
A Quantitative Analysis of the Gnutella Network Traffic ?

Demetris Zeinalipour-Yazti Theodoros Folias

Dept. of Computer Science

University of California

Riverside, CA 92507, U.S.A.

{csyiazti,folias}@cs.ucr.edu

Abstract. Peer-to-Peer (P2P) file-sharing systems such as Gnutella, Morpheus and Freenet have

recently attracted a lot of interest from the internet community because they realized a distributed

infrastructure for sharing files. Such systems have shifted the Web’s Client-Server model paradigm

into a Client-Client model. The tremendous success of such systems has proven that purely distributed

search systems are feasible and that they may change the way we interact on the Internet. P2P systems

uncover many new exciting features such as robustness, scalability and high fault tolerance but with a

price. Most research concentrates on optimizing the communication and data model of such systems

but inadequate work has been done in area of analyzing such systems. Most approaches tend to use

as their basis simulation models which can lead to wrong observations and solutions.

In this project we investigate the behavior of the Gnutella system by analyzing large log traces that

we have obtained with gnuDC, our Distributed Gnutella Crawler. We describe gnuDC design and

implementation choices and we then describe its architecture. We make an analysis of 56 million

messages that we obtained with 17 workstations in a 5 hour interval. We have also done an extensive

analysis on IP addresses observed in the gnutella network. We believe that our study will facilitate

the design of new more efficient communication algorithms between peers.

1 Motivation

In this project, we want to investigate the behavior of the Gnutella fully distributed P2P system by

analyzing large log traces. Similar studies which were performed in the past based their results on a small

set of log traces. This makes it difficult to generalize their conclusions because it is not clear whether these

result present general trends or if they only present a temporary behavior of the network. Jovanovic et

al. [4] studied in 2000 the Gnutella Network by obtaining five snapshots of it. Each snapshot included

on average 1000 nodes and 3000 edges. These numbers are obviously not indicative any more since the

Gnutella community has grown at extremely high rates ever since. Clip2 [27] shows that the typical

number of peers found in the Gnutella [30] network during a weekday is 43, 546 peers sharing 1, 843, 549

? Course Project for ”Advanced Topics in Networks”, with Michalis Faloutsos at the University of California -

Riverside, Department of Computer Science, April 2002. http://www.cs.ucr.edu/~csyiazti/cs204.html

files. Recently another huge network of peers, namely Morpheus [24], which was previously operating over

the Kazaa [29] protocol, joined the Gnutella Network. Cnet.com has logged 78, 629, 070 downloads of the

popular Morpheus Gnutella beta client in a period of 12 days making it the most popular download on

the internet. Moreover, more sophisticated Gnutella peers, such as Limewire [26], were developed in the

meanwhile and their activity might have changed the dynamics of the network.

All this factors makes it difficult to say how the network looks like and what kind of traffic is traversing

the network. We aim to develop an Online Network Traffic Analyzer which will help us to extract network

statistics on regular intervals. In this way we may be able to extract some long-term properties which do

not change over time.

We need to mention that most research in P2P systems concentrates on optimizing the communica-

tion and data model of P2P systems [5][6], without taking into regards the real model of such systems.

Most approaches tend to use as their basis simulation models which can lead to wrong observations and

solutions. There are many reasons for obtaining an accurate network model with properties that do not

change over time. Some of the main reasons, which are also summarized in [2], are the following:

1. Provide an insight into the nature of the underlying system.

2. Enables analytical analysis of algorithms that are designed to perform on such topologies.

3. Allows generation of realistic topologies for simulation purposes that accurately capture important

structural characteristics present in the original networks.

4. Facilitates design of new scalable algorithms that can take advantage of particular structural properties.

5. Allows prediction of future trends, thereby allowing developers to address potential problems in ad-

vance.

Our Contribution It this paper we make a quantitative analysis of the Gnutella Network Traffic

at a large-scale (i.e. with 17 workstations-crawlers), which to our knowledge was not presented in any

publication. We base our experimental results on a large number of log traces, i.e. 700MB, in contrast

with other publications which use only a small number of log traces. We further more describe design and

implementation issues of a large-scale distributed Gnutella Crawler.

2 The Gnutella Protocol at a Glance

Gnutella’s distributed search protocol [30] allows a set of peers, servents or clients, to perform filename

searches over other clients without the need of an intermediate Index Server. The Gnutella network topology

is a pure Ad-Hoc topology where Clients may join or leave the network at any time without affecting

significantly the overall operation of the network. The Protocol hence, is designed in a highly fault-tolerant

fashion with a quite big overhead of synchronization messages traveling through its network. All searches

are performed over the Gnutella network while all file downloads are done offline. In this way every servent

that needs to serve a file launches a mini HTTP 1.1 web server and communicates with the interested

servents with HTTP commands.

The Gnutella v0.4 Protocol

Gnutella Protocol Messages

Servent Joining Network
212.23.34.233:6368

HTTP CLIENT

Servent on Network
61.23.434.34:6346

GNUTELLA Host-Cache Server
e.g public.bearshare.net:6346

1

2

4
QUERYHIT

GET /filename.mp3 HTTP/1.1

HTTP SERVER

Shared Files Index

6

Shared Files

Shared Files Index

Shared Files

PUSH

p1 p2

QUERY

3
PONG

PING

5

GNUTELLA OK \n\n

GNUTELLA CONNECT/0.4\n\n

Fig. 1. Gnutella v0.4 Protocol.

The core of the protocol is comprised of a set of descriptors which are used for communication between

servents and also sets rules for the inter-servents descriptors exchange. These descriptors are Ping, Pong,

Query, QueryHit and Push. Ping messages are sent by a servent that needs to discover hosts that are

currently active on the network. Pong messages on the other hand are responses to Ping requests every time

a host wants to come in communication with the peer that requests to join the network (Figure 1, step 3).

Although the protocol doesn’t set any bound on the amount of incoming or outcoming connections from a

particular host, most Gnutella clients come with a default value for these parameters. A client joining the

Gnutella network for the first time may of course not have any clue regarding the current topology or his

neighboring peers making the connection to the network impossible. For this reason most client vendors

have setup Host-Caches Servers which serve clients with IP addresses of servents currently connected to

the network (step 1). Another mechanism which is widely deployed, but is not part of the protocol, is the

use of local caches of IP addresses from previous connections. In this way a servent doesn’t need to connect

to an IP acquisition server (i.e. a host-cache) but can rather try to establish a connection with one of its

past peers.

