
UniSan: Proactive Kernel Memory Initialization
to Eliminate Data Leakages

Kangjie Lu, Chengyu Song, Taesoo Kim, and Wenke Lee
School of Computer Science, Georgia Institute of Technology

ABSTRACT
The operating system kernel is the de facto trusted computing base
for most computer systems. To secure the OS kernel, many security
mechanisms, e.g., kASLR and StackGuard, have been increasingly
deployed to defend against attacks (e.g., code reuse attack). How-
ever, the effectiveness of these protections has been proven to be
inadequate—there are many information leak vulnerabilities in the
kernel to leak the randomized pointer or canary, thus bypassing
kASLR and StackGuard. Other sensitive data in the kernel, such as
cryptographic keys and file caches, can also be leaked. According to
our study, most kernel information leaks are caused by uninitialized
data reads. Unfortunately, existing techniques like memory safety
enforcements and dynamic access tracking tools are not adequate or
efficient enough to mitigate this threat.

In this paper, we propose UniSan, a novel, compiler-based ap-
proach to eliminate all information leaks caused by uninitialized
read in the OS kernel. UniSan achieves this goal using byte-level,
flow-sensitive, context-sensitive, and field-sensitive initialization
analysis and reachability analysis to check whether an allocation has
been fully initialized when it leaves kernel space; if not, it automati-
cally instruments the kernel to initialize this allocation. UniSan’s
analyses are conservative to avoid false negatives and are robust by
preserving the semantics of the OS kernel. We have implemented
UniSan as passes in LLVM and applied it to the latest Linux kernel
(x86_64) and Android kernel (AArch64). Our evaluation showed
that UniSan can successfully prevent 43 known and many new unini-
tialized data leak vulnerabilities. Further, 19 new vulnerabilities in
the latest kernels have been confirmed by Linux and Google. Our
extensive performance evaluation with LMBench, ApacheBench,
Android benchmarks, and the SPEC benchmarks also showed that
UniSan imposes a negligible performance overhead.

Keywords
kernel information leak; uninitialized read; reachability analysis;
initialization analysis; memory initialization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS’16, October 24-28, 2016, Vienna, Austria
c⃝ 2016 ACM. ISBN 978-1-4503-4139-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976749.2978366

1. INTRODUCTION
As the de facto trusted computing base (TCB) of computer sys-

tems, the operating system (OS) kernel has always been a prime
target for attackers. By compromising the kernel, attackers can es-
calate their privilege to steal sensitive data in the system and control
the whole computer. There are three main approaches to launch priv-
ilege escalation attacks: 1) direct code injection attack; 2) ret2usr
attacks [18]; and 3) code reuse attacks [37]. DEP (Data Execution
Prevention) protection has been deployed to defeat traditional code
injection attacks. Intel and ARM have recently introduced new hard-
ware features (i.e., SMEP and PXN) to prevent ret2usr attacks [17].
As a result, code reuse attacks are becoming more prevalent. A
general direction to defeat code reuse attacks is randomization, e.g.,
kernel address space layout randomization (kASLR) [9] and Stack-
Guard [10] have been adopted by the latest kernels. kASLR aims
to prevent attackers from knowing where the code gadgets are, and
StackGuard [10] aims to prevent attackers from corrupting return
addresses.

By design, the effectiveness of kASLR and StackGuard com-
pletely relies on the confidentiality of the randomness—leaking any
randomized pointer or the stack canary will render these mecha-
nisms useless. Unfortunately, information leak vulnerabilities are
common in OS kernels. For example, Krause recently found 21
information leaks in the Linux kernel [19]. According to CVE
Details [11], kernel information leak vulnerabilities have not only
become more prevalent than buffer overflow vulnerabilities, but the
number of kernel information leaks is also increasing with continu-
ously introduced new features. Moreover, the leaked kernel memory
may also contain other sensitive data, such as cryptographic keys
and file caches. For these reasons, preventing kernel information
leak is a pressing security problem.

