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Abstract—Spectre attacks and their many subsequent variants
are a new vulnerability class affecting modern CPUs. The attacks
rely on the ability to misguide speculative execution, generally
by exploiting the branch prediction structures, to execute a
vulnerable code sequence speculatively. In this paper, we propose
to use Control-Flow Integrity (CFI), a security technique used
to stop control-flow hijacking attacks, on the committed path, to
prevent speculative control-flow from being hijacked to launch
the most dangerous variants of the Spectre attacks (Spectre-
BTB and Spectre-RSB). Specifically, CFI attempts to constrain
the possible targets of an indirect branch to a set of legal
targets defined by a pre-calculated control-flow graph (CFG).
As CFI is being adopted by commodity software (e.g., Windows
and Android) and commodity hardware (e.g., Intel’s CET and
ARM’s BTI), the CFI information becomes readily available
through the hardware CFI extensions. With the CFI information,
we apply CFI principles to also constrain illegal control-flow
during speculative execution. Specifically, our proposed defense,
SPECCFI, ensures that control flow instructions target legal
destinations to constrain dangerous speculation on forward
control-flow paths (indirect calls and branches). We augment this
protection with a precise speculation-aware hardware stack to
constrain speculation on backward control-flow edges (returns).
We combine this solution with existing solutions against branch
target predictor attacks (Spectre-PHT) to close all known non-
vendor-specific Spectre vulnerabilities. We show that SPECCFI
results in small overheads both in terms of performance and
additional hardware complexity.

I. INTRODUCTION

The recent Spectre [43] attacks have demonstrated how
speculative execution can be exploited to enable disclosure of
secret data across isolation boundaries. Specifically, attackers
can misguide the processor to speculatively execute a read
instruction with an address under their control. Although the
speculatively read values are not visible to programs through
the architectural state, since the misspeculation effects are
eventually undone, they can be communicated out using a
covert channel. Since their introduction, a large number of
attacks following the same pattern (temporary read of sensi-
tive data through speculation, followed by disclosure of this
data through a covert channel (e.g., [32], [51])) have been
discovered which enable bypassing different permissions using
a number of different speculation triggers [10], [13], [27], [30],

[42], [45], [47], [61], [66], [70], [76]; it is clear that this is a
general class of vulnerability that requires deep rethinking of
processor architecture.

Since speculation is essential for the performance of modern
processors, to mitigate this threat without severely restricting
speculation, some solutions such as InvisiSpec [77] and Safe-
Spec [40] propose separating speculative data from committed
data. Such an approach, rather than attempting to limit specu-
lation, would isolate possible leakage. However, the principle
has to be applied to every micro-architectural structure (e.g.,
cache, TLB, DRAM row buffer), and it is unclear if this ap-
proach could prevent leakage through contention, for example,
using the functional unit port side-channel [7], [13], [52].

Another direction to mitigate this threat is to restrict spec-
ulation if a potentially dangerous gadget can be executed
speculatively. For example, Intel and AMD suggest insert-
ing serialization instructions like lfence to prevent loading
potentially secret data [6], [36]. Because blindly inserting
serialization instructions will have the same effect as disabling
speculation, thus severely reducing performance [34], a better
solution is to conditionally insert barriers. The MSVC C
compiler [49], oo7 [74], and Respectre [33] use static analysis
to identify dangerous gadgets and only insert lfence before
the identified gadgets. Context-Sensitive Fencing [67] dynam-
ically inserts serialization instructions when a load instruction
operates on untrusted data (address), but only for Spectre-PHT.

Our observation is that Spectre-like attacks rely on manip-
ulating the processors’ prediction structures (see Section II-A
for details) to coerce speculation to an attacker-chosen code
gadget. Therefore, these attacks can potentially be defeated
more efficiently by identifying and preventing erroneous spec-
ulation when the prediction structures produce a wrong pre-
diction. As a first step towards this direction, we propose
SPECCFI, a lightweight solution to prevent the two most
dangerous Spectre variants: Spectre-BTB (v2) and Spectre-
RSB (v5). SPECCFI prevents these attacks by using control-
flow integrity (CFI) principles to identify when a prediction is
likely erroneous and constrains speculation if it is.

In contrast to traditional CFI, even hardware supported
proposals, whose purpose is to prevent illegal control flow



within the primary architecturally visible control flow of a
program, SPECCFI pushes CFI to the speculation level, where
it can be used to determine whether a speculative execution
path should be allowed or limited. Compared to existing
solutions against Spectre-BTB and Spectre-RSB, such as the
recent microcode update from Intel [36] and retpoline [69],
SPECCFI introduces less performance degradation as it still
allows correct speculation to proceed, while these existing
solutions blindly “disable” all indirect branch prediction.

We also like to argue that defenses against Spectre-BTB
and Spectre-RSB serve as the foundation for defense against
Spectre-PHT (v1) attacks. The reason is that serialization
instructions can be viewed as a special type of inline reference
monitor and, therefore, it is crucial to make sure that these
inserted barriers are never bypassed. However, without pro-
tections against Spectre-BTB (forward indirect branches) and
Spectre-RSB (returns), attackers can easily bypass the barriers
to carry out the attacks [13]. Furthermore, as demonstrated in
return-oriented programming [65], by jumping to the middle
of an x86 instruction, attackers can use unintended gadgets,
in our case speculatively, to launch attacks. For this reason,
we envision SPECCFI being combined with existing solutions
against v1 attacks [19], [55], [67] to provide comprehensive
protection against Spectre attacks.

The SPECCFI principle can leverage any CFI implemen-
tation (e.g., coarse-grained such as Intel’s CET [38], or fine-
grained such as HAFIX [21]), with small differences in im-
plementation and leading to the enforcement of the respective
version of CFI. We present our baseline design for forward
edge protection in Section IV and backward edge protection
in Section V. We investigate two versions of SPECCFI:
SPECCFI-base that implements CFI only for speculation, and
SPECCFI-full that also supports CFI for the committed control
flow (i.e. conventional goal of CFI). Section VII evaluates
performance and complexity of the design. We show that
SPECCFI-base eliminates dangerous misspeculation (where
the predicted target label does not match the destination),
without impacting performance.

SPECCFI-full incurs an additional small overhead, on par
with other hardware CFI implementations [20]–[22]. We also
analyze the implementation complexity and find that the
overhead is modest.

Although some software and hardware solutions have
started to appear to defend against this class of attacks, we
believe that our solution is elegant along with a number
of interesting properties. We believe that it also combines
well with other proposed defenses, such as SafeSpec [40]
and InvisSpec [77] which limit the speculative side effects
once misspeculation occurs, by limiting the opportunities for
harmful speculation. Section VIII compares SPECCFI to these
and other works.

In summary, the contributions of the paper include:

• We present a new defense against Spectre variants that
rely on polluting the BTB and RSB, by embedding CFI
principles into the branch prediction decisions.

• We analyze the security of the proposed designs showing
that it protects against all variants of Spectre-BTB (v2)
and Spectre-RSB (v5) attacks. Combined with solutions
such as context-sensitive fencing, we believe that we can
completely secure the system against Spectre attacks.

• We analyze the performance and complexity of SPECCFI,
showing that it leads to little overhead. Compared to a
defense that prevents speculation around indirect jumps,
indirect calls and returns, SPECCFI provides equivalent
security yet still avoids the large performance overheads.
The hardware complexity is also negligible.

II. BACKGROUND

This section overviews some background: branch predictor
structures in modern processors, Spectre attacks, and CFI.