Right after a peer has obtained a valid IP address and socket port of another servent it may per-

form several queries by sending Query descriptors and receive asynchronously results in QueryHit descrip-

tors (step 4). Step 6 shows how a servent p1 may download a file from another servent p2. This procedure

is done offline with the HTTP protocol. If the servent p2 is firewalled, then p1 may request from p2, with

a Push descriptor (step 5), to ”push” the file.

3 Related Work.

There are several efforts of analyzing the traffic of large-scale P2P systems. Although most of them come

from the academic environment, recently companies such as Limewire have also shown an increased interest

in analyzing Gnutella’s Network Traffic.

In this section we will describe some of the most important developments in the area of Analyzing P2P

Network Traffic and Modeling P2P systems.

3.1 Peer-to-Peer Computing Concepts

A thorough analysis of Peer-to-Peer Computing is done in HP’s technical report [7]. This report summa-

rizes the key concepts of P2P Computing and gives an overview of the most important systems such as

SETI@Home [8], Groove [32], Magi [25], Freenet [31] and Gnutella [30]. Although the report analyzes char-

acteristics of P2P systems from the perspective of scalability, anonymity, self-organization, performance

and others, it does not answer questions such as:

Question 1. How do these systems really look like?

Question 2. What kind of traffic are these networks carrying?

Question 3. What is the communication overhead for each particular P2P system?

These questions are probably difficult to answer given that many of the systems analyzed in this report are

proprietary (e.g. SETI@Home) or hold certain properties (e.g. Magi works with X.509 certificates) which

makes their analysis difficult. This is probably also the reason why most P2P new ideas are implemented

on top of Gnutella which is an open protocol; it is popular and extremely interesting from the technical

point of view.

3.2 Simulating Peer-to-Peer Systems

Simulating a Peer-to-Peer system can usually provide a researcher with some useful insights in the nature

of the system. However simulations in most cases don’t capture the big picture since initial assumptions

and configuration settings may change final results significantly. The Anthill Project [10] developed at the

University of Bologna uses Jtella [9] Java API as a basis for building a fully customizable API for the

Gnutella network. The aim of the project is to create a simulation framework which will allow researchers

to develop and validate new P2P algorithms. The system itself is inspired from the biological metaphor

of Ant colonies. Although the project doesn’t emphasize particularly on P2P case studies, it is worth it

to mention that they are currently using their framework to investigate the properties of the Freenet [31]

algorithm by modifying its protocol and comparing the performances of different implementations.

Their framework intends to obtain:

1. Information about the queries performed by users and their distribution. More specifically they aim to

find popular queries or keywords that may be exploited to implement intelligent caching algorithms.

2. Information about the files stored in the Gnutella network, which might be obtained by logging the

Gnutella QUERYHIT messages.

3. Information about the shape of the network, which might be obtained by actively probing Gnutella

PING and PONG messages. They also intend to take advantage of the Gnutella PUSH messages in

order to partially investigate which files are downloaded by users.

Although Anthill uses the notion of scenarios, which is composed of a collection of interconnected nodes

and a scheduling of requests to be performed, there is no documentation on that. Nevertheless we mention

that typical Simulation Test beds usually have of two components: (1) The Network Graph Generator and

(2) the Network Nodes. A P2P Simulator is also described in the appendix of [13].

The Network Graph Generator, usually takes as an input the following parameters:

1. Number of Nodes in the Network

2. Topology of the P2P network (e.g. tree, tree-with added cycles, random or power-law)

3. Branching factor for tree topology, if a tree is used.

4. Constant Outdegree of a node, in the case a random graph is used.

5. Outdegree exponent for power low, if a power low graph is used.

Other Simulators, such as ours, can also generate outputs which can be piped into Visualization Tools,

such as GraphViz [14], and generate graphical representations of the network topology.

Figure 2, presents a random graph generated with our Network Graph Generator using Graphviz’s dot

2D undirected graph layout. It is important to mention that generating visualizations for huge graphs can

take a considerably large amount of time and may finally not provide the adequate help in understanding

how the network looks like. Visualizing P2P network graphs is described in some extend in [2]. They try

to visualize the Gnutella backbone (i.e. inter-connected nodes with degree > 10) rather than the whole

network in order to obtain some more understandable results. We believe that Visualizations provide ”nice”

figures but contribute very little in understanding Large-scale P2P networks.

The Network Nodes, in simulation networks can be either part of a real network, where a node opens

and maintains real network connections (i.e. sockets) or part of a program (e.g. a c program). We denote

Fig. 2. Visualization of a random graph of 100 peers and outdegree=4 w/ our Graph Generator.

the first type of nodes as hard-nodes and the second type soft-nodes respectively. Both type of nodes will

read initialization data upon initialization and behave according to the settings that where generated by

the Graph Generator (i.e. open connections to the appropriate hosts). Although Hard-Nodes are making

simulations much more difficult they are introducing many desirable properties, such as network failures,

which are found in real settings and which might provide more accurate simulation results. Anthill uses

hard-nodes while simulation efforts such as [12] use soft-nodes.

3.3 Modeling Large-Scale Peer-to-Peer Networks

Jovanovic et al. study [3], of Modeling Large-scale Peer-to-Peer Networks, is to our knowledge the only

comprehensive work done in the area of modeling Peer-to-Peer systems.

Their study reveals that Gnutella has some important structural properties, such as small-world prop-

erties and several power-law distributions of certain graph metrics. They mention the famous Milgram’s

experiment [21] which was conducted in the early 1960’s, and in which a number of letters, addressing a

person in the Boston area, were posted to a randomly selected group of people in Nebraska. Each person

who received the letter forwarded it to someone that they knew, on a first name basis. As many of the let-

ters finally reached the designated person, the average number of hops observed was between five and six.

Their study reveals that a similar, small world property existed in the Gnutella Network. More specifically

in 5 different snapshots of the Gnutella Network they found that the diameter of the network ranged from

8-12.

In their work they have also discovered that the Gnutella Network obeys all four of the power-laws

described in Faloutsos et al. work. [1]. More specifically they found, on a Gnutella snapshot gathered

on the 28th of December 2000, that the Rank Exponent R (Power-Law 1) holds with R = −0.98 and a

correlation coefficient of |r| = 0.94. It is important to mention that similar results which were obtained

one month earlier by an independent group at U. of Chicago [22]. The same group claims that this power

law faded-out in repeated experiments in the March-June 2001 period.

Jovanovic’s study on the same snapshot of data also revealed that the Outdegree Exponent O (Power-Law

2) also holds with O = −1.4, although this comes in disagreement with the O = −2.3 exponent found in

the 6 month earlier study of the DSS [27] group.

