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Abstract. Integer overflow has become a common cause of software vulnerabil-
ities, and significantly threatens system availability and security. Yet protecting
commodity software from attacks against unknown or unpatched integer over-
flow vulnerabilities remains unaddressed. This paper presents SoupInt, a sys-
tem that can diagnose exploited integer overflow vulnerabilities from captured
attack instances and then automatically generate patches to fix the vulnerabili-
ties. Specifically, given an attack instance, SoupInt first diagnoses whether it ex-
ploits integer overflow vulnerabilities through a dynamic data flow analysis based
mechanism. To fix the exploited integer overflows, SoupInt generates patches and
deploys them at existing, relevant validation check points inside the program. By
leveraging existing error-handlers for programmer-anticipated errors to deal with
the unanticipated integer overflows, these patches enable the program to survive
future attacks that exploit the same integer overflows. We have implemented a
SoupInt prototype that directly works on x86 binaries. We evaluated SoupInt with
various input formats and a number of real world integer overflow vulnerabilities
in commodity software, including Adobe Reader, Adobe Flash Player, etc. The
results show that SoupInt can accurately locate the exploited integer overflow
vulnerabilities and generate patches in minutes.

1 Introduction

Zero-day attacks that exploit previously unknown software vulnerabilities are one of
the most serious threats to cyber security. Once an exploit instance against commodity
applications is captured in the wild [23,27,29], a pressing task for defenders is to diag-
nose the exploited vulnerabilities. Furthermore, since it usually takes a very long time
for software vendors to release a patch [14], there continually exists a great demand
for efficient and effective schemes to protect the vulnerable systems before the official
vendor patches are available.

Particularly, in recent years, integer overflow vulnerabilities, one of the most serious
software errors, are frequently discovered in widely used software and exploited by
more and more real world attacks via malicious images, PDFs, Flash, and so forth [3].
Despite the considerable efforts made in the area of exploit diagnosis (e.g., [27, 29,
42, 45]) and prevention (e.g., [5, 7, 9–11]), most of them focus on memory corruption
errors, and determining whether a wild-captured attack is exploiting integer overflow
vulnerabilities and then preventing similar attacks remain unaddressed.

Solving these problems faces several challenges. First, diagnosis of integer over-
flow exploits needs a way to distinguish harmful integer overflows from benign ones.
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As shown in much existing work [4, 13, 38], benign or intentional integer overflows
are very common in programs due to some general calculations such as hashing and
random number generation. This means that an exploit instance can usually trigger a
number of integer overflows during the execution of the program, making it very diffi-
cult to pinpoint the harmful one, if there is any.

Second, to prevent similar attacks that exploit the same vulnerabilities, one of the
most popular defense mechanisms is to automatically generate patches to fix the vul-
nerabilities. Unfortunately, most existing patch generation systems such as [18,41] need
source code of target programs, thus are not suitable for protecting COTS (Commercial
off-the-shelf) programs. In addition, many researchers proposed to learn certain signa-
tures from attack instances, and then further use the signatures to identify and discard
malicious inputs. However, exploit-specific signatures can be easily evaded by obfus-
cation or polymorphic techniques [11, 26]; and vulnerability-specific signatures (such
as [5, 7, 9–11]), despite being much more robust against polymorphic attacks, cannot
handle encrypted or compressed inputs and may produce too many false negatives when
input formats contain iterative fields or floating fields (see Section 2.1).

In this paper, we introduce SoupInt, a system designed to cooperate with existing
exploit capture systems (e.g., [23,27]) to further identify the exploited integer overflow
vulnerabilities in x86 binaries and generate emergency patches. As a temporary protec-
tion scheme, the generated patches can protect the vulnerable programs from similar
attacks against the same vulnerabilities until official vendor patches are available.

310 HGLOBAL WinSalBitmap::ImplCreateDIB( const Size& rSize, USHORT nBits, const BitmapPalette& rPal )
311 {

...
314 HGLOBAL hDIB = 0;
315
316 if(rSize.Width()&&rSize.Height())//relevant validation checks; we deploy a patch here to avoid the overflow
317 {
318 const ULONG nImageSize = AlignedWidth4Bytes(nBits*rSize.Width())*rSize.Height(); //integer overflow

319 const USHORT nColors = ( nBits <= 8 ) ? ( 1 << nBits ) : 0;
320
321 hDIB = GlobalAlloc( GHND, sizeof( BITMAPINFOHEADER ) + nColors * sizeof( RGBQUAD ) + nImageSize );

...
350 }
351
352 return hDIB;

Fig. 1. Integer Overflow Vulnerability (CVE-2012-1149) in OpenOffice.org 3.3.0

Specifically, given an exploit instance captured by existing exploit detection sys-
tems (e.g., [23, 27, 29]), SoupInt first runs the vulnerable program with this exploit,
and catches all integer overflows at runtime through binary instrumentation. To solve
the challenge of distinguishing harmful integer overflows from benign ones, SoupInt
leverages dynamic data flow analysis [16] to track the propagation of the overflows.
If SoupInt finds that an integer overflow affects security sensitive operations (e.g., af-
fecting the size parameters of memory allocation functions), SoupInt determines this
integer overflow is harmful and this attack instance is exploiting an integer overflow
vulnerability.

Next, inspired by the concept of error virtualization proposed in [33, 34], we design
a novel method to automatically generate emergency patches for the exploited integer
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overflow vulnerability. Our key observation is that programs usually perform some val-
idation checks on input data and are able to correctly handle certain anticipated invalid
inputs. Although such validation checks may be irrelevant or insufficient to prevent in-
teger overflows, we can generate a patch and deploy it at such validation points so that
the patched program can detect the integer overflow and make use of existing error
handling code to survive attacks. We call this technique local error virtualization.

To better demonstrate our idea, take a real integer overflow vulnerability found in
OpenOffice.org (Figure 1) as an example. The integer overflow vulnerability is in line
318 and can cause an undersized memory allocation at line 321, which eventually re-
sults in a heap overflow. Prior to the vulnerability point, the function checks if either
rSize.Width() or rSize.Height() is zero. If so, it will directly return a NULL
pointer, which can be correctly handled by the callers.

To fix this vulnerability, SoupInt will generate a patch and deploy it in line 316.
The patch is able to test whether a concrete execution context will trigger the integer
overflow in line 318, in which case, the patch will redirect the control flow to line
352, and return a NULL pointer, avoiding the integer overflow and surviving the attack
by using internal existing error handler. Note, although this example is at source code
level, SoupInt directly works on x86 binary executables.

