 6.2
b-Isomap 2 6 85.1 3.1

3.6 Concluding remarks

We presented a method for clustering shape data invariantly of basic geometric transfor-

mations as shifting, scaling and most importantly rotation. The results demonstrate that

an Isomap projection built on top of a rotationally invariant distance metric can detect cor-

rectly the intrinsic nonlinear embedding in which the shape examples reside. We have

further introduced a modification of the Isomap algorithm, based on the concept of degree-

bounded minimum spanning trees, that decreases the effect of bridging elements and noise

in the data.

A possible improvement of the algorithm would include an adaptive solution, which

based on the data space density alternates between the more suitable reconstruction Isomap

or b-Isomap. A weighted ensemble of the two algorithms might also be preferred for certain

manifolds, rather than a simple selection between them. In the next chapter we introduce

such an adaptive reconstruction technique, which however, combines not individual algo-

rithms but instead two conceptually different views of the data - a global and a local one.
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Chapter 4

Locally Constrained Support Vector

Clustering

The chapter develops a dual treatment of the time series manifold reconstruction prob-

lem, combining a global density view of the data with multiple local views from a mixture

model. The principles here are built upon the theoretical foundations of one-class classifi-

cation and its derivative - support vector clustering. Support vector clustering transforms

the data into a high dimensional feature space, where a decision function is computed. In

the original space, the function outlines the boundaries of higher density regions, naturally

splitting the the data into individual clusters. The method, however, though theoretically

sound, has certain drawbacks which make it not so appealing to the practitioner. Namely,

it is unstable in the presence of outliers and it is hard to control the number of clusters that
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it identifies. Parametrizing the algorithm incorrectly in noisy settings, can either disguise

some objectively present clusters in the data, or can identify a large number of small and

nonintuitive clusters.

Here, we explore the properties of the data in small regions building a mixture of fac-

tor analyzers. The obtained information is used to regularize the complexity of the out-

lined cluster boundaries, by assigning suitable weighting to each example. The approach is

demonstrated to be less susceptible to noise and to outline better interpretable clusters than

support vector clustering alone.

4.1 Introduction

One-class support vector machine (SVM) is an efficient approach for estimating the density

of a population [82, 85]. It works by applying a transformation Φ : X → Φ(X) from the

input space to a high dimensional feature space, such that points with denser neighborhoods

are projected further from the origin of the coordinate system. The support vectors in the

feature space are then used to outline closed contours around the dense regions in the input

space, defining a binary decision function which is positive inside the contours and negative

elsewhere (see Figure 4.1). The method has been demonstrated to be applicable for tasks,

such as novelty and fault detection, context change detection, learning in image retrieval,

etc.
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One can easily extend one-class classification to a clustering scheme, by labeling the el-

ements within each closed contour as different clusters. All elements, that are not enclosed

by any contour, correspond to regions that are estimated to have lower density support in

the high dimensional feature space. Such elements can be assigned the label of their clos-

est contour in the original space (see Figure 4.1). This extension, called support vector

clustering (SVC), was proposed by Ben-Hur et al. [14].

Despite its theoretical soundness the SVC method has remained relatively unpopular

among the practitioners. There are several specific characteristics of SVC that diminish its

appeal. For instance, the map Φ requires a parametrized kernel to be provided as an input

from the user. The radial basis function k(xi, xj) = e−γ‖xi−xj‖2 has been recognized as

a preferred kernel function because of its ability to form closed contours [14, 92]. This

means that the user needs to provide a suitable kernel width γ. Small values of γ (i.e. large

kernel width) may disguise or merge some of the clusters, while very large γ may create a

large number of closed contours which could outline some rather nonintuitive clusters (see

Figure 4.1). This lack of control over the number of identified clusters is exacerbated by

the fact that there is no clear objective criterion for comparing the clustering results when

varying γ. For example, partitioning schemes, such as K-means optimize an objective

function of the distance between all elements and the center of their corresponding clusters.

However, in the case of non-convex clusters, which is where the SVC method could be of

practical importance, a cluster’s mean can be far outside its boundaries, which makes the
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Figure 4.1: Top left: the original data. Support vector clustering computes a function in the feature
space which is positive for the dense regions and negative elsewhere (Middle and Right figures).
Small kernel widths create multiple complex contours (Middle), while large widths may disguise
some true dense regions (Right). In the original space the contours naturally outline the clusters in
the data (Bottom left). Points outside the contours are assigned to the closest cluster.

partitioning objective function inapplicable.

The effect of multiple emerging clusters can be especially strong in the presence of

noise. This becomes an issue, in many practical application where the examples lie near

the surface of a lower dimensional nonlinear manifold. For example, such noisy manifolds

may be defined by a sample of facial images [79, 80, 93], or by the walking motions of a

human [59]. Though a soft margin can be introduced to alleviate the impact of the outliers,

there is again the issue of how to specify the correct parameter ν, that controls the tradeoff

between the generalization performance of the learner and its tolerance to the noisy ex-

amples. Furthermore, even with an informed selection of the two parameters ν and γ, the

learned decision function could still have a very large capacity, resulting in rather complex

contours in the input space (Figure 4.1). Note that this is not an issue with one-class SVM

as the purpose there is simply to identify regions with high density support. The problem
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emerges when we try to label the existing clusters, because for more complex contours it

is hard to identify whether two examples xi and xj are enclosed by the same contour (see

Section 4.3.2). As a result, a lot more clusters than are actually present are detected. Some

approaches which improve the cluster labeling have been proposed [61] but the problems

still persist when multiple dense regions are identified suggesting the presence of multiple

clusters. Suppose also that a user wants to specify the number of clusters that they would

like to be detected in their data (a natural requirement, handled easily in partitioning and

agglomerative clustering schemes). A reasonable way to proceed would be to start merging

the multiple contours according to their closeness to each other. Yet, due to the complex

boundaries, rather nonintuitive clustering might be produced failing to capture the topology

followed by the data.

To improve the performance of SVC in the case of Gaussian distributed noise and to

obtain better control over the number of detected clusters, we explore the density vari-

ability of the data in very small regions. For the purpose, a Mixture of Factor Analyzers

(MFA) [43] is used (see Section 4.4.1). The mixture model, when learned with large num-

ber of analyzers, implicitly detects points that deviate from the main trajectory of the data.

The information about those locally deviating points is used to determine the soft mar-

gin tradeoff between the outliers and the accuracy of the one-class SVM learner, as well

as, to regularize the complexity of the induced decision boundary. The latter is achieved

by weighting the penalty term, imposed on the learner for mislabeling the outliers. The

114



penalty now is set to be proportional to the distance of the outliers to the center of their fac-

tor analyzer. The regularization results in smoother contours, which are shrunk towards the

dense regions in the data, rather than trying to accommodate all outliers. The subsequent

clustering often allows for easier interpretation too. Because of the local dimensionality

reduction performed by MFA and the nonlinear feature map Φ, the “locally constrained”

SVC method is further demonstrated to correctly identify the topological structure of the

data, when the clusters reside on a lower dimensional nonlinear manifold.