A. Branch prediction and Spectre attacks
Branch prediction is a critical component of modern proces-

sors that support speculative out-of-order execution. When a
control flow instruction (branch, call or return) is encountered,
the result of the instruction (e.g., whether or not a conditional
branch will be taken or what the target value is of an indirect
branch or a return) is generally not known at the front end
of the pipeline. As a result, to continue to fill the pipeline
and utilize the available resources of the processor, branch
prediction is used.
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Fig. 1: Branch Predictor Unit consists of three different pre-
dictors: (1) PHT for conditional branch direction; (2) BTB for
indirect branch addresses; and (3) RSB for return addresses.

Modern processors employ sophisticated predictors (shown
in Figure 1) which typically consist of three components:

• Direction predictor: is responsible for predicting the di-
rection of a conditional branch. Although a number of
implementations have been studied, modern predictors
typically implement a two-level context sensitive predic-
tor [27]. The first level is a simple predictor that hashes
each branch address to a direction predictor (typically a 2-
bit saturating counter). This predictor is used either when
a branch is not being successfully predicted or when the
predictor has not been trained yet. When the predictor is
trained, it typically uses a second prediction algorithm,
often a variant of a gshare predictor [79], which uses the
global history of a branch in addition to its address to
hash to a direction predictor as before. The advantage is
that the same branch can have different predictions based
on the control flow path used to reach it.



TABLE I: Spectre attack variants and their targeted branch
prediction components

Spectre Element exploited
Spectre-PHT (v1) [43] Pattern History Table (PHT)
Spectre-PHT (v1.1) [42] Pattern History Table (PHT)
Spectre-BTB (v2) [43] Branch Target Buffer (BTB)
Spectre-RSB (v5) [45], [47] Return Stack Buffer (RSB)

• Target predictor: is used by indirect jump and indirect call
instructions which jump to an address held in a register
or a memory location, which is unknown at the front end
of the pipeline. This predictor typically uses the hash of
the branch address to index a cache holding the branch
targets called the branch target buffer (BTB). BTBs are
shared across threads on a virtual core: one value used by
a process could be used by another process whose branch
has a matching address in the BTB [28].

• The return address stack: Since returns are not well pre-
dicted using the BTB, and often follow strict call-return
semantics, their target is predicted using a return address
stack of fixed size. When a call instruction executes,
the return address is pushed on this hardware stack; if
overflow happens, previous entries are overwritten [45].
When a return is encountered the top of the stack is
popped and used as the return target.

Spectre Attacks Spectre attacks exploit the branch and
aliasing predictors to fool them to access unauthorized data
speculatively [13], [15], [30], [42], [43], [45], [47]. The main
properties that the attack exploits in speculative execution are:
(1) lazy permission checks on speculation: while instructions
are being executed speculatively, the processor will not check
the permissions until the commit stage; (2) Speculative in-
structions have unintended side-effects on micro-architectural
states even if they do not get committed; and (3) attackers can
deliberately mislead execution into attacker-intended gadgets
by mistraining branch predictors, and use the previous property
to leak sensitive information. Specifically, an attacker selected
gadget is executed speculatively to perform unauthorized ac-
cess and leak the value through a side-channel [10], [34], [43].
Based on the prediction structure being attacked, variants of
the Spectre attacks that are addressed in this work are shown
in Table I. Mitigations for other variants of the Spectre attacks
as well as variants of the Meltdown attack have been discussed
in detail by Canella et al. [15].

B. Control-flow Integrity

Control-flow integrity (CFI) [4], [57] is a state-of-the-art
solution to mitigate control-flow hijacking attacks. In such
attacks, attackers corrupt/overwrite control data (i.e., data
that controls indirect control transfer, function pointers and
return addresses for instance ) to divert the victim program’s
execution to carry out attacker-chosen logic, for example, to
enable malware or open a backdoor. CFI prevents such attacks
by enforcing a basic safety property: software execution must
follow only legal paths within a control-flow graph (CFG)

determined ahead of time [4]. Hence, a CFI mechanism always
consists of two components: one that computes the CFG of
the program and one that regulates the control transfer while
it is executing.
Constructing CFG. The security guarantee of a CFI mech-
anism directly depends on the accuracy of the CFG, which
can be constructed through static or dynamic analysis. Coarse-
grain CFI mechanisms [81], [82] generate the CFG using
static analysis: any address-taken function can be a legitimate
target for any indirect call; any address taken basic block can
be a legit target for any indirect jump; and the address of
the next instruction after any call can be a legit target for a
return. Although coarse-grained CFI can eliminate most illegal
control transfer targets, follow-up research has shown that
the CFG used is too permissive/inaccurate that it still allows
attacks [17], [29]. Fine-grained CFI solutions improve the
accuracy of the CFG by incorporating type information [53],
[58], [68], [72], [75]. Unfortunately, the CFG may still allow
illegal control transfers [16], [26]. More recently, researchers
have proposed utilizing run-time information to further im-
prove the precision of the CFG [24], [54], [71], which can
even achieve perfect accuracy [31] (i.e., one possible target
per indirect control transfer site).
Regulating control-flow. Once the CFG is calculated, legit-
imate control transfers can be grouped into equivalence sets.
Within the same set, control-flow can be transferred from any
source location (e.g., a call site or return site) to any target
location (e.g., target function or call site). By assigning each
equivalence set a unique ID/label, run-time control-flow can
be regulated with a simple check—source label must match
destination label. Such checks can be implemented using either
software or hardware. Some hardware extensions only support
a single label [11], [38], [39] thus can only enforce coarse-
grained CFI. Others support multiple labels [20], [22] and fine-
grained CFI. Some hardware extensions also include a shadow
stack to enforce unique return target [20], [21], [38], [39].
Adoption. Because of its effectiveness against control-flow
hijacking attacks, CFI has been adopted by both commodity
software and hardware. Tice et al. [68] introduced forward-
edge CFI to LLVM and GCC in 2014. Android adopted this
implementation in 8.1 to protect its media stack and extended
the protection in Android 9 to more components and the
OS kernel. Microsoft introduced its own CFI implementation,
control-flow guard in Visual Studio 2015 and has been uti-
lizing it to protect important OS components, including the
web browser. In Windows 10 (V1730), Microsoft extended
the protection to the OS kernel and hypervisor (Hyper-V). On
the hardware side, Intel introduced Control-flow Enforcement
Technology (CET) [38] and ARM introduced a similar mech-
anism, Branch Target Indicators (BTI), in ARMv8.5-A [11].

III. SPECCFI SYSTEM MODEL

This section first overviews the threat model we assume in
the paper. It also describes the extensions to the Instruction
Set Architecture (ISA) to support SPECCFI and the compiler
modifications to use them.



A. Threat Model
The main goal of SPECCFI is to prevent attackers from

launching branch target injection attacks (i.e., Spectre-BTB
and Spectre-RSB). We assume a strong local adversary model
with a shared BTB across different hardware threads (i.e.,
hyperthread) and protection domains (address space, privilege
level, and SGX enclaves). We assume the RSB is not shared
between hardware threads, consistent with existing CPU de-
signs, but it is shared between different protection domains.
Specifically, we assume adversaries can inject arbitrary branch
targets into BTB in an attempt to control the predicted branch
target in the victim protection domain.

Meltdown style attacks [46], [50], [61], [62], [70], [73]
are outside the threat model since they occur due to spec-
ulation on the value to be used within the execution of the
same instruction; privileged kernel memory [46], L1 cache
contents [70], fill buffer [62], in-flight data in modern CPUs
(for example: Re-Order Buffer and Line Fill Buffers) [73],
and store buffer [50], [61]. Moreover, misspeculation through
the direction predictor (which leads to Spectre-PHT) does
not result in a control flow violation, since both conditional
branch directions are legal control flow paths. Luckily, existing
works have already developed protections against Spectre-
PHT, primarily by limiting speculation around conditional
branches that can lead to dangerous misspeculation [19], [33],
[49], [67], [74]. Similarly, Spectre-STL is out-of-scope but
can be mitigated by disabling speculative store bypass [5],
[9], [36]. To the best of our knowledge, SPECCFI is the
first hardware design that targets the more dangerous Spectre-
BTB and Spectre-RSB attacks even when they use different
side-channels (e.g., contention-based side-channel in SMT
processors [13]).