To verify whether this idea is widely applicable, we manually investigated all CVE
entries for publicly known integer overflow vulnerabilities in the Linux kernel (from
2009 to April 2012), the GNU C Library, and the GNU Image Manipulation Program
(GIMP), and the corresponding patches. The result shows that for 84.9% (i.e., 26 of
32 CVE entries) of the integer overflow vulnerabilities the programs have incomplete
validation checks on variables involved in the vulnerabilities, and patches can usually
be deployed at these existing validation points.

Although this idea of local error virtualization is very intuitive, our implementation
needs to address two technical challenges. First, SoupInt needs to choose proper patch
deployment points for a given integer overflow vulnerability. To solve this challenge,
SoupInt records the execution trace of the vulnerable program on the attack instance. It
then employs a backward-forward slicing algorithm to identify the checks on the vari-
ables that are relevant to the harmful integer overflow operation, i.e., relevant checks.
Finally, SoupInt uses heuristics derived from our manual analysis to select validation
checks from these relevant checks as the patch deployment points.

The second challenge is, given a candidate patch deployment point, SoupInt needs
to generate a patch that should be able to predict whether the integer overflow will be
triggered by the execution context at the deployment point. To do this, SoupInt employs
dynamic symbolic execution to calculate a symbolic predicate that represents the integer
overflow condition and collect related trace constraints. At runtime, the patch will check
whether these predicates are satisfiable for a concrete execution context. For malicious
inputs that make such symbolic predicates satisfiable, the patch will alter the program’s
control flow to existing error handling code, and essentially transfers the unanticipated
integer overflow errors to an anticipated error. Our patch generation scheme is signif-
icantly different from vulnerability signature generation systems (e.g., [5, 6, 12]) be-
cause SoupInt deploys the patch inside the programs. This new design makes SoupInt
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effective even when the input data is encrypted or compressed, which is hardly handled
by existing vulnerability signature systems.

In summary, this paper makes the following contributions:

– We developed a dynamic dataflow tracking based mechanism to accurately diag-
nose the exploited integer overflow vulnerabilities from wild-captured attack in-
stances.

– We designed a novel approach named local error virtualization to fix integer over-
flow vulnerabilities by automatically generating and deploying patches at exist-
ing relevant validation check points. Unlike vulnerability signatures, our patches,
which are much closer to manual patches, can enhance existing validation checks
and block malicious inputs based on existing error handling functionalities.

– We have implemented a prototype system called SoupInt for x86 binaries. We ap-
ply SoupInt to ten real-world integer overflows in widely used commodity applica-
tions including Adobe Reader, Adobe Flash Player, Apple QuickTime, and Yahoo
Messenger, and test ten different input formats. The results show that SoupInt can
locate harmful integer overflows and quickly generate patches in minutes, without
relying on input specification or source code. Our patches can identify exploits in
milliseconds without false positives, and enable programs to survive successfully.

The rest of the paper is organized as follows. Section 2 compares our research to
related work. Section 3 describes the design of SoupInt algorithms and system com-
ponents. Section 4 presents the implementation and evaluation of SoupInt. Section 5
discusses limitations and future work and Section 6 concludes the paper.

2 Related Work

2.1 Input Filter and Vulnerability Signature

A general solution to protect programs from attacks against unpatched vulnerabilities is
to filter the malicious inputs based on exploit signatures or vulnerability signatures.
A considerable number of techniques have been developed to generate such signa-
tures [11, 20, 26]. However, they heavily rely on either knowledge of the input formats
or specific features of the exploits.

A more robust way is to generate vulnerability-specific signatures that may be able
to detect all attacks exploiting the same vulnerability [5, 7, 10, 11, 25, 36]. To automat-
ically generate such signatures, many systems such as [5, 9, 10] take the original data
in a captured exploit as symbolic values, and employ symbolic execution to extract
trace conditions. The collected constraints and the vulnerability trigger condition are
the vulnerability signature.

However, existing vulnerability signature generation systems have two major limita-
tions. First, it is very hard for them to generate a signature based on symbolic execution
if the input data is encrypted, obfuscated, or compressed [25]. It is a very practical issue
since encryption and compression have been widely used (such as the HTTPS protocol
and the Open Document format).

Second, these systems may have high false negatives if the vulnerability is triggered
by the input values that do not have fixed offsets in the input format. For example,
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many integer overflow vulnerabilities in JPEG File Interchange Format (JFIF)1 parsers
are caused by the width and the height fields of the images. However, instead of
storing the width and height fields at fixed offsets, the JPEG format uses a special
byte sequence to annotate these two fields. Thus, to locate the two fields, the parsers
have to iteratively identify the byte sequence first. This process will introduce a number
of unnecessary conditions. Given the trace executed by the exploit sample, the sig-
natures generated by these systems can only detect the exploits that store width and
height at the same offsets as the exploit sample. This is one reason why Cui et al. [12]
estimate that Vigilante [10] would be effective for only 6 of the 25 vulnerabilities se-
lected from Microsoft Security Bulletins.

In this paper, we also use symbolic execution to generate patches. However, our goal
is not to simply filter malicious inputs before they are passed to the vulnerable program,
but to fix the vulnerability by enhancing existing input validation checks inside the pro-
gram. A key technical difference between our work and existing vulnerability signature
generation systems is that we treat certain internal variables of the program as symbolic
values, instead of original concrete input data. This makes our technique much less sen-
sitive to the input formats. In addition, the patches are deployed inside the vulnerable
program, and can be effective even when input data is encrypted or compressed.

2.2 Integer Overflow Detection and Prevention

Many approaches have been proposed to prevent integer overflows at the source code
level [4,8,13,39,44]. However, these approaches usually have to kill the program once
an integer overflow happens at runtime, which essentially transfers the integer overflow
issues to denial-of-service attacks. Our patch can avoid the harmful integer overflows
and employ existing error handling code to survive the attacks. Furthermore, compared
with previous work on integer overflow vulnerability detection tools such as [24, 38],
our work offers a way to automatically fix the detected vulnerabilities.

There has been much previous work on binary program static analysis and type in-
ference [17, 19]. Our work could leverage these approaches to further recover the type
information and reduce redundant integer overflow checks. We use dynamic data flow
analysis technique [27] to track the propagation of integer overflows. Recently, many
researchers propose various optimization methods for dynamic dataflow analysis such
as [15, 16, 31], which can also be integrated into SoupInt to improve the performance.