There are four main causes of information leaks: uninitialized
data read, buffer overread, use-after-free and logic errors (e.g., miss-
ing privilege check). Among these root causes, uninitialized read
is the most common one. According to a Linux kernel vulnerabil-
ities survey [6], 37 information leak vulnerabilities were reported
from January 2010 to March 2011, 28 of which were caused by
uninitialized data read. Similarly, we analyzed the causes of the ker-
nel information leaks reported after 2013. Our study also revealed
that about 60% kernel information leaks are caused by uninitialized
data read (Figure 1). However, while many memory safety tech-
niques [26–28, 35] have been proposed to prevent buffer overread
and use-after-free, the prevention of uninitialized data leaks is still
an open problem.

Preventing uninitialized data leaks is challenging for three reasons.
First, since data write and read are frequent in programs, detecting
uninitialized data reads by tracking these operations will always
introduce unacceptable performance overhead. For example, Memo-

920

http://dx.doi.org/10.1145/2976749.2978366

Uninitialized Read

57.3%

Others
13.6%

Overread+UAF

29.1%

Figure 1: The root causes of kernel information leaks reported after 2013:
uninitialized data read, spacial buffer overread + use-after-free, and others
(e.g., missing permission check). Most leaks are caused by uninitialized data
read.

rySanitizer [39] and kmemcheck [31] check every memory read and
write to detect uninitialized data reads, thus incurring a performance
overhead of more than three times. Second, uninitialized data reads
are actually quite common in programs. Specifically, compilers
often introduce padding bytes in data structures to improve perfor-
mance. These padding bytes are usually uninitialized, but as long
as the uninitialized data is not used (e.g., dereferenced as pointer or
leaked), its access does not cause any problem. Since the padding
is introduced by the compiler, developers are usually not aware of
the potential data leaks—they need to be convinced such problems
exist before they will fix the programs (see §2 for more details).
Third, uninitialized data leaks often occur across multiple procedure
boundaries—the uninitialized data is always passed to leaking func-
tions (e.g., copy_to_user); hence intra-procedure analysis based
detections (e.g., -Wuninitialized provided by compilers) cannot
catch uninitialized data leaks.

In addition to tracking every data read and write, researchers have
attempted an alternate approach—force initializing. For example,
PaX’s STACKLEAK plugin [40] clears the used kernel stack when the
control is transferred back to user space, which effectively prevents
data leaks between syscalls. However, STACKLEAK cannot prevent the
leaking of uninitialized data generated during the same syscall. Also,
this can introduce a significant performance overhead (see Table 4).
Split kernel [20] instead clears stack frame whenever it is allocated
(i.e., a function is called). Split kernel provides stronger security, but
its performance overhead is even more significant. Peiró et al. [32]
proposed using model checking to detect kernel stack allocations
that have never been memset or assigned. However, this approach
has obvious limitations. For example, since it neither tracks the
propagation of uninitialized data nor handles partial initialization, it
has high false negative and false positive rates. Moreover, none of
these approaches can handle kernel heap leaks.

In this paper, we propose a novel mechanism, UniSan (Unini-
tialized Data Leak Sanitizer), to prevent kernel leaks caused by
uninitialized data reads. Similar to STACKLEAK, UniSan is an auto-
mated compiler-based approach; that is, it does not require manual
modifications to the source code and can transparently eliminate
leaks caused by data structure padding or improper initialization.
At the same time, UniSan also overcomes all the aforementioned
limitations of previous force-initialization approaches. More specifi-
cally, UniSan leverages an inter-procedural static analysis to check
1) whether an allocation ever leaves kernel space, and 2) the allo-
cation is fully initialized along all possible execution paths to the
leak point. The analysis is conservative—as long as there is one
byte of an allocation that cannot be proved to have been initialized
in any possible execution path before leaving the kernel space, it is
considered unsafe; hence UniSan has no false negatives. It also han-

dles both stack and heap allocations. At the same time, to improve
the precision and thus minimize false positives, UniSan’s analysis
is fine-grained, which tracks each byte of an allocation in a flow-
sensitive and context-sensitive manner. Once UniSan detects an
unsafe allocation, it then instruments the kernel to zero the uninitial-
ized portion of the allocation. In this way, UniSan can completely
prevent kernel information leaks caused by uninitialized reads. Note
that by being conservative, UniSan may still have false positives;
however, initializing allocations that will never be leaked will not
break the semantics of the kernel, but will just introduce unneces-
sary performance overhead. Because UniSan’s instrumentation is
semantic-preserving, robustness is guaranteed.