We further assume that target software is protected with
hardware-enforced CFI, which marks valid indirect control
transfer targets (e.g., ENDBRANCH in CET). Although the target
software may contain memory vulnerabilities (e.g., buffer
overflows) that could be exploited to achieve arbitrary read and
write (i.e., the traditional threat model for CFI), such attacks
are out-of-scope of this work.

B. Instruction Set Architecture (ISA) Extension
Most hardware CFI extensions [11], [20]–[22], [38] use

target labeling to enforce forward-edge CFI, and a shadow
stack to enforce backward-edge CFI. Without the loss of
generality, we assume two modifications to the ISA to inform
the hardware of the labels from the CFG analysis:

• Extending the indirect jmp and call instructions to
include CFI labels. For coarse-grained CFI enforcement
(e.g., Intel CET [38] and ARM BTI [11]), the label at
jump and call sites can be omitted.

• Adding a new instruction to mark legitimate indirect
branch targets with corresponding labels. For coarse-
grained CFI enforcement, the label can be omitted (e.g.,
the case of Intel CET) or collapsed to two labels: one for
jump targets and the other for call targets (e.g., the case
of ARM BTI).

The shadow stack is generally transparent to the program and
will not be directly manipulated. However, certain language
features such as exception handling, setjmp/longjmp, re-
quire manipulation of the shadow stack. To support these
features, additional instructions are needed, but since they
do not interact with SPECCFI, we omit their details. The
Intel CET specifications [38] provide an example of such
instructions. Table II summarizes required ISA changes.

TABLE II: ISA Extensions to support CFI.

Instruction Description

call [dest],label Target class-aware call
jmp [dest],label Target class-aware jump
cfi_lbl Verify CFI integrity

C. Compiler Modification

SPECCFI relies on the compiler to mark valid indirect
control transfer targets with labels. Fortunately, because these
required modifications are the same as CFI, they are already
available as part of commodity compilers. For example, both
LLVM and GCC include support for (1) software-enforced
fine-grained forward-edge CFI [68], (2) Intel CET, and (3)
ARM BTI. Therefore, SPECCFI requires little or no modi-
fications to the compilers. SPECCFI is compatible with any
label based CFI implementation.

IV. FORWARD-EDGE DEFENSE

In this section, we describe the component of SPECCFI
responsible for preventing both misspeculation as well as
control-flow that breaks CFI on the forward-edge (i.e., on
indirect calls and indirect jumps). This defense is responsible
for preventing Spectre-BTB (v2) both within the same address
space and across different address spaces. It is also responsible
for maintaining CFI integrity on committed instructions (the
traditional use of CFI).

A. Preventing Spectre-BTB (within the same address space)

In this attack, the attacker pollutes the target BTB entry
by repeatedly executing an indirect branch in its own address
space that hashes into the same entry. The attacker can use
script engines like the JavaScript engine in browsers and the
BPF JIT engine in the kernel. When the victim branch is
executed speculatively, the polluted entry will direct the victim
to a malicious gadget. Our goal is to prevent the victim from
jumping speculatively to the malicious gadget.

Our first design considers augmenting the BTB to hold
a CFI label for the target. This design extends indirect
call/jmp instruction execution to update the BTB to add
the CFI label of the branch. Later in the speculation path, all
indirect calls and jumps are indexed to the BTB to predict
their target as before, but with an additional check against the
inserted CFI label. This defense prevents attacker-controlled
misspeculation since the label of the attacker’s instruction
does not match the true target. For benign programs, such
misspeculation is likely to occur only when the BTB is cold
(has not been initialized yet), or when branch aliasing causes



collisions in the BTB structure. While these cases should be
rare, in both cases the value in the BTB is not the correct
target. Limiting such erroneous speculation might result in
performance improvement since we do not waste time on
fetching instructions from what is likely to be the wrong path.

Since only committed indirect branches update the BTB,
possible targets that may be used by attackers are limited to
gadgets starting with a cfi_lbl instruction with an identical
label to that of the call/jmp instructions label. Note that a
label may be shared by multiple locations in the code in CFI,
and misspeculation among these locations is still possible (i.e.,
control flow bending [17]); as known from CFI solutions, this
set is much smaller than the potential targets set without CFI.

B. Preventing Spectre-BTB (cross-address-spaces)

0x09: load rax, 0x25
0x10: call *rax, L1
...
0x25: cfi_lbl L1
0x26: add rbx,1

0x09: load rax, 0x50
0x10: call *rax,L1
...
0x25: load rbx,[secret]
0x50: cfi_lbl L1

(Attacker) (Victim)

Fig. 2: Example attack across address spaces

Storing CFI labels in BTB entries mitigates attacks within
the same address space, but not those across address spaces,
when attackers pollute the globally shared BTB from another
program. In this case, if attackers know the label used by
the victim program (e.g., through offline analysis), they can
craft an entry in the BTB with the same label and bypass
the protection. Consider the example in Figure 2. The attacker
inserts L1 and 0x25 in the 0x10 index of BTB, by selecting
the label and location of a branch. When the CPU context
switches to the victim space, the victim call at location 0x10
is indexed to BTB and uses the BTB entry, inserted by the
attacker to predict its target. Since the label matches, the CPU
continues speculative execution of the malicious gadget from
0x25, and the attacker successfully redirects the control flow
and executes the malicious gadget to reveal the secret.

To prevent cross-address-space attacks, one possibility is to
randomize the mapping of addresses to the BTB (e.g., similar
to the CASESAR solution for caches [59]) to make it difficult
for attackers to guess the label or the location associated with
the target branch. However, as this approach only provides
probabilistic guarantees against attacks, we decided to use
an alternative implementation that avoids using labels in the
BTB. Specifically, our implementation enforce the CFI check
by ensuring that the first speculatively executed instruction
after an indirect branch is a legal cfi_lbl instruction with
a matching label, guaranteeing that the speculation target is a
legal target in the program’s Control Flow Graph. We note that
this is the standard implementation of hardware acceleration of
CFI. However, since we are using CFI to constrain speculation
(not just the committed instructions), this approach requires

check label

initial

any instruction 
except indirect call/jmp

waiting
indirect call/jmp

insert fences

any instruction 
except cfi_lbl

cfi_lbl

not matching labels

matching labels

Fig. 3: State machine for forward edge protection

pushing the check earlier in the pipeline to the decode stage
of the first instruction on the speculative path. However, as our
experimental analysis shows, this change results in negligible
impact on performance legal speculation is not delayed.

With respect to performance, the two implementations op-
erate differently, but are likely to perform similarly. The first
implementation requires modifications to the critical BTB
structure and can potentially slow down the execution pipeline,
favoring the target label-checking implementation. A small
disadvantage of the second implementation is that the target
instructions have to be speculatively fetched (if not cached) to
be able to check the label, which could be avoided if the label-
mismatch is detected by the BTB in the first implementation.

The state machine implementing the check in the decode
stage of the pipeline is shown in Figure 3. Starting at the initial
state, any indirect call/jmp instruction in the decode stage
sets the CFI_REG register with its own CFI label and causes
the CPU to wait for a cfi_lbl instruction. The decode
stage makes sure that the next instruction is a cfi_lbl
instruction. This restricts potential gadgets to those starting
with a cfi_lbl instruction. Moreover, the CPU will confirm
that the CFI_REG value and the label of the cfi_lbl
instruction are equal. In this way, potential gadgets are further
restricted to those with a matching label. When the instruction
following the call/jmp is not a cfi_lbl instruction or
when the label of the cfi_lbl instruction does not match the
label of the call/jmp, an lfence micro-op is inserted into
the pipeline to guarantee prevent execution from the wrong
speculative path.