2.3 Attack Diagnosis and Error Recovery

A number of diagnosis techniques (such as [27, 29, 42, 45]) have been proposed to au-
tomatically analyze an attack process, usually with an emphasis on illustrating how
the program counter is controlled. In comparison, our paper proposes an approach to
diagnose whether an attack is specifically exploiting integer overflow vulnerabilities.

ClearView [28] is designed to automatically patch errors in deployed software pro-
grams by enforcing the invariants that are learned from normal executions. However,
ClearView is limited by what kinds of invariants it can learn, and may miss the root

1 http://www.w3.org/Graphics/JPEG/jfif3.pdf

http://www.w3.org/Graphics/JPEG/jfif3.pdf


260 T. Wang, C. Song, and W. Lee

Wild-captured 
Exploits

Dynamic Data-Flow 
Tracking

 Slicing
Symbolic Execution

Patches

Integer Overflow Diagnoser Patch Generator

Binary Program

Fig. 2. The SoupInt Architecture

causes of a vulnerability. According to its evaluation results, ClearView fails to gener-
ate a patch for the heap overflow vulnerability in Firefox, which is actually caused by
an integer overflow.

Sidiroglou et al. [34] introduce a nice concept of error virtualization, and further im-
prove the idea and propose rescue points in ASSURE system [32,33]. A rescue point is
a program location where the program checks return values from certain functions and
dispatches programmer-anticipated errors to corresponding handlers. Essentially, res-
cue points are the validation checks on function return values. In our work, we general-
ize the idea by identifying validation checks on the variables that are involved in integer
overflow vulnerabilities, and generate patches to enhance such validation checks.

ASSURE [33] and other similar systems such as [30, 35] rely on checkpoint-replay
mechanism that can recover the execution after a fault really happens. However, contin-
uous attacks against the same vulnerability will cause a significant number of expensive
recovery efforts and may result in a denial-of-service. Our work does not have this lim-
itation because our mechanism can generate patches and eliminate integer overflow
vulnerabilities.

3 System Design

SoupInt takes a vulnerable program and a wild-captured exploit as inputs, diagnoses
whether integer overflow vulnerabilities are exploited, and then generates emergency
patches to fix them. Figure 2 shows the architecture of SoupInt. Note that we position
SoupInt as an offline analysis system and assume that the exploit instances have been
captured by existing detection systems (e.g., [23, 27, 29]).

The rest of this section is organized as follows. Section 3.1 introduces the integer
overflow vulnerability diagnoser, which is responsible for capturing integer overflows
at runtime and identifying harmful integer overflows. Section 3.2 describes the patch
generator, which is used to select patch deployment points and generate patches.

3.1 Integer Overflow Vulnerability Diagnoser

This component has two goals: (1) it diagnoses whether a given attack instance exploits
an integer overflow vulnerability or not; and (2) if so, it accurately locates where the
harmful integer overflow happens. To achieve these goals, SoupInt first instruments
all x86 instructions that may produce an integer overflow to detect overflows occurred
during runtime. For the integer overflows that can be detected through the status register
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(i.e., EFLAGS), SoupInt directly checks if a certain flag is set after that instruction is
executed. For example, for signed ADD, SoupInt checks whether the overflow flag OF
is set; and for unsigned ADD, SoupInt checks the carry flag CF.

For the integer overflows that cannot be detected through the status register, SoupInt
pre-calculates the result before the instruction is executed and checks whether the result
overflows. For example, the LEA instruction, designed to compute effective addresses,
is widely used as an arithmetic operation. This instruction computes an expression of
the form “base+index*scale+offset” and does not affect EFLAGS. For this
instruction, SoupInt checks if each sub-expression overflows.

The challenge here is that binary programs do not preserve type information (i.e.,
signed or unsigned). To recover this information, we built a simple type inference tool
based on previous work [38], which retrieves partial type information from signed/un-
signed comparisons and arguments to known library/system APIs and propagates it
based on classic data flow analysis. For instructions whose type information remains
unknown after the static type inference, SoupInt performs both signed and unsigned
overflow checks.

Once an integer overflow is detected at runtime, SoupInt then employs dynamic
data flow analysis [16] to diagnose whether this integer overflow is harmful or not.
Specifically, SoupInt assigns the overflow value a unique tag (i.e., the address of the
instruction) and tracks the propagation of this tag according to dynamic data flow de-
pendence. If SoupInt finds that a tagged value is used in security sensitive operations, it
considers this integer overflow as harmful. Since allocating a buffer of incorrect size
is the most typical result of integer overflow vulnerabilities [44], SoupInt currently
treats the size parameters of memory allocation functions (such as malloc, calloc,
HeapAlloc, and VirtualAlloc) and the size parameters of memory manipulation
functions (such as memset, memcpy and memmove) as sensitive sinks. In the future,
we can also add more sinks like loop bound checks and array index calculation.

3.2 Patch Generator

After identifying an integer overflow vulnerability, SoupInt re-runs the vulnerable
program with the attack instance, and records a detailed execution trace, which con-
tains accessed memory addresses and values, and accessed registers and their values of
each instruction. Next, SoupInt offline analyzes the execution trace to identify candi-
date patch deployment points on the execution trace and then generates a corresponding
patch using different policies. Finally, SoupInt tests whether the patches can fix the in-
teger overflow vulnerability without breaking the program’s normal execution.

Patch Deployment Point Discovery. A patch deployment point is a relevant validation
check point. We start by introducing these terminologies and then describe the discovery
algorithms. For x86 binaries, a conditional check (i.e., the conditional statement if in
C/C++ programs) consists two instructions: an instructionC that affects the flag register
and a conditional jump instruction J that depends on the result of C. So we use the pair
(C, J) to indicate a check. Furthermore, let O be the integer overflow instruction.

Given an instruction i, we use DataSlice(i) to represent the set of instructions on
the trace that affect the values used in the instruction i through data flow dependencies.
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This is different from traditional dynamic slicing [1] that considers both data flow and
control flow dependencies.

Relevant Checks. A check (C, J) is relevant to an integer overflow instruction O if it
tests a variable that has some relationships with the integer overflow. More specifically,
if DataSlice(C) ∩ DataSlice(O) �= ∅, then (C, J) is relevant to O. For example,
consider the following code:

1.x = input();
2.y = x;
3.z = x;
4.if(z==0){//relevant check to line 6, although z has no data flow dependence on y.
5. handle_error(); return;}
6.y = y * 256; //harmful integer overflow
...