Their study finally shows that the Hop-Plot Exponent H (Power-Law 3) and Eigen Exponent E (Power-

Law 4) hold for four different snapshots with very high coefficients of |h| = 0.99, H = 3.5 and |i| = 0.94,

E = 2.83 respectively.

The general belief is that earlier versions of the Gnutella Network were Power-Law but as the network

has grown this property doesn’t hold any more. One important fact is that as the Gnutella network became

more mature, more intelligent clients were added to the network. Intelligent clients can affect dramatically

the way a Network Crawler operates. The latter relies on the fact that clients will respond to its requests but

in the case the clients do not comply with this requirement, the Network crawler will generate inaccurate

data. We believe that it would be interesting to re-examine the pre-mentioned results since the Gnutella

network has undergone significant changes in terms of structure and size.

They are also presenting interesting visualizations of their gathered data, which were visualized with

LEDA [23], which is not publicly available anymore. The main disadvantage of their study is that their

experiments were performed on a small set of peers (1000), which is not representative of the today’s

picture of the network. Additionally, their Gnutella Crawler Implementation is in some sense static since

it starts from a pre-specified seed file of peers and relies on the fact that it will discover new nodes on

runtime.

3.4 Obtaining Real Network Data

Crawling is usually the most effective approach in order to obtain real Gnutella Traffic data. The role of

Crawlers is usually to attach to a set of K Gnutella entry-points (i.e. hosts) and harvest various massages

that are routed through these nodes. For example a Crawler might extract from a pong descriptor (Figure 3)

the IP address of a particular peer as well as its path distance (i.e. hop count) from the crawler.

Port IP Number of Files Shared Number of Kb Shared

0 1 2 5 6 9 10 13 (byte offset)

PONG message

Fig. 3. A Gnutella Pong Descriptor.

Crawlers may then try to resemble all the gathered data in order to create snapshots or maps of the

network. Crawlers are actually affecting the operation of other P2P clients since they decrease their out-

degree (and subsequently their horizon), without offering them any exchange (i.e. results on queries). We

need to mention that crawling results are not completely accurate since a crawler may not capture a set

of peers which belong to a Gnutella sub-graph.

Figure 4, which was obtained from [26], presents the number of Gnutella Peers and the number of hosts

accepting new connections. Although we can’t say exactly how these data were obtained, since Limewire

refused to tell us, we mention that they were most probably obtained by a combination of Crawling and

by utilizing their Host Caches.

Fig. 4. LimeWire’s Gnutella snapshot from 29th Dec. 2001 - 5th May 2002.

GnutellaMeter [34] is another system which monitors the traffic patterns of the Gnutella network by at-

taching itself as a passive observer to well-positioned peers in the network and by analyzing search queries

and identification messages passing through the Gnutella network. GnutellaMeter presents the top 300

queries performed on the Gnutella Network. Their proprietary infrastructure makes it difficult to conclude

how results are gathered. Also, It is not possible to say whether their results are real-time or not.

Clip2’s DSS Group discovered in [20] several interesting features of the Gnutella network. The study

which was conducted in July 2000 showed that the number of unique Gnutella users per day is no less

than 10,000 and may range as high as 30,000. They also show that the diameter of the network was 22,

indicating that some regions of the network were not in communication with others. The diameter of a

network is defined as the longest path between two hosts on the network. The diameter is the opposite to

the notion of the shortest path between two hosts. Older results of their experiments, which were obtained

two months earlier, show that the diameter was found to be smaller, typically 8 or 9. Some other fact is

that a network with few hosts can have a large diameter and vice versa, since it is a function of how hosts

are inter-connected and the out-degree, rather than the number of hosts participating in a given topology.

This result is particularly interesting to us since it shows that the dynamics of such networks may change

significantly in a short period.

Another observation that they have done is that a host was most likely to have a single connection, and

hosts with higher numbers of connections were increasingly uncommon which refers to power-law degree

distributions. We need to recall, from the previous sub-section, that similar behavior was obtained on

about the same time from both Jovanovic et al. and Ripeanu et al.

One final question that their study tried to answer is ”What are users searching for?”. The DSS Group

presents in [20] the set of queries that contained specific types of extensions. The result indicates that most

users are interested in audio/video files and far less users are interested in images (which can be obtained

more efficiently by Image Search Engines).

The DSS group also verified that Gnutella is a truly international phenomenon, since one of three hosts

was found to be located on a non US-centric domain. Their study analyzed 3.3 million addresses, of which

1.3 million (39%) were resolvable to non-numeric hostnames. On this subset of addresses they found that

the ratio of domination was 19 : 8 : 2 : 1 for the following domains COM, NET, and EDU and combined

{ORG, US, GOV, and MIL} respectively. It is interesting to repeat such experiments to see how this ratio

might have changed since the Gnutella network has changed significantly in size in the meanwhile.

4 gnuDC - Gnutella Distributed Crawler.

In this section we will describe design and implementation issues of gnuDC, a large-scale distributed

Gnutella Crawler. gnuDC allows us to obtain various large-scale Gnutella network traffic metrics. Crawlers,

spiders or bots are well known in the WWW world. These WWW Crawlers [15] typically traverse the

hypertext structure of the Web automatically, starting from an initial hyper-document and recursively

retrieving all documents accessible from that document. P2P Crawlers on the other hand need to connect

to some pre-specified Host-Cache server, obtain a set of peers active in the network, try to connect to these

peers and finally discover more and more peers while the operate. A determinant factor between WWW

Crawlers and P2P Crawlers is that the second ones try to discover a topology which is highly dynamic.

For this reason P2P Crawlers need to be able to discover the entire topology in a relatively small interval.

WWW Crawlers on the other hand can operate for weeks or months in order to accomplish their task.

4.1 Design issues of a Large Distributed P2P Crawler.

A Large Distributed P2P Crawler needs to hold several properties in order to make the process of discov-

ering a network topology efficient. Jovanovic et al. study in [2] the design issues of a sequential and parallel

P2P crawler. The main drawback of their design is that it is based on the assumption that an initial set

of all peers in the network is available. This was probably a reasonable assumption, on the time of their

study since the largest connected public segment was rarely exceeding 2, 000 hosts. This is obviously not

true any more since the Gnutella Network has grown dramatically. In the experimentation section we show

that the number of unique IPs discovered in a 5 hours interval were 300, 000. Below we describe the main

factors that guided our design:

1. Obtain all Network Statistics in a small Interval K. Since the Gnutella Network is typically very

large, discovery of resources can’t be done sequentially (i.e. with one node). gnuDC tries to address the

issue of obtaining network data in a small interval K by parallelizing the process of a single Gnutella

Node. A typical way of achieving that is by partitioning the number of hosts to be discovered among

the several Gnutella Nodes that will participate in the Crawl and to harvest data with a large set of

nodes.