C. Enforcing CFI for Committed Instructions

SPECCFI is essentially hardware-supported CFI, but with
CFI enforcement during speculation. Thus, given the similarity
in the hardware support to traditional CFI, we also extend
the design to support standard CFI to enforce the CFI rules
on committed instructions and defend against control flow
hijacking attacks. This support is achieved by enforcing the
CFI check during the commit stage of the pipeline: if an
indirect call/jmp instruction is not followed by a cfi_lbl
instruction with a matching label, the CPU raises a CFI
violation exception.



V. BACKWARD-EDGE DEFENSE

The backward-edge defense component of SPECCFI pro-
tects misspeculation on return instructions. Return instructions
typically obtain their predicted addresses from a hardware
stack called the Return Stack Buffer (RSB). The RSB has
been shown to be vulnerable to a range of Spectre attacks [45],
[47]. To provide protection for the backward-edge, hardware
CFI proposals use a Shadow Call Stack (SCS), which is
protected from normal memory reads and writes, and can
only be manipulated through special instructions [38]. Similar
to RSB, the SCS is used to retain the return addresses of
previously executed calls. The differences are: (1) SCS is in
memory, so it is saved and restored across context-switch;
while RSB is a special cache in the CPU and its content is
shared across different context. (2) SCS is only used for CFI
enforcement and its size is configurable; while RSB is only
used for speculation, and since misspeculation was thought to
be only a performance problem, RSB is a best effort structure
that is not maintained precisely and has a limited size.

A. Combined Speculation-consistent RSB/SCS: Overview

To provide defenses against Spectre-RSB attacks, we com-
bine the traditional RSB and SCS into a unified structure
RSB/SCS acting as both RSB and call stack. Conceptually,
RSB in our design can be viewed as the in-processor cache
for the in-memory SCS. We note that this is different from
other SCS implementations that retain the RSB separately. By
getting speculation targets from the precisely maintained SCS,
consistent with the philosophy of SPECCFI, we move the CFI
guarantees to the speculation stage, closing the Spectre-RSB
vulnerability.

The overall design of RSB/SCS has additional requirements
from the design of conventional SCS. Specifically, since we
have to be able to use it to obtain speculation targets, it
must track additional speculative state without affecting the
committed state of the SCS. We describe the overall design in
the remainder of this section.

When a context switch occurs, the committed RSB/SCS
entries must be saved such that they can be restored when
the program runs again. To be able to keep the state of
this structure consistent, we extend the reorder buffer (ROB,
which is the structure in the CPU used to track speculative
instructions and their register values before they commit) to
track this state. Specifically, we add a logical register OLD_RS
which (is subject to renaming and) holds the return address
that is pushed to the RSB/SCS by a call instruction, or popped
by a return instruction from the RSB/SCS. In addition, we
keep track of a pointer to the last committed entry (LCP) of
the RSB/SCS so as to save and restore the state of committed
entries in this structure in the case of context switch or a spill
overflow to memory. At the decode stage, If the instruction
is a call, the next address is “speculatively” pushed to the
RSB/SCS structure. When this instruction commits, the LCP is
updated to point to the last committed entry. If the instruction
is decoded as a return it “speculatively” pops a return value
from the RSB/SCS structure into OLD_RS (without changing

LCP) and sets the program counter to this address. To support
conventional CFI, when the return instruction reaches the
commit stage, the value of the OLD_RS register is compared
with the top of the traditional software stack. If these two
values do not match, a CFI violation exception is raised.

We considered the need to provision the stack with ad-
ditional ports since it is used not only to serve committed
instructions, but also to handle speculative calls and returns.
However, we found that additional ports do not result in
performance benefits because the speculative SCS state is held
primarily in the port-rich reorder buffer. When the in-processor
cache (RSB) overflows or the current thread is about to be
swapped out, we spill it over to the hardware-protected in-
memory SCS. When the RSB underflows or a new thread is
swapped in, we load entries from the SCS. We did not explore
optimization to prefetch values from the SCS when RSB is
close to empty, or to push some values proactively to memory
when RSB gets close to full.

B. Misprediction Recovery

Every ret instruction utilizes the RSB/SCS to predict
its jump target. Since the state of RSB/SCS is modified by
speculative call and ret instructions, in case of misspeculation,
the CPU has to recover the correct state of the structure.

When misspeculation is detected, we need to flush all
the speculated instructions from the pipeline. As a part of
this process, we have to annul all the corresponding entries
from the ROB. During annulment, for every call or return
instruction, we not only remove the ROB entry but also update
the RSB/SCS to preserve the consistent state of the structure. If
the instruction is a call, the top of the RSB/SCS is be popped.
In the case of a ret instruction, the value of OLD_RS will
be pushed back to the RSB/SCS.

C. RSB/SCS Work Flow

To clarify how this structure works, we step through the
example code sample presented in Figure Figure 5.

Assume both calls to function1 and function2 have pushed
their return values to the RSB/SCS. By committing these
instructions at Ê, the LCP is updated to point to the last
committed value and then the corresponding entries are evicted
from ROB. In the second step Ë, the return instruction from
the first call is being executed speculatively, saving the return
address in the ROB, and eventually getting committed. The
following speculative call to function3 at Ì, will push its
return address to RSB/SCS. At step Í, the execution of the
return instruction and the following call to function4, change
the RSB/SCS state. Assume that a misspeculation on the
jz instruction has been detected at Î and every instruction
executed after the branch has to be flushed. Therefore, the
recovery process starts annulling instructions from the last
entry in ROB until the misspeculated instruction has been
reached. Annulling the last call in the ROB at Î, the value at
the top of RSB/SCS is popped and at Ï, annulling the return,
the OLD RES value of the instruction saved in ROB is pushed



instruction Spec 
bit … OLD_RS

call 0 0x10

call 0 0x25

instruction Spec 
bit … OLD_RS

ret 1 0x25
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LCP
0x26

instruction Spec 
bit … OLD_RS

call 1 0x26

jz 1 null

ret 1 0x26

Call 1 0X27
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LCP
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instruction Spec 
bit … OLD_RS

call 1 0x26

jz 1 null

0x10
LCP

0x26

0x10
LCP

0x27

instruction Spec 
bit … OLD_RS

call 1 0x26

jz 1 null

ret 1 0x26

Call 1 0X27

instruction Spec 
bit … OLD_RS

call 1 0x26

jz 1 null

ret 1 0x26

Call 1 0X27

1 2

4 5

3

ROB ROB ROB

ROB ROB ROB

RSB RSB RSB

RSBRSB RSB6

Fig. 4: Example of the operation of the combined RSB/SCS

0x09: call Function1;
0x10:
0x24: Function1:

call Function2;
0x25: call Function3;
0x26: call Function4;
0x27:
0x36: Function2:

ret;
0x74: Function3:

jz 0x86;
0x86: ret;

Fig. 5: Code sample to illustrate the operation of RSB/SCS

back to the RSB/SCS to reset the state to the previous state
before the misspeculation.

D. Preventing RSB Poisoning

Since the RSB/SCS is not shared between different threads
and preserved across context switches, the attacker is not
able to poison this structure. Although we allow special
instructions to manipulate the SCS to take care of cases such
as setjmp/longjmp, we assume these instructions are only
available to code within the trusted computing base to prevent
them from being abused to arbitrarily manipulate the RSB/SCS
(which is not a Spectre vulnerability).

VI. SECURITY ANALYSIS

In this section, we analyze whether SPECCFI can achieve
its primary security goal: preventing attackers from exploiting
branch target injection to ultimately launch Spectre attacks.