Assume that SoupInt has found the integer overflow vulnerability in line 6 and has
recorded a trace [1, 2, 3, 4, 6]. Then DataSlice(6) is {1, 2} and DataSlice(4) is
{1, 3}. Since they have line 1 in common, the check statement at line 4 is relevant to
the integer overflow at line 6.

Validation Checks. A check is a validation check in this paper if it is designed to identify
the programmer-anticipated invalid values.

Identify Relevant Checks. We consider two types of relevant checks: 1) those located
before the integer overflow instruction, and 2) those located between the integer over-
flow instruction and the sensitive operation where the overflowed value is used. To

Input: Trace: Execution Trace, O: Integer Overflow Point
Output: relevant checks

1 liveVars ← O.use(); //The inputs of O
2 DataSlice ← [];
3 tempVars ← [];
4 foreach inst from O to Trace[0] do
5 if liveVars==∅ then
6 break;

7 if inst.define() ∩ liveVars �= ∅ then
8 DataSlice.push(inst);
9 tempVars.push(liveVars ∩ inst.define());

10 liveVars ← liveVars - inst.define();
11 liveVars ← liveVars ∪ inst.use();

12 liveVars ← ∅;
13 forwardSlice ← [];
14 foreach inst from Trace[0] to O do
15 if inst in DataSlice then
16 liveVars ← liveVars ∪ tempVars.pop();
17 forwardSlice.push(inst);
18 continue;

19 if inst.use() ∩ liveVars �= ∅ then
20 forwardSlice.push(inst);
21 liveVars ← liveVars ∪ inst.define();
22 else
23 liveVars ← liveVars - inst.define();

24 if inst.isConditionalJump() then
25 recordRelevanCheck(inst);

Fig. 3. Backward-forward Slicing Algorithm
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identify relevant checks before the integer overflow instruction, SoupInt uses the algo-
rithm in Figure 3. The algorithm takes an execution trace T and an integer overflow
instruction O as inputs, and mainly consists of two loops.

Table 1. Backward-forward Slicing Example

Trace inst.def() inst.use()
liveVars tempVars liveVars tempVars
Backward slicing from 7 to 1 Forward slicing from 1 to 7

1. x=GetInt(); {x} - {q} {x} {x} {x}
2. y = x; {y} {x} {x,q} {y} {x,y} {y}
3. z = x; {z} {x} {y,q} - {x,y,z} -
4. if(z==0) - {z} {y,q} - {x,y,z} -
5. s=y, p=q; {s,p} {y,q} {y,q} {s} {x,y,z,s} {s}
6. p=use(p); {p} {p} {s} - {x,y,z,s} -
7. malloc(s*4); - {s} {s} {} {x,y,z,s} {}

DataSlice: {7,5,2,1} forwardSlice: {1,2,3,4,5,7}

We use the example trace (showing C source code for clarity purposes) in Table 1
to illustrate the algorithm. The first loop of the algorithm is designed to compute
DataSlice(O) by backwards traversing the define-use chain in the trace. Inst.define()
and inst.use() represent the variables (i.e., registers and memory addresses) that are
defined and used by inst respectively. A particular problem is, an instruction usually
defines multiple variables, but only some of them are relevant to the overflowed integer
operation. So naively tracking all variables in define-use chain will cause some irrele-
vant checks to be added into the set of relevant checks by the second loop. To solve this
problem, for each instruction inst in DataSlice(O), SoupInt uses tempV ars to only
record the variables that can affect the overflowed instruction O (line 9 in Figure 3). For
example, the “push eax” instruction modifies both the stack pointer and the memory
location on the top of the stack, so its Inst.define() includes both the esp register and
the memory [esp]. But if only the value stored in the memory address ([esp]) can
affect O, then only this address will be recorded in tempV ars. For another example,
the line 5 in Table 1 defines both s and "p". Since the definition of s causes the line to
be sliced into DataSlice, tempV ars records "{s}" for line 5.

The second loop is designed to generate a forward slice. More specifically, the loop
takes the instructions in DataSlice(O) as slicing criteria, and only adds the corre-
sponding element in tempV ars to liveV ars. This means only variables that can affect
the integer overflow instruction O are added to liveV ars. Essentially, the forward slice
tracks the propagations of the variables that can affect O. Since the flag register is con-
sidered in the define-use chain, the conditional jump instructions in the forward slice
must have directly or indirectly data dependency on the variables that can affect O.
Therefore, the checks in the forward slice are relevant checks to the integer overflow
instruction. For example, line 4 checks variable z; although z has no data flow depen-
dence on s that causes an integer overflow in line 7, our forward slice contains line
4. Furthermore, at line 5, although p is also in inst.def(), because of the presence of
tempV ars, only s is added into liveV ars, which avoids line 6 from being added into
forwardSlice.
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To find relevant checks between the integer overflow instruction and the exploit point,
we can simply extend the second loop in Figure 3 to slice from the first instruction in the
trace to the point where the overflowed value is used in the security sensitive operation.

Identify Validation Checks. Since not all relevant checks are validation checks,
SoupInt further refines the result according to the following heuristics:

Heuristics I. A validation check usually compares a variable with a constant value,
such as checking whether a variable is zero or greater than a constant boundary value.

Heuristics II. Following the branch for invalid inputs of a validation check, the func-
tion is most likely to return quickly. We use three basic blocks as the threshold.

Heuristics III. If a validation check and the integer overflow point are in the same
function, the integer overflow point is usually control dependent on the validation check.
In other words, whether the integer overflow point will be executed is determined by
the result of the validation check.

Only the checks that satisfy all of the three heuristics are selected as validation
checks. These heuristics are based on our manual inspection of the 32 real-world vul-
nerabilities in the Linux kernel (from 2009 to April 2012), the GNU C Library, and the
GNU Image Manipulation Program (GIMP), and represent the most common cases.

Patch Generation. After identifying candidate patch deployment points, SoupInt con-
tinues to generate a set of candidate patches. According to the position of the patch
point, SoupInt has three types of patch generation policy.
Policy I. If the control flow reaches the candidate patch point before the integer overflow
happens, SoupInt employs dynamic symbolic execution to generate a patch that can
forestall the integer overflow by changing the control flow to the branch for handling
invalid values.