2. Scale with the Network Size A Large-Scale Crawler must be able to scale as the size of the real

Network increases. Centralized approaches such as SETI@Home [8] or Napster [28] have proven that

it is feasible to scale with many millions of users while maintaining centrally index structures. The

main target of distributed systems with centralized indexes is to reduce interference and move only

questions and answers through the network rather than the actual data. gnuDC is implemented based

on a share-nothing [16] scheme were each of our Gnutella client runs in its own memory space and logs

information on local disks (e.g. /tmp). This model provides our crawler great flexibility and scalability.

Log Traces which are dispersed on disks of several remote disks can be collected both at runtime and

at the end.

3. Maintain Network Health. Since many hundreds of Nodes will attach to Gnutella Network their

operation shouldn’t affect the regular operation of the network. Typically every time a message tra-

verses a Gnutella Node the Hop Count of the message is increased and its TTL value is decreased.

In this way a Gnutella message will eventually terminate after some hops (typically 7). If each of

our crawlers modified messages as they were traversing them then we would affect negatively users

performing searches on the Gnutella Network since their horizon would decrease. For this reason we

decided not to change the status of any message traversing one of our nodes.

4. Platform-Independence. Networks of workstations are usually consisted of a large number of work-

stations each of which might run a different Operating System (e.g. Linux, SunOS, Unix). This makes

the deployment of such systems a difficult task since different executables must be build for each of

these operating systems. Java on the other hand provides an elegant way to overcome the platform-

independence problem since it is based on the ”write once, run everywhere” philosophy. It furthermore

provides support for networking (i.e. sockets), threads, RMI and many others. For these reason we

chose to implement our system in JAVA since it made it an ideal choice for our application.

5 The Architecture of gnuDC

gnuDC is a Gnutella Distributed Crawler which obtains Gnutella network traffic measurements while

addressing the four design issues described in the previous section. Figure 5 illustrates the four basic

components of gnuDC, the IP Index Server, gnuDC bricks which are standalone Gnutella Clients, an online

Log Aggregator and Log Analyzer. These components operate independently and asynchronously. The whole

system can easily be deployed on a cluster or network of workstations since it can be bootstrapped by the

execution of a single bash script.

gnuDC - gnutella Distributed Crawler

 gnuDC Brick

Log
Manager

P2P Network
Module

Local Logs
config.txt

 IP Index Server

Local Repository

 gnuDC Brick

 gnuDC Brick

 gnuDC Brick

Local Logs

Local Logs

Local Logs

.

.

.
 Logs Aggregator

Local Repository

Logs Analyzer

Results

1

2

3

4

Gnutella
Network

Fig. 5. gnuDC - Gnutella Distributed Crawler.

5.1 IP Index Server.

IP Index Server is the component responsible for maintaining at runtime an updated list of hosts cur-

rently in the network. Every gnuDC Brick, i.e. one of our Gnutella clients participating in the crawling,

will establish a permanent socket link upon initialization with the Index Server and feed it with hosts’

information as they are discovered. The index server is the only centralized component and hence we have

paid close attention to its design and implementation. It is implemented as a Multithreaded Server and

can easily be configured to accept one hundred connections. Although the Server maintains an in-memory

index structure for the state of each IP currently in the network it also flushes its state to secondary storage

with double buffering techniques. In this way it minimizes the I/O cost while providing on the same time

persistency.

We have conducted several performance experiments with automated clients in order to benchmark the

performance limitations of the IP Index Server. We ran this experiment with 40, 80 and 120 automated

clients respectively. Each of the automated clients was generating random IPs and was submitting them,

through the permanent socket link, to IP Index Server. The Index Server was indexing the IPs in an

in-memory data structure while it was also storing, in chunks of 1000 IPs, the new IPs as they arrived in

the system.

0

50000

100000

150000

200000

250000

300000

350000

0 20 40 60 80 100 120

N
u

m
b

e
r

o
f

IP
s

In
d

e
xe

d

Interval K elapsed (in seconds)

IP Index Server Stressing Experiment

40 clients

80 clients

120 clients

Fig. 6. Benchmarking the IP Index Server.

Figure 6 illustrates that the Index Server can sustain considerably high amounts of load. Our mea-

surement shows that the IP Index Server was accepting averagely 2, 500 IPs/sec with a peak of 5, 000

IPs/sec. The cost for maintaining the in-memory data structure was averagely 300MB for 240, 000 IPs.

We mention that snapshots of the Gnutella Network, maintained by Limewire [26], suggest that there are

averagely 250, 000 peers at any given moment. Given that we found it satisfactory to deploy our system

since we had averagely 500MB in our availability. In the same figure we can also see that although the

optimum number of clients would be 80, using 120 clients has no important performance penalty.

5.2 gnuDC Bricks.

A gnuDC Brick is a Gnutella Client which will connect to the Gnutella Network and Log various messages

as they traverse that node. For the implementation of a gnuDC Brick we have used as a basis the JTella[9]

API, which is a Java API for Gnutella. Each gnuDC Brick configures itself by reading the conf.txt file

which contains information such as Maximum Incoming & Outcoming Connections, Socket Timeouts, Port

Number, Log Directory and others. Although the initial port number is identical for all gnuBricks (i.e.

port=11000), a gnuBrick will seek for a different port number if 11000 is occupied. In this way a gnuBrick

can start without any particular problem on any machine it is launched.

Each gnuBrick maintains a Peer List which contains the IP addresses of known peers in the network. Every

time a new IP is discovered or lost the IP Index Server is notified through the permanent socket link which

is a Gnutella servent API.

5.3 Log Aggregator.

The Log Aggregator is the component responsible for collecting the harvested data from the local disks

of all gnuBricks and copying them to a centralized folder. This procedure can be done while the rest

system is active and hence allows us to obtain at real-time network traffic metrics. The Log Aggregator

is implemented as a set of Unix Bash scripts and uses ssh to connect to the set of machines that are

participating in a given Crawl. These hosts are identified in a file named crawler hosts.txt. In this way we

can easily adapt the crawler to any set of remote hosts.