A. Guarantees against Branch Target Injection

Branch target injection attacks target two prediction com-
ponents: the branch target buffer (BTB) and the return stack
buffer (RSB). Similar to CFI, SPECCFI does not prevent such

injections: we assume attackers can still insert arbitrary targets
into the BTB, for example by executing branches inside their
own protection domain [28]. What SPECCFI guarantees is that
if the injected target is not a valid indirect control transfer
target in the victim protection domain, then the injected
prediction target will not be executed speculatively, i.e., they
cannot speculatively execute arbitrary code gadgets. For RSB,
SPECCFI essentially converts it into a precise shadow call
stack (SCS) and maintains it across context switches, such
that both in-address-space injection and cross-address-space
injection are no longer possible.
Impact of Imprecise CFG: One weakness of static CFG
construction is imprecision, leading to having multiple pos-
sible targets with the same label. This ambiguity may still
allow attackers to launch attacks using permitted function-
level gadgets [14], [16], [26], [60]. Since SPECCFI also relies
on the CFI analysis to provide valid targets for forward-edge
indirect control transfer, it also inherits the same limitation:
mis-prediction is still possible to any of the targets sharing
a valid label. Since SPECCFI is compatible with any label
based CFI, it can benefit from improvements in CFI systems
that are increasing the precision in tracking the legal control
flow.

B. Incorporating Defense against Spectre-PHT

SPECCFI on its own can only mitigate Spectre-BTB and
Spectre-RSB attacks. In this subsection, we discuss how
SPECCFI can be (and should be) combined with Spectre-
PHT defenses to complete the defense against known Spectre
variants. In particular, to defend against Spectre-PHT attacks,
researchers have proposed code analysis techniques [33], [49],
[74] to (1) identify dangerous code gadgets that can be used
to leak information and (2) conditionally insert serialization
instructions (e.g., lfence) to prevent these dangerous code
gadgets from being executed speculatively. One tricky part of



such analysis is that, although on the committed path, direct
control transfer is always correct; during speculation, even
direct control transfer can be wrong. As a simple example,
consider a direct call behind a conditional branch: if the pre-
diction on the conditional branch is wrong, then the following
direct call is also wrong. For this reason, when analyzing the
code to identify potential dangerous gadgets for Spectre-like
attacks, one must perform inter-procedural analysis (for both
direct and indirect calls) to account for gadgets that may span
across function calls. The unique opportunity here is that, if the
static analysis to identify and eliminate Spectre gadgets uses
the same CFG for CFI enforcement, then malicious gadgets at
the beginning of function should already be eliminated. As a
result, when combined with such defenses, even if SPECCFI
allows misspeculation due to imprecise CFG, the wrong target
cannot be used to launch attacks, because the gadgets have
already been eliminated.

At the same time, defenses against Spectre-PHT attacks
have to use SPECCFI-like techniques to be sound. The reason
is the same reason inline reference monitors like Software
Fault Isolation [48], [78] have to enforce some control-flow
regulation—if attackers can hijack the control-flow to arbitrary
locations, then they can easily bypass the inserted checks
and bypass the protection. This is especially dangerous to
variable length ISA like x86 where attackers can jump to
the middle of an instruction to find unintended instructions
forming exploitable gadgets. Similarly, SPECCFI provides
the same runtime guarantee to Spectre-PHT defenses: by
enforcing that even speculative control-flow cannot deviate
from the CFG used in static analysis, the code being analyzed
and instrumented will be the same as that executed.

C. Comparison to Intel CET

A few days before the submission of this paper, Intel
published a new specification of its CET [38] extensions. The
new specification includes a paragraph (section 3.8) indicating
their plans to include a check that an indirect branch executed
speculatively targets a legal Branch_end target. Intel sug-
gested this solution, which is essentially the configuration of
SPECCFI using CET as the CFI implementation, concurrently
with our work.

We believe that Intel’s interest in this solution validates it
practicality as a defense against transient speculation attacks.
While the updated CET specifications document describes
only the general idea, our work contributes a reference imple-
mentation and assessment of both the performance and secu-
rity of the solution. In addition, SPECCFI provides substantial
security advantages over the new CET, including:

• Backward edge protection using the speculation aware
shadow stack. While Intel CET uses a shadow stack to
protect the backward edge for committed instructions,
the specifications describe no plans to use it for limiting
speculation. It is not trivial to extend the shadow stack to
track the speculative state, as we describe in Section V.

• Generalized CFI protection and limiting control flow
bending. CET only enforces that control flow (whether

TABLE III: Configuration of the simulated CPU

Parameter Configuration
CPU SkyLake
Issue 6-way issue
IQ 96-entry Issue Queue
Commit Up to 6 Micro-Ops/cycle
ROB 224-entry Reorder Buffer
iTLB 64-entry instructions Translation Lookaside Buffer
dTLB 64-entry data Translation Lookaside Buffer
LDQ 72-entry Load Queue
STQ 56-entry Store Queue
RSB 16-entry Return Stack Buffer
I-Cache 32 KB, 8-way, 64B line, 4 cycle hit
D-Cache 32 KB, 8-way, 64B line, 4 cycle hit

committed or, in the new specifications, speculative)
happens to the start of a legal basic block. As a result,
it allows arbitrary control flow bending [16], which
does not meaningfully restrict the attack opportunities.
In contrast, SPECCFI admits any CFI implementation,
which can substantially shrink the control bending attack
possibilities. Specifically, from a given indirect control
flow instruction, only the gadgets with matching CFI
label are reachable. State-of-the-art CFI systems such as
PathArmor/Context Sensitive CFI can be supported [71]
substantially limiting the control flow opportunities. In
particular, we intend to explore supporting uCFI [31]
in our future work, leaving no control flow bending
opportunities available.

VII. PERFORMANCE AND COMPLEXITY EVALUATION

In this section, we evaluate SPECCFI in terms of perfor-
mance and hardware complexity. All performance experiments
were conducted using the MARSSx86 (Micro Architectural
and System Simulator for x86) [56], a widely used cycle
accurate simulator. MARSSx86 is built using PTLsim [80]
and does a full system simulation (including the OS) on top of
the QEMU [12] emulator. First, we configured MARSSx86 to
simulate an Intel Skylake processor; configurations are shown
in Table III. We then integrated SPECCFI into the simulator
to model all new operations realistically and in full details, in
order to retain hardware faithful cycle accurate modeling of
the extended processor pipeline.

A. Performance Evaluation

We use the SPEC2017 benchmarks [2] for evaluation,
which is a standard benchmark suite used to evaluate the
impact of processor modification on a range of representative
applications that exhibit a range of different behaviors. All
benchmarks were compiled using an LLVM compiler that is
modified to mark valid indirect control transfer targets with
labels. Unfortunately, since there is no official LLVM front-
end for FORTRAN [3], we were not able to compile 8 out
of the 23 SPEC2017 benchmarks as they contain FORTRAN
code.

One option to prevent Spectre attacks is to insert fences
to stop speculation around indirect control flow instructions.



In order to evaluate SPECCFI performance, we compare it
against the following design points:

• Baseline: this is the case of an unmodified unprotected
machine. Specifically, we compile and run the SPEC2017
benchmarks using unmodified version of LLVM compiler
and MARSSx86 simulator. In all of our experiments, we
use the Instructions committed Per Cycle (IPC), a com-
mon metric for evaluating the performance of processors,
to report performance. The IPC values of the defenses
are normalized to this baseline implementation without
defenses; thus, a higher normalized value than 1 indicates
better than baseline performance.