Specifically, SoupInt performs forward dynamic symbolic execution from a candi-
date patch point to the integer overflow point along the recorded trace. Since dynamic
symbolic execution has been presented in much literature, we do not elaborate it here.
A key challenge in our scenario is how to choose the initial symbolic values. If we treat
all the registers and the whole memory as symbolic values, we could collect all the
symbolic trace constraints; but the result will contain too many unnecessary constraints
and lead to high false negative rate. Therefore, SoupInt only takes the variables that can
affect the values used in the integer overflow operation as symbolic values. The slicing
algorithm in Figure 3 can already be used to identify such variables (i.e., the variables
in liveV ars). Based on these initial symbolic variables, SoupInt symbolically executes
the instructions that access symbolic values, and concretely executes the instructions
that do not access symbolic values.

When the dynamic symbolic execution stops at the integer overflow operation,
SoupInt generates a set of symbolic predicates that describes (1) how the symbolic val-
ues are used in the integer overflow operation and; (2) path constraints for the execution
to reach the integer overflow point. By inserting a new symbolic predicate that repre-
sents the overflow condition, this set of predicates can be used to determine whether the
integer overflow will be triggered during runtime. SoupInt then exports these symbolic
predicates to a file in the SMT-LIB format [2].
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For example, the left side of Figure 4 shows a snippet of an execution trace and
the right side also presents the corresponding symbolic execution process. Assume we
have detected an integer overflow vulnerability at line 4. In this case, SoupInt will select
line 2 as the patch deployment point, assigns eax and ebx initial symbolic values, say
eax_0 and ebx_0 respectively, and perform symbolic execution from this point. As a
result, SoupInt computes that the size argument of malloc is eax_0*(ebx_0+4),
and generates a predicate for the multiplication overflow condition.

A patch of this type is a function that is deployed at corresponding validation check
point. Every time the control flow reaches the validation check point (e.g., line 2 in
Figure 4), this patch function will be invoked. Specifically, the patch function loads the
symbolic predicate, instantiates the symbolic values according to the concrete execution
context, and check its satisfiability. If the symbolic predicate is satisfiable, which means
that the execution context will reach the integer overflow point and trigger an overflow,
the patch function changes the program’s control flow to the branch for invalid inputs.

In the above example, a patch function is deployed at line 2. When it is invoked, the
patch function instantiates symbolic eax_0 and ebx_0 with the values of registers
eax and ebx, respectively, and alters the program control flow to the err branch after
it finds that the patch predicates in Figure 4 are satisfiable.

Policy II. If the control flow reaches the candidate patch point after the integer over-
flow happens, SoupInt generates a patch that can alter the control flow at the validation
check point before the control flow reaches the exploit point, if it captures the integer
overflow at runtime. Specifically, the patch consists of three components. The first com-
ponent uses the Thread-Local Storage (TLS) method to allocate a global alarm flag for
each thread. The second component, which is deployed at the integer overflow point,
is responsible for setting the global alarm flag if the integer overflow happens at run-
time. The third component, which is deployed at the validation check point, alters the
program’s control flow to the branch for invalid inputs if the alarm flag is set, and then
resets the alarm flag. Figure 5 shows a high level example. The code in boxes represents
the corresponding patch components.

New Symbolic Map
1. test eax, eax eax=eax 0 ebx=ebx 0
2. jz err
3. add ebx,4 ebx=ebx 0+4 eax 0!=0
4. imul eax, ebx eax=eax 0*(ebx 0+4) eax 0!=0
5. push eax
6. call malloc Patch Predicates: "eax 0!=0 &&

(eax 0*(ebx 0+4)) overflows"

Fig. 4. Symbolic Execution Example

size = count*4; 
 
 
if(size==0) 
 
 

 return err; 
p = malloc(size); 
return p; 

;

rettturn err;

Fig. 5. Policy II Example

Policy III. If SoupInt does not find any proper patch deployment points (e.g., no any
validation check in the program), it generates a patch that performs a controlled exit
if harmful integer overflow happens. There is a special case. If SoupInt finds the over-
flowed value affects a memory allocation and the program has memory failure checks,
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SoupInt can generate a patch that forces the memory allocation function to return a
NULL pointer if the integer overflow really happens.

Patch Test and Deployment. The generated patches can then be applied in various
ways, such as static binary rewriting, dynamic binary rewriting or dynamic binary trans-
lation (e.g., PIN [21]). Since the details of these techniques are orthogonal to the topic
of this paper, we will not discuss them here. In our current prototype system, we de-
ploy patches using the PIN [21] platform, because PIN can attach to a running process
without restarting it. Our PIN plugin loads the patch files and dynamically hooks the
corresponding instructions according to the patch policy. It employs PIN’s context ma-
nipulation APIs to manipulate a program’s control flow, and uses PIN’s Thread APIs to
implement the thread local storage.

Before the final deployment, SoupInt will test the candidate patches using the stan-
dard patch testing procedure. First, we run the patched program with exploit samples to
test whether a patch can prevent exploits against the integer overflow vulnerability. In
practice, since we may only capture one or a few exploit samples, we can generate more
malicious inputs by using the fuzzing technique, i.e., randomly modify the captured ex-
ploits. Many systems such as [12,40] use a similar approach to construct potential attack
variants. A patch is considered effective if 1) the patched program survives all attack
variants, and 2) the integer overflow does not happen at runtime for programs patched
by Policy I and the integer overflow does not flow into security sensitive operations for
the programs patched by Policy II and Policy III.

Second, we perform a regression test for each patch with normal inputs to check
whether it affects the normal operations. If the patched program does not crash, fail,
or generates different behaviors (compared with the original program with the same
inputs), the patch is considered as useful and is ready for deployment.

4 System Evaluation

4.1 Implementation

We have implemented a prototype of SoupInt. Specifically, the integer overflow detec-
tor and tracker are implemented as plugins for PIN binary instrumentation platform
(v2.11) [21]. We built a simple type inference tool based on our previous work [38] and
extended our previous symbolic execution system [37] to generate symbolic predicates.

4.2 Experiment Setup

We evaluated SoupInt on its effectiveness and efficiency with ten integer overflow vul-
nerabilities in widely used applications, which involve ten kinds of input formats. Ta-
ble 2 shows the basic information of these vulnerabilities, including the names, versions,
availability of source code of the applications, the CVE identifiers for the vulnerabili-
ties, and the corresponding input formats.