5.4 Log Analyzer.

The Log Analyzer is responsible for analyzing the harvested data remove unnecessary information from

the log traces, count occurrences of messages, find the top queries and many other statistics. For its

implementation we have used a combination of bash scripts, C++ routines as well as Java Programs where

the need of each particular language method was more appropriate. We mention that runtime statistics

and graphs can be obtained while the system is running. The process for Aggregating and Analyzing the

collected data takes between 5− 10 minutes for 700MB of log traces.

6 Experiments.

In our experiments we deployed gnuDC on 85 nodes running on 17 workstations. All workstations were

AMD Athlons 4, 1.4 GHz with 1GB RAM running Mandrake Linux 8.0 (kernel 2.4.3-20) interconnected

with a 10/100 LAN connection. Before launching a massive crawl we performed several test experiments

to ensure the stability of our system. On the 1st of June 2002, we performed our first ”long” crawl which

lasted five hours. After that we performed several other small scale experiments to gather data on specific

issues.

6.1 Technical Difficulties.

Unfortunately, we were not able to perform long lasting crawls since our system was running on a set

of Lab Machines which are used by students during weekdays. Hence we adopted the policy to perform

experiments only during early morning hours (i.e. 1:30 a.m. - 6:30 a.m.). Another problem was that our

system was collecting huge amounts of log traces. As an example we mention that the system created

700 MB of log traces in the relatively small interval of 5 hours. It was consequently infeasible to store all

this data on our accounts due to quota limitations. Our last and most important problem was that the

Department’s Administrators have blocked any remote access (i.e. establishing a TCP connection on any

port number of a lab machine). In this way we were not able to accept any incoming connections. This was

apparently important since it reduced dramatically the degree of a gnuBrick from 100 connections (which

was our default setting) to 10−30 connections. Limewire shows that most Gnutella users are not accepting

any new incoming connections. We believe that for the same reason our cluster was not able to establish

too many outgoing connections. On the other hand if we were able to accept incoming connections then

we would most probably satisfy many ”thirsty for outgoing connections” peers. Nevertheless we mention

that a different internal network setting would automatically resolve this issue.

6.2 Analysis of Gnutella Messages.

In this subsection we describe some interesting results regarding the messages that were routed through

our cluster. We mention that the sample that we analyze exceeds 56 million messages.

Figure 7 presents the message breakdown by Message Type. We may see that only a very few Push

messages (i.e. 3, 000) were routed through our cluster and hence they are not presented in the pie chart.

Figure 7 confirms that Gnutella has actually a huge communication overhead (i.e. ping/pong messages),

since it is averagely 63% of all the messages. We believe that is due to the fact that Gnutella connections

are relatively unstable which leads peers in a endless effort of discovering new peers rather than to the

fact that peers are joining and leaving the network at fast paces. Pong Stealing might be a reason why a

peer is attracting more network load than the load it can really handle. We define as Pong Stealing when

an intermediate node B is obtaining the ip address, from a Pong message which is routed through him.

In this situation a host C which replied positively to a ping request of a host A might get a connection

request from both A and B although its initial intention was to accept only 1 connection. This phenomenon

might destabilize C ′s current network connections since C is forced to; at least, abort the one of the two

requested connections. Another reason for network instability might be that some ”powerful” host A is

23.0%

40.0%

33.0%

4.0%

Traffic Breakdown by Message Type

ping - 13,241,700 msgs - 23%
pong - 22,870,000 msgs - 40%
query - 19,069,700 msgs - 33%
queryhit - 2,296,800 msgs - 4%
push - 3,000 msgs - 0%

PONG -

QUERY -

QUERYHIT -

PING -

Fig. 7. Messages Breakdown by Message Type.

routing many messages to another ”weak” host ”B” with a result that B is kept so busy that it is not able

to handle its rest connections. if B is implemented appropriately (i.e. keep different queues for different

connections) then of course such a thing won’t occur but our point here is that this really depends on the

implementation of each Gnutella client.

88.0%

12.0%

Proportion of Queries w/ Queryhits VS
 Queries w/out Queryhits

query - 19,069,700 msgs
queryhit - 2,296,800 msgs

Fig. 8. Proportion of Queries w/ QueryHits VS Queries w/out Queryhits.

Figure 8 presents the amount of queries routed through our cluster versus the amount of queries that

were routed with queryhits. A similar measurement was obtained in [18] where the percentage of Queries

with Queryhits varied between 10-12%.

6.3 Analysis of Queries.

In this subsection we discuss our observations after analyzing 15, 153, 524 unique queries. Here we found

various interesting patterns such as high locality of specific queries and we were also able to distinguish

Gnutella Users into three classes. Table 1 presents the ranking of the top 20 queries. We can clearly see that

most queries are submitted in large numbers and hence there exist a high locality of specific queries. This

observation might lead to better caching policies at peers which might cache Queryhits that are posted in

response to popular queries. Another interesting observation is that Gnutella Users can be classified into

Query Occurrence % # Query Occurrence %

1 divx avi 588, 146 3, 88% 11 divx 24, 363 0, 16%

2 spiderman avi 50, 175 0, 33% 12 spiderman 23, 274 0, 15%

3 p mpg 39, 168 0, 25% 13 xxx avi 22, 408 0, 14%

4 star wars avi 38, 473 0, 25% 14 capture the light 21, 651 0, 14%

5 avi 29, 911 0, 19% 15 buffy mpg 20, 365 0, 13%

6 s mpg 27, 895 0, 18% 16 g mpg 20, 251 0, 13%

7 Eminem 27, 440 0, 18% 17 buffy avi 19, 874 0, 13%

8 eminem mp3 25, 693 0, 16% 18 t mpg 19, 492 0, 12%

9 dvd avi 25, 105 0, 16% 19 seinfeld vivid 18, 809 0, 12%

10 b 24, 753 0, 16% 20 xxx mpg 18, 686 0, 12%

Table 1. Top 20 Queries on Gnutella. (inappropriate queries marked with ’ ’)

three main categories Seasonal-Content Searchers, Adult-Content Searchers and File Extension Searchers.

Seasonal-Content Searchers are those who are seeking for content that is currently popular, such as

new movies or chart songs. Spiderman for example was a popular term since its new movie was released

around the time we conducted the experiments. Finally popular TV shows, such as ”Seinfeld” were also

among the top searches in this category.

Adult-Content Searchers are users which are looking for mature content. These searchers seem not

very selective since they are looking for content that contains a general Adult-Content term rather than a

specific movie. We have observed from other informal experiments that these users are constant over time

and that the text patterns they are searching for are not changing very much.