• Retpoline-style software fencing: we implement a system
adding fences to indirect branches using software. The
compiler is modified to substitute all the indirect branches
and return instructions with a sequence of instructions
which ensure that the target of the branches are resolved
before any following instruction that might touch the
cache (i.e, load) are issued. For protecting the forward
edges (i.e. indirect call and jumps) This is done by
converting each indirect call to the three following in-
structions: Ê a load preparing the value of the target
register/memory, Ë an lfence making sure that no
future load is issued before the branch is resolved and
Ì the actual call to the address specified in the target
register. Taking the same approach for securing backward
edges (i.e. returns) we substitute any ret instruction
with a sequence of Ê a pop from top of the software
stack to the target register, Ë an lfence making sure
to stop the speculation before the actual target of ret
resolved and Ì a jmp to transfer the control to the target.
Conceptually, this solution is similar to the Retpoline
defense [69] which essentially replaces speculation on
indirect branches with an empty stall gadget. Different
from Retpoline, we also insert the fences for returns
(Retpoline does not protect returns, and leaves the code
vulnerable to Spectre-RSB attacks).
This software approach has the advantage of not modi-
fying the underlying hardware but imposes a noticeable
overhead in the number of instructions and code size.

• All Target Fencing: In this approach, we show one
implementation with an lfence, inserted in hardware,
at target of each indirect branch and return (the all target
fencing) since such a defense is possible without CFI.
This is done by detecting every indirect call, jump, or
return in the decode stage of the pipeline and inserting
an lfence at target of them to make sure that the branch
is resolved before issuing further instructions.

The implementations discussed above prevent speculation
by inserting lfence into the pipeline. SPECCFI offers a
more intelligent and targeted way of using fences for securing
forward edges (as discussed in Section IV), as well as a
new method for making backward edges secure (as explained
in Section V). To study the effect of different serializing
instruction we use two different types of lfence instructions
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Fig. 6: Performance Impact
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Fig. 7: Number of lfences inserted by different defenses

in our experiments:

• Strict lfences, are highly restrictive and prevent any
instruction to pass through them until the fence re-
tires [67]. This type of fences impose high overhead to the
system. All the x86 serialization instructions including
the lfence we use in our experiment, categorize as strict
fences.

• Relaxed lfences, only stop certain types of instructions
until the fence gets retired [67], while letting the others
through. For example, LSQ-LFENCE [67], prevents any
subsequent load instruction from being issued specula-
tively out of the load/store queue but allows any other
instruction to pass it. LSQ-LFENCEs are secure against
Spectre because they prevent the speculative loads, and
have the advantage of letting speculation on other types
of instructions proceed, substantially reducing the perfor-
mance impact.

Figure 6 shows the performance overhead of SPECCFI-full
(securing both forward and backward edges) in comparison to
the All Target Fencing and Retpoline-style software fencing
approaches. We note that in general, inserting serializing
instructions (e.g, lfence) in the target of every indirect
branch is expensive, imposing performance overhead of 39%
and 48% on average for All Target Fencing and Retpoline style
respectively. Using SPECCFI, by inserting lfence only when
the CFI check fails, the number of inserted lfence drops
significantly thus reducing the performance overhead to less
than 1.9% on average.

To illustrate the reason behind the performance reduction
in the different approaches, we study the number of lfence
instructions inserted in each approach in Figure 7. Note that
benchmarks such as mcf and omnet, are C++ benchmarks
which use a large number of indirect branches due to the
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Fig. 8: Overhead breakdown for forward and backward edge

common use of virtual function calls and function pointers.
As a result, this leads to a large number of lfence being
inserted into the pipeline, and to a substantial performance
impact compared to the baseline implementation. The only
exception to this trend is Provay which suffers the highest
overhead for all the defenses but does not have huge number
of lfence compared to the other benchmarks. Looking more
closely at this benchmark, we found out that it is a memory
intensive benchmark with the highest number of load and
store micro-ops among all the benchmarks. Intel manuals [37]
indicate that an lfence is committed only when there is no
preceding outstanding store. Thus, for this benchmark, each
lfence instruction remains active for a longer period of time
until it gets committed which explains the high performance
impact. It is also worth mentioning that unlike the All target
fencing and Retpoline-style which insert lfence for each
indirect branch, the lfence instructions for SPECCFI occur
due to mis-prediction detected as a label mismatch causing the
insertion of the lfence. This means that the higher the rate
of mis-prediction, the more lfence instructions are inserted.

In Figure 8, we study the effect of securing the for-
ward and backward edges separately since they use separate
mechanisms for protection. Note that in Retpoline-style, all
return instructions are converted to a sequence of instructions
terminating with a jmp, meaning that there is no remaining
ret instruction (i.e. backward-edge) in the code compiled in
this setting. Therefore, the overhead measured as the overhead
of Retpoline-style-full is equivalent to only Retpoline-style-
forward overhead and the overhead on the backward-edge is
zero. The results from the breakdown show that as expected,
the overhead in general increases with the number of indirect
branches in All Target Fencing. As for SPECCFI, the over-
head caused from forward edge defense is typically low: the
overhead is incurred only on CFI mismatches which indicate
misprediction of the branches. Therefore, the major part of
the SPECCFI overhead is the overhead of SPECCFI-full on
the backward-edge which is associated with maintaining the
RSB/SCS hardware structure. It is important to consider that
this maintenance effort also includes procedures to make sure
the committed path is secure and therefore only a portion
of this overhead is associated with defense against Spectre
attacks.

Since strict lfence imposes a higher overhead on the sys-
tem and relaxed lfence provides the same security guarantee
with lower overhead, we implemented all discussed defenses
with relaxed lfence as well to study the differences in
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Fig. 9: Performance using relaxed fences

overhead. Figure 9 examines the effect of relaxed lfence.
The results show that the overhead caused by strict lfence is
much higher than that of relaxed lfence. Also as expected,
using strict instead of relaxed causes far more performance
degradation when the benchmark is memory intensive (i.e.,
has a lot of stores in this case). Our results show that just
by changing the type of the lfence from strict to relaxed,
the average overhead drops down from 48.9% to 22.6% for
Retpoline-style and from 39.9% to 18.82% for All Target Fenc-
ing. However, these overheads are still substantially higher
than those of SPECCFI.

B. Hardware Implementation Overhead

To estimate the hardware overheads of SPECCFI, we im-
plemented the primary hardware structures and integrated
them within an open core to estimate the area and timing
overhead. Specifically, the implementation consists of adding
two CFI_REG registers in two locations of the pipeline: (1)
decode stage, to support detecting CFI violations for specu-
lative instructions and (2) commit stage, to support detecting
CFI violations for committed instructions. Since CFI_REG is
used to store the CFI labels its size should be the same as the
maximum CFI label size (32-bits for our design). Furthermore,
we need to add two comparators; one in decode and one in
commit stage of the pipeline. These comparators will be used
by cfi_lbl instruction to compare its label to the CFI_REG
(todetect violations).

Additionally, SPECCFI needs a LCP register to point to the
last entry of the RSB/SCS from a committed call, used to
distinguish between entries from speculative and committed
instructions. Since RSB/SCS has 16 in-processor cache entries,
the LCP size is 4-bit. Moreover, at two stages of the pipeline,
new entries can be added to the RSB/SCS: (1) while executing
call instruction and (2) load the preserved RSB/SCS entries
from memory in case of underflow. Therefore, we had to
update the number of write ports from 1 to 2. The same
thing applies to the number of read ports, as we may use
RSB/SCS to fetch next instruction while spilling over to
memory in case of RSB/SCS overflow. In addition, to preserve
the correct behaviour of RSB/SCS, we provided two LCP
update mechanisms: (1) -/+1: for regular push/pop operations
and (2) -/+4: for handling overflow and underflow of the
structure. The cost of the RSB/SCS itself did not lead to a
noticeable increase in complexity or area.