The rest of this chapter is organized as follows. Section 4.2 covers several related

to the proposed method approaches. Section 4.3 gives a brief introduction to SVC and

demonstrates some of its advantages and shortcomings. The constrained SVC approach,

proposed here, is studied in Section 4.4. A discussion and evaluation of the method on

synthetic and real data are presented in Section 4.5 and Section 4.6. Section 4.8 concludes

with some open problems and possible future extensions.

4.2 Related work and background

Here we look into several popular directions in unsupervised learning when the data lie

on or near a nonlinear manifold, and try to put the proposed approach in perspective with

those directions.

A number of clustering algorithms have been demonstrated to be particularly suitable

for learning of non-convex formations, e.g. spectral clustering [70], spectral graph par-
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titioning [39], or kernel K-means [84]. A close relation between all of these approaches

has been pointed out before [20]. We focus on one of these algorithms - spectral cluster-

ing. Interestingly, the algorithm shares a lot of commonalities with SVC. They both start by

computing a Gaussian kernel matrix, emulating the high dimensional nonlinear feature map

Φ. From here on, however, spectral clustering performs an eigen decomposition of the data

in the feature space. The projected examples are then clustered, again in the feature space,

using K-means clustering. This is also closer in spirit to the kernel PCA algorithm [83, 84].

Instead, SVC computes the optimal plane that separates the projected data from the origin

in the feature space. In this way a simpler problem is solved by only isolating the higher

density regions. This comes at the price of not knowing the actual clusters in the data, so a

subsequent labeling and assignment step is carried out by SVC.

As mentioned previously, a significant disadvantage of the SVC method is that it re-

quires as an input the width for the kernel function to be used. Spectral clustering, which

also requires such a parameter while building its affinity matrix, resolves this problem by

comparing the inter-cluster variability for the clusters identified by K-means in the feature

space. The width that leads to smallest such variability is selected.

A different set of unsupervised learning approaches try to infer the nonlinear structure

of the data by considering small regions around each example. Some popular methods

following this paradigm are, for example, the Laplacian eigenmaps [11] and Isomap [93].

The general idea behind these algorithms is to compute a neighborhood graph G, where
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each example xi is connected only to examples in its close proximity. The graph is then

augmented to a full affinity matrix, by propagating the neighboring distances, e.g. by

solving an all pairs shortest path problem (Isomap) or by applying a Laplacian operator

(Laplacian eigenmaps). Both methods proceed by computing an eigen decomposition and

projecting the data using a small subset of the eigenvectors. As they preserve the convexity

of the data, the algorithms can easily be extended for clustering by using a partitioning

scheme as K-means or Expectation Maximization (EM) for a mixture of Gaussians. While

local reduction methods have been demonstrated to be unstable in the presence of noise [9],

they remain to be the preferred tool for unsupervised learning from nonlinear manifolds.

In the proposed approach we combine the best features that can be obtained from global

methods, such as SVC and local approximations as the ones discussed above. The under-

lying idea is that a global view of the data can be inferred by looking at the overall density

distribution. The density estimate alone, however, provides for a very coarse reconstruc-

tion of the underlying sample space. Local methods, on the other hand, can smoothen this

estimate by looking at the data statistics in some small regions. This is especially important

if density fluctuations are observed in the data and yet an obvious clustering is available. In

this sense, the proposed method is closest in spirit to the manifold reconstruction method

proposed by Roweis et al. [80]. They use a mixture of factor analyzers to infer the local

structure of the underlying manifold, but then a global constraint is imposed, so that all

local models are aligned to follow a consistent trajectory.
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4.3 Support vector density estimation

4.3.1 One-class classification

Let us have a set of n independent and identically distributed observations: X = {xi}n
i=1.

The problem addressed by one-class classification is to find a minimal region R, which

encloses the data (Figure 4.2). Assuming that the data are generated from the same distri-

bution p, an additional to the minimization of R is the requirement that future test examples

generated by p should also fall with high probability within R. Therefore, apart of being

minimal, R should also generalize well on unseen data, which implies that it should be

enclosed within a smoother decision boundary.

Following similar reasoning as in support vector classification, rather than exploring

the nonlinear boundary in the original space, one could describe it as a hyper plane in the

high dimensional feature space defined by Φ(X). All examples, which in the original space

are enclosed within R, are going to be projected in the same half-space with respect to the

hyper plane. If w·Φ(x) = b is the equation of the plane, this is equivalent to the requirement

that for all examples xi, the inequality w · Φ(xi) ≥ b should hold. The two parameters that

define the plane uniquely, w and b, are its normal vector and its displacement from the

origin respectively. Finally, the plane that corresponds to the smoothest boundary in the

original space is the one with smallest norm of the normal vector w [83]. This suggests that

the hyper-plane that defines the smallest region with smoothest boundary in the original
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space is a solution to the optimization problem:

min
w

1
2
‖w‖2 (4.1)

subject to w · Φ(xi) ≥ b, i = 1..n

It may be useful to restrict R to enclose only a subregion of X that has certain support

µ for the probability density function p, i.e.
∫

p(R)dR ≥ µ, for some µ ∈ (0, 1]. This

will be the case, for example, if we are not interested in the noisy points on the periphery

of the distribution (see Figure 4.2). In the feature space, the points that fall outside of R

will satisfy w · Φ(xi) < b. To account for such points the constraints for them in (4.1)

should be changed to w · Φ(xi) ≥ b− ξi, where we have additionally introduced the slack

variables ξi ≥ 0. The regularization term that guarantees the smoothness of the boundary

also changes, yielding the new formulation:

min
w,b,ξ

q(w, b, ξ) = 1
2
‖w‖2 + 1

nν

∑n
i=1 ξi − b (4.2)

subject to w · Φ(xi) ≥ b− ξi, ξi ≥ 0, i = 1..n

Formulations (4.1) and (4.2) produce the so called hard and soft margin decision planes

respectively. The penalty parameter ν in (4.2) controls the tradeoff between the allowed

slack for some of the examples and the complexity of the region boundary. It takes values

in the interval (0, 1] with ν → 1 allowing for a lot of examples to lie outside the region R,
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Figure 4.2: One-class SVMs detect a region R in the data with higher density support. Points
inside the region are projected in the same half-space defined by the separation hyper plane (w, b).

and ν → 0 penalizing significantly the slack variables, converting the problem effectively

into a hard margin decision problem. The latter case leads to a very tight and complex

boundary for the density region R.

Minimizing the quadratic function q(w, b, ξ) in problem (4.2) is hard, because of the

available constraints. Instead, if we write all constraints in the form qi(w, b, ξ) ≤ 0, the so-

lution is obtained by minimizing the Lagrangian L(w, b, ξ, α) = q(w, b, ξ)+
∑

i αiqi(w, b, ξ).