Finally File Extension Searchers are those which are not looking for something particular but which

are rather interested to download anything that may seem interesting to them but which is of a specific

file-type (e.g. avi, mp3). In this category we may find for instance a user who is searching for the term

”mp3”. It is clear that this user has not something specific in its mind but that he is rather interested to

”browse” the mp3 files shared by his fellow file-sharers. Our informal experiments, which were conducted

in May 2002, show that this category is also showing some constant search patterns over time.

These three categories might actually have a large overlap. For example a user searching for seasonal

content might as well perform file extension searches.

Gnutella Users are mainly interested in video media rather than audio media. This differentiates

Gnutella users from other File-sharing applications such as Napster where audio was the only available

media. The trend that most users are seeking for multimedia content might also reveal that they are

”bandwidth-capable” of downloading such media. Finally Gnutella users seem not interested in other type

of content such as software, images or text since their aggregate percentage is not very large.

Table 2 presents the demand in specific filetype extensions. Our analysis indicates that the trends have

not changed significantly from the DSS’s study which was performed in October 2000. The table validates

that the users in Gnutella are seeking for Multimedia Content (audio/video) since their aggregate exceeds

65% of all filetypes searched. Although the trend for demand of multimedia in filesharing applications is

not new we mention that the trend nowadays is constantly towards video instead of audio, which was the

main media exchanged in the napster [28] community.

Filetype Occurrence % # Filetype Occurrence %

1 avi 2, 837, 002 18, 72% 11 mov 144, 193 0, 95%

2 mp3 2, 703, 551 17, 84% 12 pdf 76, 914 0, 51%

3 mpg 1, 985, 354 13, 10% 13 rar 66, 644 0, 44%

4 ra 1, 287, 578 8, 50% 14 exe 60, 176 0, 40%

5 rm 422, 047 2, 79% 15 wav 37, 690 0, 25%

6 zip 400, 057 2, 64% 16 doc 31, 740 0, 21%

7 mpeg 398, 739 2, 63% 17 txt 11, 287 0, 07%

8 jpg 288, 427 1, 90% 18 gz 11, 070 0, 07%

9 asf 168, 531 1, 11% 19 html 3, 755 0, 02%

10 ps 146, 288 0, 97% 20 jpeg 2, 326 0, 02%

Table 2. Top 20 Filetypes Requested on Gnutella (in queries).

Figure 9 shows a 4 minute snapshot of ping/pong and query/queryhit messages routed through our

cluster. There is clearly some analogy between ping/pong and query/queryhit pairs. This is because a ping

for instance; will generate many pong messages. (averagely four times as many) while a query will only

generate queryhits the one eight of the times. We can also see that there is some relation between the two

graphs. This is attributed to the fact that if we have more ping/pong messages (i.e. more hosts) then we

will observe also more query/queryhit messages. This implies that users are actually actively searching the

network for content. In other words this observation tells us that there are only few or no pathetic peers

(i.e. peers that are connected to the network without performing queries).

0

5000

10000

15000

20000

25000

30000

35000

40000

0 0.5 1 1.5 2 2.5 3 3.5 4

N
um

be
r

of
 M

es
sa

ge
s

R
ou

te
d

Interval K elapsed (in minutes)

Ping/Pong Messages Routed by the gnuDC Cluster

Ping Messages

Pong Messages

0

5000

10000

15000

20000

25000

0 0.5 1 1.5 2 2.5 3 3.5 4
N

um
be

r
of

 M
es

sa
ge

s
R

ou
te

d
Interval K elapsed (in minutes)

Query/Queryhit Messages Routed by the gnuDC Cluster

Query Messages

QueryHit Messages

Fig. 9. a) Ping/Pong Messages Routed Trace b) Query/QueryHit Messages Routed Trace.

6.4 Analysis of IP Addresses.

In this subsection we discuss our analysis of 294, 000 Unique IP Addresses that were gathered from pong

messages (see figure 3). that were routed through our system on the experiment of the 1st of June 2002.

Every unique IP Address that is discovered by a gnuBrick is posted, through a permanent socket link to

the IP Index Server. Figure 10 present the pace at which the IP Index Server indexes IP addresses as they

were posted by the gnuBricks.

Each gnuBrick maintains a local Hashtable of all IPs that it has seen before in order to avoid sending

duplicate IP addresses to the Index Server. Of course since there is no central coordination of the gnuBricks

it is possible that two gnuBricks send the same IP Addresses to the Index Server. In this case the Index

Server is responsible to filter out duplicates since it maintains a global view of all IP addresses observed

by the system.

For the analysis of the IP Addresses we have written a Multi-Threaded Reverse DNS Lookup (MRDL)

engine which finds the DNS entries of IP addresses obtained by the system. MRDL takes as an input a

list of N unique IP addresses , partitions them into k buckets, where k is the number of threads that will

work towards resolving the IP addresses. After the partition phase the system launches k threads which

0

50000

100000

150000

200000

250000

300000

0 50 100 150 200 250 300N
u

m
b

e
r

o
f

U
n

iq
u

e
 I

P
 A

d
d

re
ss

e
s

D
is

co
ve

re
d

Interval K elapsed (in minutes)

Discovery of Gnutella IP Addresses

1 Jun 2002, 85 bricks

Fig. 10. Discovery of IP Addresses.

obtain the DNS entries of the IP addresses they where assigned to. The MRDL engine was operating with

100 threads and we were able to obtain all DNS entries in a period of two hours.

The MRDL engine ended up with a set of 244, 522 resolved IP addresses. An aggregate of 49, 478

or 16, 92% were not resolvable. We mention that the non-resolvable set of IPs contain both hosts which

where not reachable at the time of the resolution as well as IP addresses which are allocated for private

networks [19] (i.e. 192.x.x.x, 172.16.x.x and 10.x.x.x).

From which domains are Gnutella Users coming from? In this subsection we wanted to figure out

from where the Gnutella users are actually coming from. Clip2 [27] reported in 2000 that Gnutella was a

truly international phenomenon. Our measurements indicate similar behavior with a main distinction. We

observed that although Gnutella users are coming from around the globe, most of them come from only a

few countries (U.S.A., Germany, Canada, France and England).

We believe that this observation is apparently important since if these countries are inter-connected

with high-speed networks then it probably it would not matter that the underlying Gnutella topology

doesn’t match the real topology (topology mismatch).