TABLE IV: SPECCFI hardware implementation overhead
after adding it to the AO486 open-core

Static power Dynamic power Area Cycle time
SPECCFI 0.4% 0.4% 0.1% 0.0%

To measure the impact of SPECCFI implementation on
power, area, and cycle time, we modified the open source pro-
cessor (AO486) [8] to include SPECCFI design using Verilog.
To synthesize the implementation of integrating SPECCFI to
the processor on a DE2-115 FPGA board [1] we used Quartus
2 17.1 software. The results shown in Table IV prove that
SPECCFI indeed has low implementation complexity. In terms
of power, there is a 0.4% increase in core dynamic and static
power. Although it is difficult to measure power accurately,
we applied the power analysis tool provided by Quartus to
measure power after synthesis to get more accurate results. In
terms of area, there is a 0.1% increase in total logic elements.
Moreover, since SPECCFI design is simple, it fits within the
optimized frequency of the core. Thus, it has no effect on cycle
time. The AO486 processor is an implementation of the 80486
ISA using a 32-bit in-order pipeline. Thus, these results are
relative to the small pipelined core; the overheads will be much
smaller if compared to a modern out-of-order superscalar core.

C. Empirical Security Evaluation

1) Against real exploits: To verify our analysis, we eval-
uated the effectiveness of SPECCFI against real-world ex-
ploits. We ran previously disclosed Spectre-BTB [43], Spectre-
RSB [45], and SMoTHerSpecter [13] PoC inside the emulator.
Table V summarizes the results, using the same classification
scheme proposed in [15]. The experiment results show that
SPECCFI was able to prevent all information leaks.

TABLE V: Empirical security evaluation of SPECCFI.

in-place out-of-place

Spectre-BTB Cross-address-space 3 3
Same-address-space 3 3

Spectre-RSB Cross-address-space 3 3
Same-address-space 3 3

SmotherSpecter Cross-address-space 3 3
Same-address-space 3 3

2) Impact of CFG precision: To study the difference be-
tween coarse-grained CFI (e.g., Inte CET [38]) and fine-
grained CFI (e.g., SPECCFI) against BTB injection attacks,
we used the SMoTherSpectre [13] for a demonstration. In
this scenario, the attacker has to find a BTI gadget in the
victim process which loads a secret in a register and terminates
by an indirect branch to be able to perform BTB injection.
By poisoning the BTB, the attacker transfers control to a
SMoTHer Gadget to leak the secret. The SMoTHer Gadget
starts with a comparison based on the target register followed
by a conditional jump which enables SMoTherSpectre to leak
the secret through a port contention side-channel. Figure 10
compares the required SMoTHer gadgets and feasibility of the
attack under coarse-grained and fine-grained CFI.

Table VI shows the number of available SMoTher Gadgets
from several standard libraries. Using the constraints for the

TABLE VI: Available SMother Gadgets in Standard Libraries

Standard Libraries CFI Implementation
Coarse-grained Fine-grained

glibc-2.29 314 1
libssl-1.1 21 1

libcrypto-1.1 98 4
ld-2.29 64 0

libstdc++ 47 0

SMother Gadget identified by Bhattacharyya et al. [13], we
scanned for valid SMoTHer gadgets in the first 70 instruc-
tions after label instructions (endbr64 and cfi_lbl). For
SPECCFI, we used a function signature based approach for
generating labels [53], [54]. As we can see, although fine-
grained CFI still permits some gadgets, the number is much
smaller than that available under coarse-grained CFI.

It is worth mentioning that we only use SMoTHer gadget
constraints as an example of practical gadgets. There are no
clear systematic approaches to locate generic Spectre gadgets
that are exploitable in practice, further analysis is required in
order to find more specific constraints. We hope to pursue this
question in our future work.

VIII. RELATED WORK

Since the initial announcement of Spectre and Meltdown in
January of 2018, several Spectre variants have appeared [27],
[30], [42], [43], [45], [47]. Spectre attacks are characterized by
manipulating the prediction mechanisms to trigger speculation
to an attacker chosen gadget. They differ in what they exploit
to trigger speculation: branch direction predictor (variant 1,
variant 1.1) [27], [42], [43], branch target predictor (or branch
target buffer) for variant 2 [43], return stack buffer for Spectre-
RSB (also called variant 5) [45], [47], or load-store aliasing
predictor for variant 4 [30]. To mitigate these attacks, several
software and hardware defenses ranging from programming
guidelines for cryptographic software developers [18] to ar-
chitectural changes [40], [77] have been proposed. In this
section, we will overview these defenses categorized into the
Spectre attack variants that they defend against. Table VII
shows the Spectre attacks defenses and which attacks they
mitigate and Table VIII shows the Spectre attacks defenses and
their impact on hardware complexity, software modifications,
and performance. SPECCFI is the only defense that provides
complete protection against all Spectre attacks with little
impact on performance and implementation overhead. Note
that we are not considering Meltdown style attacks [46], [50],
[61], [62], [70], [73] since they rely on speculation within a
single instruction and therefore do not rely on manipulating
the branch prediction structures.

A. Spectre-PHT Defenses

Spectre-PHT exploits the directional predictor (also called
the Pattern History Table or PHT) to perform the attack. To
defend against this attack, Intel, AMD, and ARM proposed
to use instructions that serialize the execution (e.g. lfence)
to stop speculation around conditional branches [6], [9], [34].



Train_BTB:
0x1:mov rax, 0x20
0x2:call *rax
foo:
0x10: endbr64
0x11: nop

main: //BTI gadget
0x0:mov rdx,[secret]
0x1:mov rax,0x10
0x2:call *rax //baz()

baz: //Smother free
0x10: endbr64

...
0x14: nop

bar://Smother Gadget
0x20:endbr64
0x24:cmp $0, rdx
0x25:je <>

Attacker Victim

(a) Coarse-grained enforcement of CFI (e.g. CET)

Train_BTB:
0x1:mov rax, 0x20
0x2:call *rax, L1
foo:
0x20: cfi_lbl, L1
0x21: nop

main: //BTI gadget
0x0:mov rdx,[secret]
0x1:mov rax,0x10
0x2:call *rax, L1//baz()

baz: //Smother free
0x10: cfi_lbl, L1

...
0x14: nop

bar://Smother Gadget
0x20:cfi_lbl, L2
0x21:cmp $0, rdx
0x22:je <>

Attacker Victim

(b) Fine-grained enforcement of CFI (e.g, SPECCFI)

Fig. 10: Speculative control-flow bending attack example.

TABLE VII: Spectre defenses and the attacks they mitigate. Symbols show if an attack is mitigated ( ), not mitigated (#), or
partially mitigated (G#).

Attacks Side-channel prevention Speculation prevention

DAWG [41] SafeSpec [40],
InvisiSpec [77]

LFENCE
[6], [9], [34]

IRBS, IBPB,
STIBP [6], [36]

(SLH) [19],
(YSNB) [55] Retpoline [69] RSB Stuffing [35] CSF [67] ConTExT [63] SPECCFI

Spectre-PHT G# G#  #  # #  G#  a

Spectre-BTB G# G# #  #  # G# G#  
Spectre-RSB G# G# # # # #  G# G#  
SmotherSpectre # # # # # G# G# G# G#  

aCombined with any Spectre-PHT defense

TABLE VIII: Spectre defenses and their overhead in terms of hardware complexity, software modification, and performance.
Symbols show if overhead is high (↑), low (↓), or no overhead (-). The performance overhead results are based on what was
reported in the studies; Please note that these values are not based on experiments on identical benchmarks and are only
reported to provide a general sense of performance.