To minimize L, one sets the derivatives of L with respect of w, b and ξ to zero, which al-

lows for expressing them as a function solely of the introduced Lagrangian multipliers αi

(αi ≥ 0,
∑

i αi = 1) and the data in the feature space Φ(xi). Substituting the values back

120



in the Lagrangian, we obtain the dual optimization problem of problem (4.2):

min
α

1
2

∑
ij αiαjΦ(xi) · Φ(xj) (4.3)

subject to 0 ≤ αi ≤ 1
nν∑n

i=1 αi = 1

The class of feature mappings Φ(X) that linearly separate the data from the origin is

not available in parametric form, yet it is selected so that the dot products in the feature

space correspond to a computable kernel function in the input space, i.e. k(xi, xj) =

Φ(xi) · Φ(xj). In SVC the Gaussinan kernel k(xi, xj) = e−γ‖xi−xj‖2 is used, as it defines

smooth closed contours [14, 92]. All multipliers αi > 0 in the solution of (4.3) correspond

to the support vectors, i.e. the examples which in the feature space lie on the separating

hyper-plane (see Figure 4.2). For the rest of the points xi the corresponding αi is equal to

zero. To test on which side of the hyper plane such examples are projected, one needs to

substitute them in the equation of the plane as defined by the computed support vectors:

f(x) = sgn[
∑

xi∈SV s

αik(xi, x)− b] (4.4)

Positive f(x) implies that x falls within the dense subspace R, whereas negative values

of the decision function imply a sparsely populated region. Observation xi from the input

set X for which f(xi) < 0 are called bounded support vectors. The value of the displace-
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ment b can be computed using the fact that any support vector xs lies on the separation

plane, and thus it satisfies the equality w ·Φ(xs) = b, which can also be expressed in terms

of the kernel function as
∑

xi∈SV s αik(xi, xs) = b.

The formalization defined so far is not the only way for computing high dimensional

density support. For instance, rather than looking for the optimal separation hyper plane,

Ben-Hur et al. [14] study the class of spheres in the feature space that enclose the projected

examples. They derive an alternative formulation of problem (4.3), which instead mini-

mizes the volume of the enclosing hyper sphere. An equivalence of the two formulations

has been demonstrated by Schölkopf and Smola in [83]. Here, the density estimation step

is carried out as in the original one-class SVM formulation.

4.3.2 Support vector clustering

The one-class density estimation method can easily be extended to a clustering scheme

by computing a matrix A for the data, where Aij = 1 if xi and xj are enclosed within

the same contour and 0 otherwise. Whether xi and xj lie within the same contour can

be determined by computing the SVM decision function (4.4) for all points on the line

that connects them. In the original SVC formulation (and also in our implementation) 20

regularly spaced points between xi and xj are tested. An always positive decision function

guarantees that xi and xj are part of the same dense region. The opposite, however, is not

necessarily true. For some points, on the line between two examples, f may negative, but

the examples may still be within the same contour. This is often the case if the contours
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Figure 4.3: One-class SVMs can be extended to a clustering scheme, by assigning the same label
to all points enclosed within the same contour. For example, xi and xj are within the same contour
if for any point x on the line between them the decision function f(x) is non-negative.

are too complex. Therefore one needs to detect the connected components in the graph

induced by A. This determines the number of clusters in the data as well as the labels for

each example that is enclosed by a contour. Finally, the bounded support vectors (i.e. the

examples outside the contours) are assigned to their closest cluster (see Figure 4.3).

While precise parametrization is not so essential when only density estimation is re-

quired, it becomes of crucial importance in the case of clustering. Consider, for example,

Figure 4.3. Selecting a large kernel width (i.e. small γ) would disguise the fact that there is

large fluctuation between the density of the inner and the outer circles. Large values of γ or

too small tradeoff terms ν, on the other hand, can produce decision boundary of a very high

capacity, which leads to multiple tight contours in the original space. Apart of obtaining too

many small and nondescriptive clusters, the complex decision function impedes the proper

labeling even of elements that are within the same contour. For some examples xp all lines
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connecting them to other examples xq within the same contour, would pass through regions

where the decision function has negative value. Such examples will be assumed to belong

to a different cluster.

The lack of control over the number of clusters produced by different parametrizations

is a significant drawback of the scheme. A common requirement in clustering is that the

users provide the number of clusters that they want to be detected in their data. Such a

requirement is easily handled by partition clustering (e.g. K-means), agglomerative clus-

tering and even kernel based algorithms as spectral clustering. Unfortunately there is no

clear unsupervised strategy of how such user imposed constraint can be incorporated in

SVC. One reasonable way to emulate such behavior, would be to start exploring kernels

with monotonically decreasing widths until at least as many clusters as users require emerge

from the data. Such iterative approach is followed for example in [62]. As will be shown in

the experimental evaluation, this strategy, though pretty robust in the case of well separated

and dense clusters, can cause the occurrence of some rather uninformative formations when

the clusters are sparse and noise is present in the data.

Next, we introduce a modification of the SVC approach, which improves on its stability

in the presence of noise. The method is further demonstrated to be less sensitive to slight

changes in the parametrization.
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4.4 Locally constrained SVC

A leading observation in here is that both global density estimation methods as SVC, and

local reconstruction methods as Isomap [93] or LLE [79] introduce some information about

the data, which is somewhat complementary. For example, support vector clustering pro-

vides some very important information about the overall structure of the data. Namely,

an estimate of its density. A local method can complement this with additional region

boundary smoothing and can evaluate locally which points are likely to deviate from the

unknown distribution that has generated the data. The method that we utilize here to obtain

such local statistics is based on the Mixture of Factor Analyzers framework introduced by

Ghahramani et al. in [43]. We term the algorithm derived in this section locally constraint

support vector clustering (LSVC).

4.4.1 Mixture of factor analyzers

Factor analysis (FA) is a technique for linearly projecting the data X ⊂ RD into a lower

dimensional space Rd [36]. Ghahramani et al. [43] derive an EM procedure for learning the

projecting dimensions z. They make the simplifying assumption that the dimensions z are

normally distributed with zero means and variance one, i.e. z ∈ N (0, I) (I here marks the

identity matrix). Furthermore, each example is also allowed to have some residual noise u,

which is also assumed to be normally distributed with covariance Ψ, i.e. u ∈ N (0, Ψ). To
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summarize, the following relation is enforced:

x = Λz + u (4.5)

where Λ is the so called factor loading matrix. In (4.5) the noise covariance matrix Ψ is

required to be diagonal. The common factors z are used as latent variables to iteratively

obtain an improved likelihood estimate for the observed data x (E-step of the algorithm),

recomputing on each iterations more optimal values for the matrices Ψ and Λ (M-step of

the algorithm).