Table 3 presents the top 20 domains from which Gnutella users are coming from (see table 5). Although

it was expected that both .net and .com domains will dominate in this measurement, since these domains

are globally used by ISPs, we also found that the number of Gnutella users from various domains is more

a function of how advanced the networks of the various ISPs in these countries are rather than the actual

number of Internet users in these countries. For example we expect that the Australian domain must have

far larger number of Internet users than the English domain but the number of Gnutella users are larger

Country Dom. IPs % # Country Dom. IPs %

1 Network .net 94, 456 38, 88% 11 Belgium .be 2, 527 1, 04%

2 US Commercial .com 81, 943 33, 73% 12 Italy .it 2, 038 0, 84%

3 Canada .ca 8, 039 3, 31% 13 Sweden .se 1, 532 0, 63%

4 France .fra 5, 565 2, 29% 14 Spain .es 1, 495 0, 62%

5 US Educational .edu 5, 102 2, 10% 15 Singapore .sg 1, 333 0, 55%

6 England .uk 4, 118 1, 69% 16 Switzerland .ch 1, 256 0, 52%

7 Germany .de 3, 693 1, 52% 17 Japan .jp 1, 089 0, 45%

8 Australia .au 3, 663 1, 51% 18 Norway .no 1, 010 0, 42%

9 Austria .at 2, 962 1, 22% 19 Brazil .br 775 0, 32%

10 Netherlands .nl 2, 625 1, 08% 20 New Zealand .nz 651 0, 27%

Table 3. Distribution of Gnutella IP Addresses to Domains.

for the English domain.

The next table 4 concentrates on only ISPs of the .net and .com domains and tries to determine which

of these ISPs are paying the price of the Gnutella Network. In this table we can see that the German

ISP (T-Online) contributes with the largest number of IP addresses if we compare it with its rest .net

”competitors”. In the .com column we can see that the first three ranks are occupied by USA’s ISPs.

.NET Companies .COM Companies

ISP Dom. IPs % # Country Dom. IPs %

1 T-Online t-dialin.net 14, 998 15, 88% 1 Road Runner rr.com 21, 834 26, 65%

2 Comcast comcast.net 9, 221 9, 76% 2 American Online aol.com 17, 343 21, 16%

3 Cox Comm. cox.net 7, 757 8, 21% 3 AT & T attbi.com 13, 939 17, 01%

4 Shaw shawcable.net 5, 321 5, 63% 4 Rogers Comm. rogers.com 3, 758 4, 59%

5 CSC Holdings. optonline.net 4, 830 5, 11% 5 ntl Group ntl.com 3, 109 3, 79%

Table 4. a) IPs contributed by .net organizations b) IPs contributed by .com organizations.

Table 5 presents the overall ranking of ISPs based on their share of Gnutella Hosts they are contributing

to the Network. We can see clearly that US, Canadian, German, French and English organizations are

dominating the Gnutella network. This table shows that the largest part of the Gnutella network is occupied

by only a few countries. The table also reveals that Asian countries that have advanced networks, such as

Japan, are not particularly active in this community although their popular Napster-like File Rogue [33]

service was suspended.

Overall Ranking of Organizations (ISPs)

ISP Domain Country % # ISP Domain Country %

1 Road Runner rr.com US. 9, 43% 11 Adelphia Comm. adelphia.net US. 1, 73%

2 American Online aol.com US. 7, 49% 12 Wanadoo wanadoo.fr France 1, 67%

3 T-Online t-dialin.net Germany 6, 48% 13 Rogers Comm. rogers.com Canada 1, 62%

4 AT & T attbi.com US. 6, 02% 14 Woolworths Gr. co.uk England 1, 58%

5 Comcast comcast.net US. 3, 98% 15 ntl Group LTD ntl.com England 1, 34%

6 Cox Comm. cox.net US. 3, 35% 16 Verizon verizon.net US. 1, 27%

7 Shaw shawcable.net Canada 2, 30% 17 SBC Pacific Bell pacbell.net US. 1, 26%

8 Sympatico Lycos. sympatico.ca Canada 2, 15% 18 Verizon (DSL) dsl-verizon.net US. 1, 03%

9 CSC Holdings optonline.net US. 2, 09% 19 British Telec.. btopenworld.com England 1, 00%

10 BellSouth Telec. bellsouth.net US. 2, 00% 20 SBC Internet swbell.net US. 0, 94%

Table 5. Overall ranking of domains based on the number of hosts they contribute to the Gnutella Network.

6.5 Analysis of Hop Count found in Query Messages.

In this subsection we describe the analysis we have performed on the hop count of the 15 million queries

sample. The hop count reveals how many hops have query messages travelled before reaching one of our

crwalers. Figure 11 presents the distribution of queries to hop count 1− 14 while the largest observed hop

count of a query was 16. The figure is particularly interesting since it reveals that the Gnutella network

started conforming to its specifications. More specifically we mention that from the 15, 153, 524 unique

queries that the gnuDC cluster logged, only 22, 423 queries had traveled more than 7 hops before traversing

one of the gnuDC Bricks. Recall that the Gnutella protocol advises that packets shouldn’t travel more than

7 hops and that packets that have a greater value than that should be discarded. We can see that some of

the Gnutella clients 22, 423 are still sending queries with TTLs more than 7. The obvious reason for doing

such a thing is to get as many answers as possible from the network. Such a behavior is destabilizing the

network health since it leads to huge amounts of message forwards for 1 query. Fortunately it seems that

the Gnutella peers became conscious and that they thwart such a behavior. The next interesting point

of the graph is its bimodal distribution with two peaks both at 1 and 7. A similar distribution was also

reported in [17] although their query sample was very small (i.e. averagely 8000 queries). The number of

queries that travelled 7 hops is larger than the number of queries traveled 3-6 hops since as the hop count

increases we are also accepting queries from more hosts. The reason that so many queries have traveled

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
e

rc
e

n
ta

g
e

%

Hop Count

Query Hop Count Distribution

’data.txt’ using 1:3

Fig. 11. Distribution of Hops that Query Messages have traveled before reaching our gnuDC cluster.

only 1 hop is probably because network connection intervals between peers can be sometimes very short.

For this reason as soon as a connection between 2 peers is formed both peers first promote their own

messages and if the connection is still active then they also route messages which are coming from other

peers (i.e. hopcount > 2).

7 Conclusions.

In this paper we have performed a quantitative analysis of the Gnutella network traffic. We have designed

and implemented gnuDC, a distributed Gnutella Crawler which was used to harvest network data with 85

nodes which were running on parallel on 17 workstations. gnuDC enabled us to gather large amount of

network data which were analyzed both offline and online.