We have implemented UniSan based on the LLVM compiler [22].
UniSan consists of two components. The first is the unsafe alloca-
tion detector, which conservatively reports all potentially unsafe
allocations. The second is the unsafe allocation initializer, which ze-
ros the uninitialized memory by inserting zero-initialization, memset,
or changing the allocation flags.

We have applied UniSan to the latest mainline Linux and Android
kernels to evaluate the effectiveness and efficiency of UniSan in
preventing kernel leaks. For effectiveness evaluation, we first tested
UniSan over 43 recently discovered kernel information leak vul-
nerabilities resulting from uninitialized reads. UniSan successfully
detected and prevented all these known vulnerabilities. Moreover,
the unsafe allocation detector of UniSan has identified many new
uninitialized data leak vulnerabilities in the latest Linux kernel and
Android kernel, 19 of which have been confirmed by the Linux
maintainers and Google.

We also measured UniSan’s performance impacts on kernel op-
erations, server programs, and user-space programs using multi-
ple benchmarks, including LMbench [24], ApacheBench, Android
benchmarks, and the SPEC CPU Benchmarks. The evaluation re-
sults showed that UniSan incurs a negligible performance overhead
(less than 1% in most cases) and is thus much more efficient than
existing solutions (e.g., STACKLEAK).

We believe that since UniSan is robust, effective, and efficient, it
is ready to be adopted in practice to prevent uninitialized data leaks.
In summary, we make the following contributions:

• Survey of kernel information leaks: We studied all the re-
ported kernel information leaks vulnerabilities since 2013. We
analyzed their root causes and corresponding defenses. We
also discussed with kernel developers about how to prevent
information leaks caused by data structure paddings.

• Development of new protection mechanism: We designed
and implemented UniSan, an automated, compiler-based scheme
to eliminate kernel information leaks caused by uninitialized
data reads, which is the main cause of kernel leaks. UniSan
has been successfully applied to the latest mainline Linux
and Android kernels (yet not limited to kernels). UniSan is a
practical, ready-to-use security protection scheme, and will
be open-sourced for broader adoption.

• Discoveries of new vulnerabilities: During our evaluation,
UniSan discovered many previously unknown information
leak vulnerabilities in the latest Linux and Android kernels,
19 of which have been confirmed by Linux maintainers and
Google.

In the rest of the paper, we introduce our kernel leak study (§2)
and describe the overview (§3), design (§4) and implementation
(§5) of UniSan. Then we evaluate UniSan in §6. Related work is
summarized in §7. We discuss the limitations of UniSan in §8, and
conclude in §9.

921

2. AN ANALYSIS OF KERNEL INFORMA-
TION LEAKS

In this section, we provide a background on kernel information
leaks, including their security implications and root causes. Then
we discuss uninitialized data reads and how such vulnerabilities
should be fixed from the developers’ perspectives.

2.1 Kernel Information Leaks
Kernel information leak vulnerabilities can cause severe security

consequences. First, as mentioned in §1, with the deployment of
kASLR [9] and stack canary [10], a general prerequisite for many
attacks (e.g., code reuse attack) is learning the randomized addresses
and canary, which can be accomplished by exploiting kernel infor-
mation leak vulnerabilities. Further, as the TCB of the whole system,
the OS kernel also has access to many other types of sensitive in-
formation, such as encryption keys, file cache, and remaining data
of terminated processes, etc. For performance reasons, memory
pages allocated to store such information may not be cleared when
they are released to the kernel. As a result, kernel information leak
vulnerabilities also allow attackers to access such sensitive infor-
mation. For example, [42] showed that an uninitialized data leak is
used to leak the entropy source for srandom. In short, it is critically
important to prevent kernel information leaks.