Ghahramani et al. [43] also suggest that one could have a mixture of factor analyzers,

rather than a single one, where every component in the mixture can have different mean

µj and loading matrix Λj . The noise term in the mixture is preserved the same across all

factor analyzers, i.e. zj ∈ N (µj, Ψ). The goal now becomes to find a maximum likelihood

estimate for the observed data x, using the latent variables zj , and the probability that

it has been projected using the j-th factor analyzer (E-step of the mixture model). On

every iteration the MFA algorithm, apart of computing some more optimal estimates of

the matrices Ψ and Λj , also improves on the estimate for the mean of the analyzers µj too

(M-step of the mixture model).

Figure 4.4 illustrates the MFA algorithm when applied with twenty components. As

a clustering approach MFA resembles significantly the simple EM for a mixture of Gaus-

sians, and often produces clusters of similar characteristics. Apart of clustering the data,
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Figure 4.4: The topology of the data is closely approximated with a mixture of 20 factor analyzers.
The ellipses outline two standard deviations from the center of the analyzers. The mixture can be
used to detect “local” outliers, such as P2 that may bridge the existing clusters.

however, MFA also estimates the optimal lower dimensional representation for the exam-

ples in each cluster. This is an essential characteristic when the data follow the structure of

a lower dimensional manifold embedded in the original space RD. The locally constrained

SVC method suggested here exploits this property.

4.4.2 Regularization of the one-class learners

What we use in the introduced approach is the fact that MFA can single out the majority

of the outliers that fall outside the main trajectory followed by the data. In Figure 4.4 the

ellipses outline a two standard deviations region around the mean of the corresponding

local clusters. Points, such as P1 and P2 that are too distant from their cluster centers, are

indeed among the noisy points bridging the two global concentric clusters. Cleaning the

dataset from these points can significantly improve the performance of the SVC method.
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Note also, that using only the MFA method for reconstructing the underlying distribution

will not provide a good enough solution either. Applied as a local method, similarly to

Isomap and LLE, MFA can be instable because of the noise [9]. For instance, the two

analyzers that bridge the two clusters on Figure 4.4 will impede the proper identification

of the present formations. This comes to illustrate the importance of having an additional

input from the global density method too.

Before we show how the information obtained through MFA can improve the one-class

SVMs, it would be useful to understand how the outliers impact the detected contours. In

the soft margin formulation (4.2), every example is allowed to cross the decision boundary

with a penalty controlled by the slack variables ξ. This makes the decision function less

complex, at the price of some misclassified examples xi, which in this case means that the

function underestimates the density around these examples. Misclassification of all such xi

is penalized proportionally to their distance to the separation plane (ξi), but with the same

weighting factor 1
nν

. Assuming that there is an additional, possibly uncertain, knowledge

about which examples are actually outliers, the procedure might instead be changed to use

different weighting factors. The idea is similar to the weighted SVM classification, that has

been demonstrated to be suitable in the case of imbalanced classes [35], with the difference

being that the weights now should be determined based on the confidence that a certain

example is an outlier.
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A confidence estimate of the importance of each example can be obtained by measuring

the example’s deviation from the mean of the factor analyzer that it belongs too. If zj =

(zj
1, z

j
2, . . . , z

j
rj

)′ are the projections of the examples that are assigned to the j-th mixture

component, then the deviation of each example projection zj
i can be expressed through the

Mahalanobis distance:

dj = [(zj − µj)
′Cj(zj − µj)]

1/2 (4.6)

In the above, the covariance of the j-th factor analyzer is estimated as Cj = ΛjΛ
′
j + Ψ

(see [43]). Now we adjust the penalty for misclassifying examples that are believed to be

outliers (i.e. examples with large distance dij to their corresponding center µj) to be small,

so that the decision function is not so influenced by them. This will smooth the separation

boundary inferred by function (4.4), and hence will decrease the chance of having multiple

small contours around even not so representative neighborhoods. To achieve that, each

individual penalty term is modified to be inversely proportional to its Mahalanobis distance

di. Now (4.2) is written as follows:

min
w,b,ξ

1
2
‖w‖2 + 1

nν

∑n
i=1

1
di

ξi − b (4.7)

subject to w · Φ(xi) ≥ b− ξi, ξi ≥ 0, i = 1..n
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For brevity of notation in (4.7), we have omitted the indicator showing to which factor

analyzer the projection of an example xi belongs, yet it should be kept in mind that the

distances di are computed based on the individual mixture components. Note, that the

feature map Φ is applied on the original variables xi rather than the projections zi. The

latter is done because the projecting dimensions for every factor analyzer are different.

As density estimation in higher dimensional spaces has degrading effectiveness, it may

still be necessary to perform a dimensionality reduction of the space X before solving the

optimization problem (4.7). For that purpose, one could detect a global coordination for

all factor analyzers [80], or just use a linear reduction as PCA as suggested by Ben-Hur et

al. [14]. Here we use the second approach, which does not diminish the importance of MFA

in the overall scheme, as the example weights have been computed based on the intrinsic

dimensionality inferred by the method.

The Lagrangian now has the form:

L =
1

2
‖w‖2 +

1

nν

n∑
i=1

1

di

ξi − b−
n∑

i=1

αi(Φ(xi)− b + ξi)−
n∑

i=1

βiξi (4.8)

Taking the derivatives with respect to the primal variables w, b, and ξi and substituting in

(4.8) we obtain the dual optimization problem which we now try to maximize with respect
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to the dual variables αi. This yields the constraint optimization problem:

min
α

1
2

∑
ij αiαjΦ(zi) · Φ(zj) (4.9)

subject to 0 ≤ αi ≤ 1
dinν∑n

i=1 αi = 1

In [83] the one-class SVM optimization problem is demonstrated to be solvable with

a fast iterative technique called sequential minimal optimization (SMO). What makes the

method applicable is the special form of the objective function and the linear equality con-

straints
∑n

i=1 αi = 1. Both, the function and the equality constraints in (4.9), are similar to

the ones in problem (4.3), which means that we can perform the optimization using SMO

again. What differs in the two formulations (4.3) and (4.9) are only the constraints imposed

on αi, which now are allowed to be upper-bounded by different values. That upper-bound

is determined based on the confidence for the corresponding examples to be outliers.

It may be argued that the described process will also identify as noisy points that are

not necessarily outliers. For instance, the points P3 and P4 in Figure 4.4. They are part

of denser regions, yet they deviate from their component centers too. In this sense we

say that the feedback obtained from MFA is uncertain, yet this will not necessarily have a

detrimental effect, as the collaboration with the density estimation procedure again comes

into play. The decision function evaluated for the denser region where P3 resides will be
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positive for a large set of kernel widths, and the optimal slack variable for this point will

most likely be zero, regardless of what constraint is imposed on its weight.