We chose these vulnerabilities according to the following steps. First, we only select
the vulnerabilities in widely used programs. Specifically, we search for integer overflow
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Table 2. Real World Integer Overflow Vulnerabilities

Software Description Version Open Source CVE ID Input

Openoffice.org Office productivity software suite 3.3.20 Y CVE-2012-1149 ODT
VLC Multimedia player 1.1.0 Y CVE-2011-2194 XSPF
Yahoo Messenger Instant messaging 11.5.0.152 N CVE-2012-0268 JPEG
ACDSee Image viewer 14.1 N CVE-2012-1197 BMP
Opera Web browser 11.6 N CVE-2012-1003 HTML
Adobe Flash Player Web browser plug-in 10.0.42.34 N CVE-2010-2170 SWF
Adobe Reader PDF viewer 9.1.3 N CVE-2009-3459 PDF
RealPlayer Multimedia player SP 1.1 N CVE-2010-3000 FLV
QuickTime Player Multimedia Player 7.1.3 N CVE-2007-0714 MPEG-4
Microsoft Linker Key component of Microsoft Visual Studio 10.00.30319.01 N N/A PE

Summary: 10 integer overflows and 10 different input formats.

vulnerabilities in the National Vulnerability Database1 and the Secunia Vulnerability
Database2, and only select the integer overflows discovered in the widely used programs
on the Windows x86 platform. Second, we further select the vulnerabilities whose ex-
ploits are available. Although we found a number of integer overflow vulnerabilities in
Step 1, only few of them have publicly available exploits. To obtain the exploit sam-
ples, we contacted many discoverers of the vulnerabilities and also searched exploits in
the Exploit-DB website. Finally, we chose the first 10 vulnerabilities that have exploits
available.

We start by briefly introducing each vulnerability. Then, we present the effective-
ness of SoupInt system in Section 4.3. We ran these applications with exploits and
test whether SoupInt is able to locate the exploited integer overflow vulnerabilities and
generate patches for these vulnerabilities. In Section 4.4, we present the efficiency of
SoupInt system, including performance measurements of each component and the gen-
erated patches. All experiments ran on a Windows 7 virtual machine with 4GB of mem-
ory using VMware.

1. OpenOffice.org has an integer overflow vulnerability (as shown in Figure 1) when
parsing JPEG objects embedded in a document in the Open Document (odt) format.
The vulnerability can be triggered by overly large image dimensions of a JPEG
object, and eventually results in a heap-based buffer overflow.

2. VLC player has an integer overflow in the XSPF playlist parser. The XSPF is in the
XML format. An overly large value in the tag <vlc:id></vlc:id> can trigger
the integer overflow and finally causes a heap overflow.

3. Yahoo Messenger has an integer overflow vulnerability. Malicious JPEG images
with specially crafted image dimension values and color depth can trigger the inte-
ger overflow and eventually lead to a heap-based buffer overflow.

4. ACDSee, a popular image viewer, has an integer overflow vulnerability in the BMP
image parser, which is caused by malformed dimension values of BMP images. The
vulnerability can cause a heap-based buffer overflow.

5. The Opera web browser has an integer overflow vulnerability when calculating the
buffer size for number arrays. Malicious JavaScript code can exploit the vulnera-
bility by using a large integer argument to the typed array construction functions,

1 http://nvd.nist.gov/
2 http://secunia.com/

http://nvd.nist.gov/
http://secunia.com/
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such as Int32Array, Float32Array, and Int16Array. The integer over-
flow eventually leads to a heap-based buffer overflow.

6. QuickTime has an integer overflow vulnerability that is caused by the size fields of
the udta atoms within multimedia files in the MPEG-4 format. This vulnerability
is able to trigger a heap based buffer overflow.

7. RealPlayer has an integer overflow vulnerability when parsing an FLV file with
malformed AMF data, which can lead to a heap-based buffer overflow.

8. Adobe Reader has an integer overflow vulnerability in the FlateDecode stream
parser, caused by the /ParamX parameter of a FlateDecode stream. This inte-
ger overflow can cause a heap overflow and finally leads to remote code execution.
Note that this vulnerability was actively exploited in the wild in limited targeted
attacks.

9. Adobe Flash Player has an integer overflow vulnerability when parsing embedded
image data within SWF files. A crafted DefineBits tag within a SWF, which con-
tains image data with malformed dimension values in the JPEG format, can trigger
the vulnerability, and cause a heap-based buffer overflow.

10. Microsoft Linker, a key component of the Microsoft Visual Studio integrated de-
velopment environment that links Common Object File Format (COFF) object files
and libraries, has an integer overflow vulnerability when parsing PE files. The vul-
nerability is caused by the NumberOfSymbols field in the COFF file header
within a PE (.exe) file, and leads to a heap-based buffer overflow.

Table 3. Attack Diagnosis Results

Software Integer Overflow Vulnerability Module Offset # Overflow Sites

Openoffice.org imul edi, edx vclmi.dll 0x1ad49f 1122
VLC lea esi, ptr [ecx*4+0x4] libplaylist plugin.dll 0xfcd9 423
Yahoo Messenger imul eax, ebx YImage.dll 0x21531 354
ACDSee imul ebp, ecx IDE ACDStd.apl 0x59639 288
Opera imul eax, dword ptr [esp+0xc] opera.dll 0x889f5b 428
Adobe Flash Player imul eax, ecx Flash10d.ocx 0x9165e 860
Adobe Reader lea edx, ptr [ecx*4+0x48] AcroRd32.dll 0xa60a5 1082
RealPlayer imul ecx, ecx, 0x23 flvff.dll 0x8bc4 381
QuickTime Player add ecx, edi QuickTime.qts 0x295a74 567
Microsoft Linker lea edi, ptr [eax+eax*8] linker.exe 0xa2c10 88

4.3 Effectiveness

We ran the unpatched versions of applications in Table 2 with exploit samples, and used
SoupInt to monitor the execution. SoupInt accurately locates the exploited integer over-
flow vulnerabilities, that is, SoupInt is able to capture the integer overflows at runtime,
and then detects the overflow values flow into memory allocation functions. Table 3
summarizes the results. The second column presents the specific instructions where
integer overflow happens, and the third and fourth columns show the corresponding
modules and offsets. The last column reports the number of unique integer overflow
sites. Note that, SoupInt detects a large number of integer overflows at runtime (the
last column in Table 3), including both benign and harmful integer overflows, but only
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the harmful ones (second column in Table 3) affect the memory allocations and need
to be patched. These programs use different functions for allocations memory. For ex-
ample, ACDSee and OpenOffice use GlobalAlloc, Yahoo Messenger uses new()
operator, Adobe Flash player uses malloc,VLC uses realloc, and Microsoft Linker
uses RtlAllocateHeap. By using dynamic data flow tracking, SoupInt is able to ac-
curately locate the harmful integer overflows.