Overhead Side-channel prevention Speculation prevention

DAWG [41] SafeSpec [40],
InvisiSpec [77]

LFENCE
[6], [9], [34]

IRBS, IBPB,
STIBP [6], [36]

(SLH) [19],
(YSNB) [55] Retpoline [69] RSB Stuffing [35] CSF [67] ConTExT [63] SPECCFI

Hardware ↑ ↑ – – – – – ↓ ↓ ↓
Software modification – – ↑ – ↑ ↓ ↓ ↓ ↓ ↓

Performance 1 - 5 % SafeSpec: -3%
InvisiSpec: 22% 62 - 74.8 % 20 - 50 % SLH: 29 - 36.4 %

YSNB: 60 % 5 - 10 % ↓ 2.7 - 15.2 % 1 - 71.14 % 1.9 %

Although aggressive serialization (e.g., at every branch instruc-
tion) can mitigate Spectre-PHT, it hurts performance substan-
tially [34]: serializing all branch instructions will eliminate
the performance benefit of the branch predictor (e.g., up to
10x slowdown [55]). Therefore, multiple proposals tried to
reduce the number of serialization points introduced using
static analysis to identify and serialize exploitable gadgets
only [33], [34], [49], [74]. However, these approaches miss
some of the gadgets that can be exploited [44]. Another
weakness of these defenses is that even though they stop
speculative execution around exploitable gadgets, they do not
stop speculative code fetches and other micro-architectural
behaviors before execution (e.g., instruction cache and iTLB
fills) which can also leak data [64].

Speculative Load Hardening (SLH) [19] and You Shall
Not Bypass (YSNB) [55] try to reduce the high overhead by
identifying Spectre gadgets, then injecting artificial dependen-
cies between branches and these identified gadgets. Although
this results in performance advantages over liberal fencing,
they still have 36%-60% performance overhead [67]. Context-
Sensitive Fencing (CSF) [67] is a micro-code mitigation tech-
nique where serialization instructions are added dynamically

based on run-time conditions that identify potential exploit ex-
ecution. Although CSF focuses primarily on Spectre-PHT, the
authors propose to defend against Spectre-BTB and Spectre-
RSB using a special fence that would flush the BTB/RSB when
transferring control to higher domains. However, flushing BTB
and RSB hurts performance since it results in mis-predictions.
In addition, in a simultaneous multithreading (SMT) processor,
flushing the BTB/RSB after control transfer is not enough to
protect against Spectre-BTB and Spectre-RSB since structures
can be polluted after a control transfer using other threads.

B. Spectre-BTB and Spectre-RSB Defenses

Spectre-BTB exploits the BTB and Spectre-RSB exploit the
RSB to perform the attack. Google proposed Return Trampo-
line (retpoline) [69] as a software mitigation technique that
defends against Spectre-BTB by replacing indirect branches
with push+return instruction sequences that prevent BTB poi-
soning. However, this solution has high performance overhead
since it stops speculation (similar to serialization). In addition,
it can be bypassed using ret instructions since they cause
mis-speculation through the BTB in some processors (e.g.,
Intel’s core i7 processors starting from Skylake). In particular,



those processors predict the address of a ret instruction from
the BTB when the RSB is empty (which can be forced by
executing unmatched returns). To solve this exploit, RSB
stuffing [35] was proposed to intentionally fill the RSB with
the address of a benign delay gadget to avoid misspeculation
on context switches. Although this technique can partially
mitigate Spectre-BTB (when using ret to trigger speculation
through BTB), it can also defend against SpectreRSB cross-
domains attack. However, since we are filling the RSB on
context switch, stored entries for the currently running process
will be lost when execution is switched back to the current
process (i.e. performance loss due to losing speculation infor-
mation). In contrast, SPECCFI saves committed RSB entries
per process in case of a context switch out of the process
and restores them when execution returns to the process,
which results in improving the prediction performance of ret
instructions.

Intel and AMD added new instructions to their instruction
set architecture (ISA) that can control indirect branches to
defend against Spectre-BTB [6], [36]. The addition consists
of three controls:

• Indirect Branch Restricted Speculation (IBRS): allows
processors to enter IBRS mode (privileged mode) and
execute indirect branches that are not influenced by less
privileged mode.

• Single Thread Indirect Branch Prediction (STIBP): will
not allow a hyperthread running on a core to use branch
predictor entries inserted by the other thread running on
the same core.

• The Indirect Branch Predictor Barrier (IBPB): allows
processors to flush BTB and clear their state. This way,
the code executed before the barrier cannot impact branch
prediction of the code executed after this instruction.

These new ISA instructions defend only against Spectre-
BTB. In addition, they have a high performance overhead; up
to 24% on Skylake and up to 53% on Haswell [23].

C. Spectre All Variants Defenses

Several mitigations were proposed to defend against all
variants of Spectre. Dynamically Allocated Way Guard
(DAWG) [25], [41] was proposed to provide isolation between
protection domains by partitioning the cache at the cache
way granularity. Although this method can prevent leakage
of the data through a cache side-channel, it requires domains
enforcement management in the software, defending cache as
leakage source only, and it can not protect against attacks
that are performed within the same address space or isolation
domain. In addition, since it is a cache specific defense, other
micro-architectural structures can be used for communication
(e.g. branch predictor).

SafeSpec [40] and InvisiSpec [77] are hardware mitigation
techniques that are similar to DAWG in the way that they are
both trying to prevent side-channel communication from spec-
ulative instructions. Therefore, they propose to mitigate the
side-effect of speculative execution on the micro-architectural
state; shadow micro-architectural structures for caches and

Translation Lookaside Buffers (TLBs) were added to store
transient effect of speculative instructions. These effects will
be committed to caches and TLBs only when speculation
is deemed correct and flush the changes from the shadow
structures otherwise. Although these solutions outperform soft-
ware solutions, they require making disruptive changes to the
processor/memory architecture and consistency models.

ConTExT [63] introduced protection for secret data from
speculative execution. Specifically, the technique introduces a
new memory mapping (called non-transient mapping) which
tracks data that must not be accessed by speculative instruc-
tions. Nevertheless, this solution requires changes to the archi-
tecture and the operating system, and developer involvement
to annotate the secret data. It also incurs high performance
overhead for security-critical applications.

IX. CONCLUDING REMARKS

In this paper, we presented a new defense that protects
speculative processors against misspeculation targeting the
branch target buffer (BTB) and the return stack buffer (RSB).
These attacks are arguably the most dangerous speculation
attacks because they can bypass compiler inserted fences.
Prior defenses either excluded these attacks from their threat
model, or implemented aggressive limits to speculation that
dramatically degraded performance. In contrast, SPECCFI
provides complete protection against these dangerous attacks,
with little impact on performance, and with minimal hardware
complexity.

SPECCFI introduces the idea of using CFI, explored previ-
ously as a protection against control-flow hijacking attacks for
committed instructions (i.e., even on non-speculative proces-
sors), as a defense against speculation attacks. In particular,
SPECCFI verifies the forward-edge of CFI on the instructions
in the speculative path and only allows speculation if CFI
labels match protecting against Spectre-BTB attacks. It also
verifies the backward-edge using a unified shadow call stack,
protecting against Spectre-RSB attacks. Essentially, SPECCFI
moves the CFI check to the decode stage of the pipeline,
preventing speculative execution of instructions unless they
conform to the CFI annotations. For normal programs, this
results in negligible performance degradation since it only
prevents speculation with mismatching CFI labels, which will
most likely result in misspeculation. By stopping misspecu-
lation, we benefit from avoiding cache pollution and other
resource waste during misspeculation.

Combined with recent proposals to mitigate Spectre-PHT,
we believe SPECCFI mitigates the threat from known specu-
lation attacks. Moreover, it does so without sacrificing per-
formance due to speculative execution and with minimal
modifications to the processor pipeline.
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