The number of mixture components that we use in the evaluation procedure is set to be

larger than the number of clusters that we would like to be detected in the data. In general

it is a good practice to use at least several analyzers for each cluster that we want to detect.

This ensures that if there are non-convex clusters present, each cluster may be covered with

more than one component on average, which would better outline the cluster’s topology.

This may seem like very loose specification, yet we observe that even providing a relatively

large number of components the LSVC algorithm still correctly detects as bounded support

vectors points that are indeed outliers. We could also specify the number of analyzers as a

fraction of the total number of examples. In this mode MFA would roughly approximate

methods, such as Isomap or LLE which use neighborhoods of certain size to reconstruct

the underlying structure. For example, if we set the number of analyzers to be equal to n
10

,

then most components in the mixture will on average have ten elements and will resemble

the neighborhoods constructed by the local methods.

Before we conclude this section, we note another interesting estimate that can be ob-

tained through the MFA algorithm, namely, that of the tradeoff parameter ν. [82] demon-

strates that the optimal ν to be specified in the one-class optimization problem (4.2) should

be an upper bound on the fraction of outliers that are assumed to be present in the data. This

fact by itself is not very helpful, as the number of outliers is unknown in advance. Using
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the factor analyzers, however, such an estimate can be obtained for example by counting

the elements which deviate significantly from the mean of their mixture component. For

the purpose, we compute the empirical standard deviation of the Mahalanobis distances dij

within each analyzer. Then we set ν =
∑

j sj/n, where sj is the number of examples that

are more than two standard deviations away from the mean of the j-th analyzer.

4.5 Discussion

Using an example, we will elaborate on the effect that the introduced weighting scheme

has on the detected contours. We run the two algorithms, SVC and the LSVC, on the

synthetic “target dataset” from Figure 4.6 (see Section 4.6 for details about its generation).

The parameters used for both algorithms are γ = 8 and ν = 0.1. Ten factor analyzers were

used in the weight computing step for LSVC.

Figure 4.5: γ = 8 and ν = 0.1. Left: SVC tries to accommodate all examples building complex
contours and incorrectly bridging the two concentric clusters. Right: LSVC, the proposed here
method, detects most outliers. The contours shrink towards the truly dense regions and the two
main clusters are separated correctly.
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The black diamonds on the graphs represent bounded support vectors or support vectors

which were found to form no connected components with any of the other examples (i.e.

they form a one point cluster). As Figure 4.6 left shows, SVC tries to learn a decision

boundary that accounts for almost all of the examples. This results in bridging the two

concentric clusters present in the data. For the same parameters, LSVC (see Figure 4.6

right) forms contours that are shrunk towards the means of the data distribution. Multiple

points, with lower density around them, are identified as bounded support vectors. Such

points are identified as noise in the MFA step, and their weights in building the decision

function have been decreased. The central circle is now identified as a separate cluster,

while the outer circle has approximately as many clusters as in the SVC case.

It could be argued that we give an advantage to the LSVC algorithm by allowing the

penalty to vary due to the different weights, while for SVC it is fixed with the constant ν.

It is true, that if we relax the penalty for all examples (i.e. increase ν), some of the noisy

points will be identified as bounded support vectors by SVC too. Yet, there is the problem

of how exactly ν should be determined to improve the performance of SVC. In this case

the value ν = 0.1 was automatically computed using the previously described procedure

of counting the deviating points for the ten factor analyzers. Furthermore, a suitable value

for ν may not exist for the currently selected γ. For example, increasing ν twice produces

almost identical results as ν = 0.1. Increasing it four times leads to the graph on Figure 4.6

left.
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Figure 4.6: Left: SVC for γ = 8 and ν = 0.4. Many outliers are now correctly identified, but the
rest of the points are split into multiple uninformative clusters. Right: SVC for γ = 9 and ν = 0.1.
Increasing γ also cannot achieve the LSVC effect. The contours become very tight and complex
and start splitting into multiple clusters.

SVC detects the internal circle as a separate cluster now, but the outer circle is split into

multiple nonintuitive clusters. Another alternative to isolating the noisy points would be to

keep ν unchanged and decrease the kernel width instead. However, there is again the issue

of what kernel width would be more accurate. Decreasing the width, though, increases the

complexity of the boundary forming some rather tight contours (see Figure 4.6 right) that

at some point may also split into multiple clusters.

4.6 Experimental evaluation

To demonstrate the performance of the proposed method we employ the following unsu-

pervised procedure, which we run with both algorithms SVC and LSVC. For every dataset

we specify the number of clusters k that we would like the algorithm to detect. For all

experiments the number of factor analyzers in LSVC is set to 10. The value of ν is deter-

mined as the fraction of outliers detected in the MFA step. The same value of ν is used in
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parameterizing SVC too. We vary log γ within the interval [−16, 16] starting with -16 and

incrementing it with step 1 at a time. This gradually increases γ (i.e. decreases the kernel

width) and causes for more clusters to emerge. We stop the procedure when the number of

clusters detected by the algorithm k̂ surpasses k (i.e. k̂ ≥ k). The procedure is suitable for

comparing the robustness of the two algorithms, as the rate with which the clusters emerge

when slowly decreasing the kernel width is highly correlated to the stability of the density

estimation procedure in the presence of noise.

Though SVC and LSVC are primarily density estimation methods, rather than cluster-

ing algorithms for detection of fixed number of classes, we also check which would be the

k clusters that the algorithms will return to the users. For the purpose, if k̂ is larger than k,

we start appending smaller clusters to the k largest clusters. The merging is done based on

the minimal pairwise distance between the different clusters. Though not formal enough,

and prone to certain errors, this merging step is suitable for detecting whether the clusters

identified by the algorithms are well separated or there are dense regions that bridge them.

The bounded support vectors are also assigned to their closest cluster.

4.6.1 Synthetic datasets

We first study the performance of SVC and LSVC on the synthetic dataset used throughout

this exposition. The data represents two concentric circles (see Figure 4.7), and is generated

similarly to one of the datasets used by Ben-Hur et al. in [14]. The inner concentric

circle contains 150 points from a Gaussian distribution with identical variance along both
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dimensions. The outer circle is composed of 300 points from a radial Gaussian distribution

and a uniform angular distribution.

Figure 4.7: Top: the proposed LSVC algorithm; left: the contours and the clusters identified by the
automatic procedure (the black diamonds indicate the bounded support vectors detected as noise);
right: merging to obtain only two clusters. Bottom: the SVC algorithm; left: identified contours and
clusters; right: merging to obtain only two clusters.