After locating the exploited integer overflow vulnerabilities, SoupInt continues to
generate patches to fix these vulnerabilities. We manually verified that SoupInt correctly
found the error handling branch by using the heuristics in Section 3.2. In summary, out
of the 10 vulnerabilities in Table 2, SoupInt finds relevant validation checks before the
integer overflows for 7, and successfully generates patches using Policy I; SoupInt does
not find validation checks before the integer overflows, but finds validation checks after
the integer overflows for 2, and generates patches using Policy II; SoupInt does not find
any relevant validation checks for 1, and generates patches using Policy III.

Table 4. Policy I Patch Evaluation Results

Software Relevant Checks Validation Checks # Final Patches

Openoffice.org 17 9 8
Yahoo Messenger 14 4 4
ACDSee 10 10 3
Opera 1 1 1
VLC 2 1 1
Adobe Reader 23 8 8
Microsoft Linker 1 1 1

Summary: successfully fixed these 7 vulnerabilities by using Policy I.

Table 5. Policy II and III Patches

Policy Type Software Fixed

II
Adobe Flash Player Y
Quicktime Y

III RealPlayer Y

Policy I. Table 4 shows Policy I evaluation results. The “Relevant Checks” column
reports the number of relevant check points before the integer overflow points, identified
by our slicing algorithm, and the “Validation Checks” column presents the number of
candidate validation check points selected from the relevant checks. For each candidate
relevant validation point, SoupInt generates a patch. Therefore, when a program checks
inputs for multiple times at different places, SoupInt may generate multiple candidate
patches for a single vulnerability. In this case, each of the candidate patches is evaluated
independently. If a patch cannot prevent the program from crashing on malicious inputs
or produces incorrect results on normal inputs, the patch cannot pass our tests. The
“#Final Patches” column shows the number of successful patches that both survive the
malicious inputs and enable the application to operate normally.

For OpenOffice, SoupInt finds 17 relevant checks and selects 9 of them as val-
idation checks. We manually inspect the 9 validation check points in source code.
We find (1) the function get_sof in the libjpeg package has two checks that test
whether the image dimensions are signed less than or equal to zero; (2) the func-
tion initial_setup in the libjpeg package has two checks that test whether
the image dimensions are signed greater than 65500; (3) a constructor function
Bitmap::Bitmap of the Bitmap class has two checks on image dimensions to
test whether they are zero and has one check on BitCount (i.e., the number of bits
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per pixel of the image) to test whether it is greater than 8; and (4) the function
WinSalBitmap::ImplCreateDIB as shown in Figure 1 has two checks at the
line 316 that test whether the image dimensions are zero. SoupInt generate 8 successful
patches (i.e., passing our tests) in the 9 patch points, except for the validation check
on the BitCount in the constructor function of the Bitmap. While the original OpenOf-
fice.org crashes when opening the crafted document file, the patched OpenOffice.org
can successfully process the crafted document and provide normal functionalities such
as editing the document and converting the document into other formats.

This Case Highlights the Advantage of our Approach. Since the input document file
is in the Open Document format, which is a ZIP compressed archive, OpenOffice.org
will first decompress the input file before parsing the malformed JPEG object. Due to
the complicated decompression process, it is very difficult for the vulnerability signa-
ture generation systems such as [5, 9, 10] to generate a signature based on symbolic
execution for this vulnerability.

For Yahoo Messenger, SoupInt finds 14 relevant checks, and further selects 4 of
them as validation checks. The first two validation checks are used to test whether the
dimension values of a JPEG image are signed less than or equal to zero, and the other
two validation checks are used to test whether the dimension values are signed greater
than 0xFFDC. SoupInt generates four patches and all of them are able to prevent the
integer overflow.

For ACDSee, SoupInt finds 10 relevant checks. All of them are selected as validation
checks. The interesting finding is that ACDSee does have integer overflow checks on
the BMP image dimensions. However, these checks cannot prevent the integer overflow.
Basically, ACDSee first promotes the signed 32-bit image dimensions to unsigned 64-
bit integers, computes the multiplication result, and then uses a signed comparison to
check whether the result is greater than 0x7fff. A correct check should use an unsigned
comparison here. The malicious BMP image can pass the checks and trigger the inte-
ger overflow issue. This whole process contains multiple checks. SoupInt successfully
generates 3 patches to fix the integer overflow issue.

For Opera web browser, SoupInt discovers one check before the integer overflow
operation that tests whether the number of items in the array is zero. SoupInt further
generates a patch and deploys the patch at the validation check point. This case also
highlights the advantage of our approach. As malicious JavaScript code can easily
use various obfuscation techniques, traditional vulnerability signature systems [5,9,10]
are unlikely to identify and filter them without de-obfuscation. However, our patch is
deployed inside the Opera browser and is able to resist all obfuscation techniques. In
addition, the patch can also defeat the attacks via different JavaScript APIs, such as
Int32Array and Float32Array.

For VLC player, SoupInt detects two relevant checks before the integer overflow, one
of which is selected as the validation check. It tests whether the track ID (i.e., the value
read from <vlc:id> element) is negative.

For Adobe Reader, among the 23 relevant checks, SoupInt identifies 8 validation
checks. These validation checks are responsible for testing whether the input value read
from the /ParamX parameter and corresponding intermediate variables are zero or
negative. All of them are suitable for deploying patches.
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For Microsoft Linker, SoupInt detects only one relevant check, which tests whether
the NumberOfSymbols field is zero and is selected as a validation check. The patch
deployed at this check point can successfully prevent the integer overflow.