Our analysis on the network traffic revealed and/or confirmed the following things:

1. The Gnutella communication overhead is huge. More specifically we found that ping/pong messages

occupy 63% percentage of all messages while the useful utilization of the network (i.e. query/queryhit)

was only 37% percentage.

2. Gnutella Users seem to belong to three main categories Season-Content Searchers, Adult-Content

Searchers and File Extension Searchers. Season-Content Searchers are those who are seeking for con-

tent that is currently popular, such as new movies or chart songs. Adult Content Searchers are users

which are looking for mature content and File Extension Searchers are those which are not looking for

something particular but which are rather interested to download anything that may seem interesting

to them but which is of a specific filetype (e.g. avi, mp3).

3. Gnutella Users are mainly interested in video media rather than audio media. This differentiates

Gnutella users from other File-sharing applications such as Napster where audio was the only available

media. The trend that most users are seeking for multimedia content might also reveal that they are

”bandwidth-capable” of downloading such media. Gnutella users seem not interested in other type of

content such as software, images or text since their aggregate percentage is not very large.

4. Most clients seem to have conformed to the specifications of the Gnutella protocol and that efforts of

over-allocating networking resources, with large TTL values in messages, are thwarted.

5. Finally although Gnutella is a truly international phenomenon its largest segment is dominated by only

service providers which belong to a few countries (i.e. US, Canada, France, Germany and England).

Further metrics will be obtained in future experiments in order to see how these trends might change

over time. We are also interested in examining more carefully other data that we have obtained but

which we couldn’t analyze due to time shortage. We finally mention that such metrics might facilitate the

development of more advanced P2P protocols which might take into consideration various bottlenecks of

the current Gnutella Protocol.

References

1. Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law relationships of the internet topol-
ogy. In SIGCOMM, pages 251-262, 1999.

2. M. Jovanovic, ”Modeling Large-scale Peer-to-Peer Networks and a case study of Gnutella”, Master’s Thesis,
University of Cincinati, April 2001.

3. M. Jovanovic, F.S. Annexstein, and K.A. Berman. Modeling Peer-to-Peer Network Topologies through ”Small-
World” Models and Power Laws. In TELFOR, Belgrade, Yugoslavia, November, 2001

4. F.S. Annexstein, K.A. Berman, and M. Jovanovic. Latency Effects on Reachability in Large-scale Peer-to-Peer
Networks. In ACM Symposium on Parallel Algorithms and Architectures, Crete Island, Greece, 2001.

5. H. Stoica, I. Morris, R. Karger, D. Frans Kaashoek, M. Balakrishnan, ”Chord: A scalable peer-to-peer lookup
service for Internet applications”, SIGCOMM 2001.

6. S. Gribble, A. Halevy, Z. Ives, M. Rodrig, D. Suciu. ”What Can Databases do for Peer-to-Peer? WebDB Work-
shop on Databases and the Web, June 2001.

7. D. Milojicic, V Kalogeraki, R. Lukose, K Nagaraja, J Pruyne, B. Richard, S Rollins, Z. Xu, ”Peer-to-Peer Com-
puting”, Technical Report HPL-2002-57, HP Labs. 2002

8. ”The SETI@home (Search for Extraterrestrial Intelligence at Home) Project”, UC Berkeley,
http://setiathome.ssl.berkeley.edu/.

9. Ken Mccrary, ”The JTella Java API for the Gnutella network”, October 2000,
http://www.kenmccrary.com/jtella/.

10. The Anthill Project, Gnutella Monitoring, Department of Computer Science, University of Bologna.

11. G. Pandurangan, P. Raghavan, E. Upfal, ”Building P2P Networks with Good Topological Properies”, Brown
University, 2001

12. Ramanathan, K. Murali, V. Kalogeraki, J. Pruyne, ”Finding Good Peers in Peer-to-Peer Networks”,
Technical Report HPL-2001-271, HP Labs, 2001.

13. Arturo Crespo and Hector Garcia-Molina, ”Routing Indices for Peer-to-peer Systems”, In ICDCS, 2002.

14. Stephen North, Emden Gansner, John Ellson, ”Graphviz - open source graph drawing software”,
http://www.research.att.com/sw/tools/graphviz/

15. D. Zeinalipour-Yazti, M. Dikaiakos, ”Design and Implementation of a Distributed Crawler and Filtering Proces-
sor,” The Fifth Workshop on Next Generation Information Technologies and Systems (NGITS’2002) , Caesarea,
Israel, June 25-27, 2002.

16. David DeWitt and Jim Gray,”Parallel database systems: the future of high performance database systems”,
Communications of the ACM, vol. 35, no 6, pages 85–98, 1992.

17. Kelsey Anderson, ”Analysis of the Traffic on the Gnutella Network”, University of California, San Diego CSE222
Final Project, March 2001.

18. Evangelos P. Markatos: Tracing a large-scale Peer to Peer System: an hour in the life of Gnutella. In the Pro-
ceedings of the CCGrid 2002: the second IEEE International Symposium on Cluster Computing and the Grid,
May 2002, pages 65-74.

19. Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, E. Lear, ”RFC1918 - Address Allocation for Private
Internets”, February 1996.

20. Clip2, ”Gnutella: To the Bandwidth Barrier and Beyond”, November 6, 2000,
http://www.clip2.com/gnutella.html

21. Stanley Milgram experiment description,
available at http://smallworld.sociology.columbia.edu/description.html.

22. M.Ripeanu, ”Peer-to-peer Architecture Case Study: Gnutella Network”, Technical Report, University of
Chicago, 2001.

23. Leda, Algorithmic Solutions Software GmbH, http://www.mpi-sb.mpg.de/LEDA/leda.html.

24. Morpheus. , MusicCity.com, http://www.musiccity.com/.

25. Magi Enterprise, Endeavors Technology, http://www.endeavors.com/.

26. LimeWire. , LimeWire.com, http://www.limewire.com/.

27. Clip2. , Clip2.com, http://www.clip2.com/.

28. Napster, Napster.com, http://www.napster.com/.

29. Kazaa, Kazaa.com, http://www.kazaa.com/.

30. Gnutelliums, Gnutella, http://www.gnutelliums.com/.

31. Freenet, FreenetProject.org, http://freenet.sourceforge.net/.

32. Groove, Groove Networks Inc. http://www.groove.net/.

33. File Rogue, File Rogue Inc. http://www.filerogue.com/.

34. The GnutellaMeter, http://www.gnutellameter.com/gnutella-hosts.html.