We set k = 2 and run the described automatic procedure. The ν value is computed to be

0.1. For log γ < 2 both SVC and LSVC detect only one cluster. For log γ = 2 LSVC and

SVC detect four clusters (see Figure 4.7 left) and as k̂ > k the procedure terminates. LSVC

identifies 62 bounded support vectors (the black diamonds on the graph) against only 2 for

SVC. The merging of the detected clusters results in 99% accuracy for LSVC and only

54% for SVC (see Figure 4.7 right). Manually probing among a larger set of (γ, ν)-pairs

137



Figure 4.8: Top: the proposed LSVC algorithm; left: clusters identified by the automatic pro-
cedure; right: merging to obtain only two clusters. Bottom: the SVC algorithm; left: 5 small
nonrepresentative clusters are identified with the automatic procedure; right: using supervision we
detect parameters that lead to better clustering, which still fails to isolate the noise.

we managed to identify values for SVC that also produced high accuracy after the merging

procedure, but for those values there were multiple nonintuitive clusters detected by the

algorithm and some rather complex contour boundaries.

The Swiss roll dataset is a standard benchmark data for evaluating local unsupervised

techniques for clustering and dimensionality reduction [79, 93]. We have removed some of

the examples from the original dataset to obtain two disconnected non-convex clusters (see

Figure 4.8). The data is three dimensional and contains 900 examples to which we have

additionally added some Gaussian noise.
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For this experiment, the MFA step of the LSVC algorithm is set to use a two dimen-

sional projection z. The number of required clusters is set to k = 2. The tradeoff term

is computed as ν = 0.07. log γ = −1 is the first value for which the LSVC method de-

tects more than one cluster (k̂ = 9). The number of bounded support vectors is 65 (see

Figure 4.8 left top). Note that the bounded support vectors are positioned on the periphery

of the two clusters, detecting much of the bridging noise that could degrade the clustering

approach. Applying the merging procedure yields the clustering presented on Figure 4.8

top right. The accuracy is again approximately 99%.

The SVC algorithm detects k̂ = 5 clusters for log γ = −2, and thus the automatic pro-

cedure terminates. Four of the clusters, however, correspond to some small dense neigh-

borhoods and do not detect the two large point formations in the data (see Figure 4.8 bot-

tom left). Only one bounded support vector was found, underestimating significantly the

amount of noise present. The accuracy after merging is 78% with most points from the

smaller cluster being assigned to the larger one. We again manually probe for other pos-

sible parameters that can produce a more accurate merging step for SVC. We find that the

pair (log γ = −1, ν = 0.07) identifies 14 clusters and 16 bounded support vectors (see

Figure 4.8 bottom right), which after merging do lead to high accuracy as in the LSVC

algorithm. Again, in this case, the detection of the suitable values required additional su-

pervision and still produced larger number of not very representative small clusters.
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4.6.2 Time series extracted from facial images

The Frey face images have been demonstrated by Roweis et al. [80] to reside on a smooth

two dimensional manifold. Several examples of the images in different representation are

shown in Figure 4.9 and Figure 4.10. In the evaluation here we randomly select 1000

examples from the original dataset.

Figure 4.9: Time series representation of the Frey face images. Each point corresponds to the
greyscale intensity of a pixel.

Every example is recorded as a 560 dimensional vector (the images are 20x28 pixels),

where the dimensions correspond to the greyscale intensities of each pixel. This naturally

converts the images into a time series representation as shown with the four examples in

Figure 4.9. The representation is quite expressive, preserving much of the information

available in the images. For example, while the dependence of neighboring pixels within a

row of an image is directly preserved through the correlation of neighboring points in the
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corresponding time series, the dependence of neighboring pixels within a column is also

captured by the periodicity in the time series representation.

Figure 4.10: Top: the proposed LSVC algorithm; left: clusters identified by the automatic proce-
dure; right: merging clusters to obtain only two clusters. Bottom: the SVC algorithm; left: 1 large
and 1 small nonrepresentative cluster are identified with the automatic procedure; right: using su-
pervision we detect parameters that lead to better separation, but still with some nonrepresentative
clusters.

As mentioned above the data are known to reside on a smooth manifold, where the

position of the examples on the manifold is determined by the expression of the face and

the rotation of the head. Those are the features that separate the data into the two dense

clouds seen in the figure. To facilitate the density estimation procedure rather than using

the high dimensional representation space we first apply an off-the-shelf dimensionality
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reduction technique (PCA) and project the data along the top three eigenvectors. The MFA

step of the algorithm is again set to use two dimensional projections z. We also set k = 2,

aiming to detect the two dense formations that can be observed on the PCA projection in

Figure 4.10.

The tradeoff ν is computed to be 0.07 and log γ = −14 is the first γ for which LSVC

detects more than one cluster. The algorithm identifies exactly k̂ = 2 clusters and 129

bounded support vectors which again outline correctly the bridging noise between the two

distributions (see Figure 4.10 top left). Assigning the bounded support vectors to the closest

dense region results in the clustering demonstrated in Figure 4.10 top right.

For the SVC algorithm log γ = −13 yields the kernel width that first detects more

than one cluster (k̂ = 2). One of the clusters, however, is a small region of just a few

elements (see Figure 4.10 bottom left). The merging step does not change this result either.

Increasing log γ twice did lead us to better cluster assignment (see Figure 4.10 bottom

right), which after merging the multiple clusters produced two clusters similar to the ones

identified with LSVC. However, the value required additional supervision and also detected

multiple non-representative clusters. Moreover, very few of the scattered examples between

the two dense formations were detected as noise (i.e. bounded support vectors).

4.6.3 Time series representing shapes

The Arrowheads dataset was earlier studied in Chapter 3. Here we use a subset of it con-

taining the time series extracted from the shape contours of 600 projectile images. There
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Figure 4.11: Arrowheads dataset. 2D MDS projection with representative examples for the six
classes present in the data.

are six classes of projectiles labeled in the subset. The time series are formed again as de-

scribed in Chapter 3. We have further aligned and resampled all time series in the dataset,

representing them with 340 dimensional vectors.The data is then projected using the two

largest eigenvectors (see Figure 4.11).

The dataset is rather difficult to discriminate, with many bridging elements between the

available classes, and with some classes (leaf and lanceolate) significantly overlapping.

We run the SVC and the LSVC algorithms with k = 6. The MFA projection z is again

two dimensional. The value for ν is computed to be 0.09. The contours detected by the two

methods and the clusters after the merging procedure are presented in Figure 4.12.

Both methods detect less than six clusters for log γ < 1. For log γ = 1, LSVC finds

19 clusters and isolates 60 bounded support vectors (see Figure 4.12 top left). After the

143



Figure 4.12: Top: the proposed LSVC algorithm; left: the contours and clusters identified by
the automatic procedure (colors are assigned agnostically); right: merging to obtain six clusters.
Bottom: the SVC algorithm; left: the identified contours and clusters (colors are assigned agnos-
tically). The method tries to accommodate much of the noise building more complex boundaries;
right: merging to obtain six clusters. The accuracy is significantly lower compared to the LSVC
algorithm: 60% vs 73%.

merging procedure, we map the six clusters that we identify to the original labels that yield

highest accuracy. The result is presented in Figure 4.12 top right. The accuracy of the

method is∼ 73%. In summary, the LSVC method performs well and succeeds in capturing

the objectively dense regions in the data.