Policy II & III. For the two vulnerabilities in Adobe Flash Player and QuickTime
Player, although SoupInt does not find any relevant checks before the integer overflow
operation, it detects the checks after the integer overflow and generates patches us-
ing Policy II. Interestingly, these checks after the integer overflow operations seem to
be designed to detect the integer overflows, but they are insufficient. For example, the
pseudocode for the vulnerability in Adobe Flash Player is shown as follows:

//w and h are the dimension values of a JPEG object
int tmp1 = w*4;
int size = tmp1*h; //integer overflow point
if(tmp1<=0 || h<=0 ||size<h || size<tmp1) //incorrect overflow checks

goto _err;
ptr = malloc(size);

SoupInt generates patches that can alter the control flow to the error branch if the integer
overflow occurs, essentially enhancing the existing overflow checks.

Table 6. System Performance Results

Software Diagnosis(s) Tracing(s) Slicing(s) Patching(s)

Yahoo Messenger 57 164 16 6.3
OpenOffice.org 181 210 53 10.2
ACDSee 123 206 18 8.8
Opera 105 332 49 6.5
VLC 112 134 28 8.6
Adobe Reader 99 361 71 21.5
Adobe Flash Player 144 344 52 N/A
QuickTime 78 217 73 N/A
RealPlayer 93 228 31 N/A
Microsoft Linker 37 66 27 12.1

Summary: diagnosing and patching were completed in minutes.

Table 7. Patch Overhead

Software Normal (µs) Malicious (µs)

Yahoo Messenger 3190 4503
OpenOffice.org 5028 6572
ACDSee 1241 2442
Opera 727 761
Adobe Reader 597 1524
VLC 306 509
MS linker 1660 1819

For the vulnerability in RealPlayer, SoupInt does not find any validation checks.
In fact, RealPlayer directly uses input data to calculate the size parameter of the new
operator, without any sanity checks. Fortunately, SoupInt finds that RealPlayer has a
check on the return value of the new operator. In this case, SoupInt generates a patch
that can bypass the invocation to the new operator when the integer overflow happened
and assign the EAX register (i.e., the return value) zero. The patch cannot stop the
integer overflow, but avoids the heap overflow. The patched RealPlayer successfully
survives the exploits.

Policy II and III results are summarized in Table 5. Our manual inspection shows that
these patches in Table 5 were deployed at the post-dominators of the integer overflow
operations (i.e., every path from the integer overflow operation to the exit of the function
has to pass through our patch). If the integer overflow happens, the patch in Table 5 can
prevent the overflown results from being used in security sensitive operations and are
both complete and sound.
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Overall, SoupInt is able to handle all the ten integer overflow vulnerabilities in Ta-
ble 2, 7 of which are fixed by Policy I with symbolic predicate patches, 2 of which are
fixed by Policy II, and 1 of which is fixed by Policy III.

4.4 Performance

We first report the performance of patch generation. Table 6 summarizes the evalua-
tion results and presents the time spent on each primary step. In general, SoupInt can
finish the attack diagnosis and patch generation in a few minutes. The second column
shows the time spent on attack diagnosis, the “Tracing” and “Slicing” columns report
the time spent on recording the execution traces and the time spent on slicing, and the
last column shows the mean time spend on generating a symbolic predicate patch.

Next, we present the performance overhead caused by the patches per execution. For
the patches generated from Policy I, the second and third column in Table 7 show the
average execution time of the additional checks for normal and malicious inputs. For
malicious inputs, the patches need to redirect applications’ execution flows so it takes
a bit more time. In all the cases, our patches are only executed once or a few times per
execution and the overall overhead caused by the patches is completely negligible. The
patches generated from Policy II or Policy III do not cause measurable performance
overhead, compared to the case of running the programs in PIN [21] without any in-
strumentation.

5 Limitations and Future Work

In this section, we discuss the limitations of SoupInt and future work.

Scope. In our current implementation, SoupInt particularly handles the integer over-
flows that lead to incorrect memory allocations and movements, which are the most
typical consequence of integer overflow vulnerabilities [39,44]. While it is very easy to
extend SoupInt to handle more integer overflow vulnerabilities that affect other sensi-
tive functions, SoupInt does not handle integer overflows that do not have obvious sink
points and lead to logic errors. Moreover, in the patch testing phase, we assume that a
validation test suite of sufficient size is available.

Patch Overhead. Although the runtime overhead caused by our patches is trivial in
our evaluation, it may be still unacceptable for performance-sensitive programs if the
patches are deployed in the time critical parts. To alleviate the risk, we could optimize
patch checks by translating the symbolic patches into simple predicates and improve
the efficiency of patch checks.

Completeness and Soundness. In general, we cannot prove the completeness and
soundness of the patches generated by SoupInt. It is well known that generating a
complete and sound patch is very challenging, even for programmers [22, 43]. Since
SoupInt generates symbolic predicate patches based on a single execution trace, our
patches may have false negatives, i.e., the malicious inputs can trigger the integer over-
flow via a different program path and cannot be detected by our patches. In practice, we
find that SoupInt can usually generate and deploy patches at control flow dominators or



Diagnosis and Emergency Patch Generation for Integer Overflow Exploits 273

post-dominators of the harmful integer overflow operations, in which case, the gener-
ated patches could be sound or complete. On the other hand, SoupInt now only treats
the values that can affect the integer overflow operation as symbolic values. While this
makes the patches more robust because a lot of unnecessary trace constraints are ex-
cluded, this may also cause false positives. For example, it is possible that our patches
find an input will trigger the integer overflow, but in practice the input cannot reach
the integer overflow operation. Note that in our evaluation, our patches do not generate
false positives. The reason is that the overly large values detected by our patches have
been able to indicate the whole input is invalid or malformed.

Future Work. In the future, we intend to extend SoupInt in two directions. First, we
plan to improve the performance of the exploit diagnosis module so that SoupInt could
be used as an online exploit detection tool. Second, we plan to extend SoupInt to fix
other types of vulnerabilities such as buffer overflows and format string bugs using a
similar idea of generating and deploying patches at existing validation check points.

6 Conclusion

In this paper, we presented SoupInt, a system that can automatically generate emer-
gency patches from attacks against integer overflow vulnerabilities. SoupInt first uses
the dynamic data flow analysis technique to diagnose the integer overflow vulnera-
bilities exploited by an attack instance, and then generates patches to eliminate these
vulnerabilities using different policies. A key feature of SoupInt is that it deploys the
patches at the existing relevant validation check points inside the vulnerable programs,
and leverages the existing error handling code to deal with the unanticipated integer
overflow vulnerabilities. Our experimental results on a number of real world integer
overflow vulnerabilities in widely used commodity applications show that SoupInt can
successfully locate harmful integer overflows and generate effective patches in minutes.
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