The SVC approach fails to separate the stemmed class, and hence the worse accuracy

of the clustering∼ 60% (see Figure 4.12 bottom right). The number of clusters detected by

the method is 18 and the number of bounded support vectors is six (see Figure 4.12 bottom
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left). SVC also identifies some objectively dense regions in the data, but the contours are

again more complex and tend to accommodate most of the bridging elements between the

different classes.

4.7 Improving the efficiency of transductive learning

Transductive learning is a form of semi-supervised learning where apart of the labeled

data we are also given a set of unlabeled examples, whose position in space might be

explored in order to improve the inductive learners alone [28, 50]. More formally, The

observations X = {xi}n
i=1 now give rise to two separate sets: a set L = {(xi, yi)}m

i=1 of

labeled examples, where yi = ±1; and a set of unlabeled examples U = {x∗i = xm+i}p
i=1,

where m + p = n. The goal is to improve the binary inductive classifiers trained only

on L. Unlike other semi-supervised approaches, where trained on L and U classifiers

are constructed in a manner that would increase their generalization performance on other

unseen examples outside of X , in transductive learning the goal for the trained classifier

is simply to achieve optimal performance only on X , i.e. derive maximally accurately the

labels {y∗i }
p
i=1 of the examples x∗i . This subtle difference between transduction and semi-

supervised learning in general, turns out to be important, as it allows constructing methods,

which have at least theoretically better properties, meaning that better performance bounds

can be derived for them [28].
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Figure 4.13: Left: Light-curves - PCA projection with three random time series examples from
each of the three classes. Right: Density estimate of the LSVC method.

A drawback of transductive learning is that the algorithms become extremely inefficient

with increasing the number of unlabeled examples. Here we look into an interesting ap-

plication of the proposed constrained one-class SVM method for improving the efficiency

of transductive inference. Only the density estimation part of the method will be used, and

the cluster labeling part of LSVC will be ignored in the current application. For evaluation

we use the light-curves dataset described in Chapter 2. A two dimensional PCA projection

of the three classes of light-curves is presented in Figure 4.13 left. As pointed previously,

the Cepheids (CEPH) have very similar shape with the RRLyrae (RRL) class, which is re-

flected in the large overlap of their projections. Separating them is hard, and instead the

binary classification problem that we try to solve here is to recognize the Eclipsed Binaries

(EB) time series from the time series of the other two classes.

Figure 4.13 right shows the density estimate of the proposed constrained SVC method.

This noise resilient density estimate is an important information that we utilize in the cur-
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rent result. Intuitively, we would like a binary classifier not to intersect the curved manifold

formed by the non-EB examples, nor the dense cloud of the EB time series.

Now assume that we have a sample of 1000 light-curves, only 70 of which are labeled

as indicated on Figure 4.14 top left. The labels are respectively 50 non-EB and 20 EB

examples, which corresponds roughly to the ratio of positive vs. negative among the unla-

beled examples too. Knowing this ratio, though not always feasible, is a key requirement

for semi-supervised approaches not to infer trivial solutions that assign all examples to

only one of the classes, and therefore for the sake of the example we assume that we can

closely satisfy it. The example is further manipulated to the extent that we have restricted

the regions from which we have randomly sampled the labeled examples, and thus the two

labeled groups are not representative of the entire EB and non-EB distributions. We find

this to be a commonly encountered in practice scenario and one of the main reason for

inductive approaches to achieve lower accuracy rates even when large number (an order of

few thousands) of labeled examples are available.

As seen in Figure 4.14 top right, due to the biased labeled sample, the inductive linear

SVM classifier is shifted closer to the EB class. The decision boundary that maximizes

the margin to the two labeled sets, intersects part of the periphery of the EB set and thus

classifies incorrectly some of its examples.

We would like despite of the bias in the labeled examples to come out with a classifier

that is as far away from the dense distributions as possible. This is achieved with the
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Figure 4.14: Top left: light-curves - PCA projection, labeled and unlabeled examples. Top right:
performance of the inductive linear SVM classifier. Bottom left: performance of the transductive
SVM classifier using all unlabeled examples. Bottom right: performance of the transductive SVM
classifier using as unlabeled examples only the support vectors identified with the LSVC method.

tranductive SVM formulation which takes into account the position in the data space of

the unlabeled data too (see Figure 4.14 bottom left). For clarity of the discussion we list

this formulation, pointing for many of the details and how it is derived naturally from the
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Structural Risk Minimization principle to [50, 94]:

min
(w,ξ,ξ∗,b,y∗)

1

2
||w||2 + C

m∑
i=1

ξi + C∗
p∑

i=1

ξ∗i (4.10)

subject to yi((w · xi) + b) ≥ 1− ξi i = 1, m

y∗i ((w · x∗i ) + b) ≥ 1− ξ∗i i = 1, p

y∗i = ±1

ξi, ξ
∗
j ≥ 0 i = 1, m; j = 1, p

In 4.10 ξi and ξ∗j are the slack margins with which labeled and unlabeled examples re-

spectively can be misclassified. For the evaluation in this section we use the hard margin

formulations that do not allow slack for any of the examples in the inductive or the trans-

ductive settings. Therefore, no additional parameter adjustment is required for the tradeoff

parameters C and (C, C∗) in the inductive or transductive linear SVM classifiers.

Problem 4.10 is hard to solve, because it has to optimize along the integer labels y∗i . A

full search would involve computing all possible±1 label assignments, which is equivalent

to checking 2p combinations. Even for modest number of unlabeled examples p, this is

merely intractable. Mixed-integer programming solutions like [15] are also shown to be

extremely inefficient [50]. An approximate solution that scales “up to 100,000 examples

in reasonable time” has been suggested in [50]. The solution starts with the inductive

solution (see Figure 4.14 top right) and in a gradient descend procedure tries to improve
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it by iteratively switching the label assignment for some of the examples x∗i . We use the

SVMLight transductive implementation from the author of this approach [50], and obtain

the result in Figure 4.14 bottom left. The dense regions now start “pushing” away the

inductive decision boundary through the help of the unlabeled examples. The effect of

unlabeled examples causing the decision bound to pass through sparser regions of the data

space has been observed before and is believed to be the main cause for semi-supervised

approaches to achieve better accuracy [29].

The idea that we develop here is sparked by the question: are all unlabeled examples

equally important for pushing the decision function away from the dense clusters, and if

not, how can we select the examples that matter? The answer naturally arises from the

techniques that we have developed so far in this chapter. Figure 4.14 bottom right shows

the contours of the dense regions identified with the LSVC method. Obviously we do not

want the decision function to cross those, and therefore it seems as a reasonable idea to

remove from consideration the unlabeled examples within those contours, i.e. examples

for which the density support function (4.4) is positive. Including them will only make the

learner try to evaluate decision functions that pass through them and separate them with

large margins, which is precisely what we would like to avoid. We also do not want to

be influenced by examples in the sparse areas too. Those can be identified as the bounded

support vectors with largely deviating negative values of the decision function (4.4). By re-

moving the examples with high density support and the deviating bounded support vectors,
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we are left only with the support vectors outlining the contours of the one-class SVM and

some of the bounded support vectors close to this decision boundary. For our light-curve

example we are thus left with 47 such support vector examples (see the circled examples

in Figure 4.14 bottom right), from which we remove three that happen to be among the

labeled subset too. Finally, we run again the transductive SVM implementation, but this

time only with the remaining 44 bounded support vectors as unlabeled examples x∗i , rather

than all 930 as in the previous transductive evaluation. As shown in Figure 4.14 bottom

right, this largely reduced set of unlabeled examples again achieves the effect of moving

the inductive decision away from the dense regions. The accuracy of both transductive ap-

proaches is 99.68% which is a slight improvement over the 99.14% classification accuracy

of the inductive learner. The gain in running time of the improved transductive learner

though is enormous - for the small dataset of 1000 light-curves the original transductive

SVM requires 74 secs. to converge to a solution, while on the same computer configura-

tion and again with the SVMLight transductive implementation our improved solution is

computed in less than 3 secs. This time also includes the running time of the MFA weight

computation and the time for the one-class density estimate.

4.8 Concluding remarks

The chapter presents a method for improving the stability of the support vector cluster-

ing (SVC) algorithm in the presence of noise and bridging elements between the available
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clusters. The introduced algorithm uses a mixture of factor analyzers (MFA) to learn a

weighting, representing the confidence that a certain example is an outlier. The weights are

later used to regularize the complexity of the decision function computed for the clustering.

On synthetic and real datasets, we demonstrate that our method produces superior results

than SVC alone. The results also indicate that complementing the best features from local

and global clustering approaches can provide for a powerful tool for learning of clusters

sampled from nonlinear manifolds. The developed techniques are also demonstrated to in-

troduce several orders of magnitude speed-up over one of the most popular semi-supervised

learning approaches, the transductive support vector machines, without sacrificing their ef-

fectiveness.

A possible future direction of research could study the effect of automatically inferring

the suitable number of analyzers to be used with the model. Such non-parametric Bayesian

extensions of the MFA model have been proposed before in [42], but whether they will

be effective and efficient for the purpose of nonlinear manifold reconstruction needs to be

further verified.
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Chapter 5

Conclusion

There is an amazing wealth of domains where data have natural time series representation.

What is surprising though is not merely the fact that data can be expressed as time series,

but also that this yields high rates of accuracy across multiple data mining tasks. Coupled

with appropriate similarity measures, we demonstrated effective time series representations

for datasets as diverse as star light signatures, web queries, surveillance footages, object and

facial images etc. The natural question here is: can we go even further? Can we extend

this ordered real value encoding for domains where discrete descriptions are assumed as

a norm? For certain datasets, such as DNA sequences reasonable attempts have already

been made [27, 111], yet may be even better time series encoding can be defined for them.

There are other areas, however, like the widely emerging social networks on the web, that

still lack reasonable time series representation. If such is found, it may lead to solving some

of the major problems associated with the enormous graphs representing these networks.
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It could allow, for example, the parallelization and the efficient mining of patterns observ-

able for many users within the network, or for building descriptive “profiles” that allow us

differentiate between the behavior of individual users.

Interestingly, the biggest strength of the time series representation, its expressiveness,

turns out to be its most problematic feature too. To achieve higher accuracy, we often

use higher dimensional time series. The higher dimensionality leads to higher risks of

accumulating some amounts of noise along certain dimensions. The source of this can

be different. For example, some of the telescope images that astronomers use to extract

light curves might be of degraded quality, or the preprocessing techniques that are applied

might turn out to be erroneous in their own. Thus, even if the data are of intrinsically

lower dimensionality, the amount of noise accumulated in the original, feature-rich space,

prohibits from detecting the accurate low dimensional embedding. This illustrates the need

of deriving time series techniques robust in the presence of noise. Here we demonstrated

such unsupervised techniques for both of the possible scenarios - when the noise itself is of

interest and the severe outliers need to be detected and studied; and when the noise should

be isolated from any structured signal. From here on we think there are three interesting

research paths that can be followed:

• Currently, a major constraint for some of the presented unsupervised algorithms,

such as the b-Isomap reconstruction and the constraint support vector clustering, is

their efficiency. The efficiency and the memory requirements are a drawback of all
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subspace reconstruction techniques, yet for the noisy settings that we work in it might

be possible to sparsify the affinity matrices used in the reconstruction. This will bring

our manifold methods closer to the real world standards of terabyte-sized datasets,

used for example by the leading web search companies.

• An important aspect that has long intrigued the machine learning community is

whether having more data is always helpful. May be removing the noisy exam-

ples will lead to better efficiency and better, or at least comparable, accuracy as

demonstrate in [6]. The effect of removing examples has not been thoroughly stud-

ied neither for the discord detection algorithm, nor for the manifold reconstruction

techniques.

• An important issue, especially in the presence of noise, is what contributes to the bet-

ter accuracy of our methods. Is the prediction error decreasing only on average (i.e.

there is less bias), or we can expected an improvement for every single example (i.e.

there is smaller variance). In a previous work [108] we have demonstrated that one

can construct time series learners that improve both the bias and the variance of the

prediction error. We believe that algorithms with such properties will become more

and more important in the light of the sparse datasets with long tail distributions that

arise with the web search phenomena, where people realize that simply improving

the average results and ignoring many elements in the tail is not a winning approach.

The bias-variance performance remains to be studied for the presented algorithms.
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Lastly, we demonstrated how even small amounts of labeled data can improve the accu-

racy of the proposed time series learners. Supervision turns out to be especially beneficial

in the presence of noise where unsupervised methods alone can hardly infer the accurate

structure. Examples were demonstrated when label information helps detecting class spe-

cific significant discords. Labels were also used in selecting the more suitable method for

reconstructing the shape manifold subspace, as well as for improving the inductive learners

with a constraint density estimate which can also speed-up significantly transductive infer-

ence. Semi-supervised methods, and transduction in particular, have recently emerged as

a major learning area and are expected to dominate the field within the years to come. To

support this an inspiring discussion in [28] states “transduction stresses new philosophical

ideas related to noninductive inference... in ten years the concept of noninductive inference

will be much more popular than inductive inference”. For this “prophesy” to fulfill a major

breakthrough in the computational efficiency of transduction needs to be achieved. We see

the developed here ideas as a step towards this direction.
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