Kernel information leaks are also very common and have many
causes. According to a previous study [6] of Linux kernel vulnera-
bilities discovered between January 2010 and March 2011, kernel
information leak was ranked the second most common vulnerabil-
ity, which is even more common than buffer overflow vulnerability.
Specifically, of the total of 37 leak vulnerabilities, 28 were caused
by uninitialized reads, 7 were caused by buffer overread, and two
by other miscellaneous causes.

Since the aforementioned study [6] is already five-year old, we
conducted another study of kernel information leak vulnerabilities
reported after 2013 [11], which contained 103 leaks in total. The
result is shown in Figure 1. The majority of kernel leaks are caused
by uninitialized reads. Buffer overread is also a common cause, in
which the size of reading is not properly checked. Use-after-free
bugs may be exploited to leak the data of newly allocated objects or
manipulate the size and address of the read. Other causes include
missing permission check, race condition, or other logic errors.
Since uninitialized read is the most common cause of kernel leaks,
our work focuses on preventing uninitialized data leaks.

2.2 Uninitialized Data Leaks
An uninitialized data leak occurs when an allocated stack or heap

object is not properly initialized when being copied to the outside
world (e.g., to user space, network, or file systems). If the memory
occupied by the object is used to store sensitive data (e.g., addresses),
attackers can exploit this to leak such information. Note that using
uninitialized memory is a type of memory safety error and can lead
to undefined behavior. For this reason, modern compilers (e.g., the
-Wuninitialized option in GCC) can generate warnings when vari-
ables are used without proper initialization. However, this compiler
feature employs only an intra-procedure analysis and cannot handle
many common cases (e.g., reading the uninitialized data through
its pointer). Most uninitialized data leaks happen across multiple
function boundaries (e.g., calling copy_to_user in Linux), so they
can be identified only using inter-procedural analysis. Also, data
can be propagated through various channels (e.g., network or file
systems). In short, existing compiler checks are not effective in find-
ing uninitialized data leaks in large-scale, sophisticated programs,
like the Linux kernel. Moreover, uninitialized data reads may not
be harmful if they are not dereferenced or leaked; reporting all of

1 /* File: net/x25/af_x25.c */
2 int x25_rx_call_request(struct sk_buff *skb,
3 struct x25_neigh *nb,
4 unsigned int lci) {
5 ⋆ struct x25_dte_facilities dte_facilities;
6 /* some fields of dte_facilities are not initialized */
7 ! x25_negotiate_facilities(..., &dte_facilities);
8 ...
9 /* passed to the external */

10 makex25->dte_facilities= dte_facilities;
11 ...
12 }
13 static int x25_ioctl(struct socket *sock,
14 unsigned int cmd,
15 unsigned long arg) {
16 ...
17 /* leak uninitialized fields of dte_facilities */
18 ⊙ copy_to_user(argp, &x25->dte_facilities,
19 sizeof(x25->dte_facilities));
20 ...
21 }

Figure 2: New kernel leak in the x25 subsystem—6 fields of dte_facilities
are not initialized and leaked in another function x25_ioctl. ⋆ denotes
memory allocation, ! marks incorrect initialization, ⊙ notes a leaking point.

1 /* File: net/wireless/nl80211.c */
2 static int nl80211_dump_station(struct sk_buff *skb,
3 struct netlink_callback *cb) {
4 ⋆ u8 mac_addr[ETH_ALEN]; /* ETH_ALEN = 6 */
5 ...
6 ! err = rdev->ops->dump_station(\
7 &rdev->wiphy,
8 wdev->netdev, sta_idx, mac_addr, &sinfo);
9 /* mac_addr is uninitialized but sent out via nla_put()

10 * inside nl80211_send_station() */
11 ⊙ if (nl80211_send_station(skb, NL80211_CMD_NEW_STATION,
12 NETLINK_CB(cb->skb).portid,
13 cb->nlh->nlmsg_seq, NLM_F_MULTI,
14 rdev, wdev->netdev, mac_addr,
15 &sinfo) < 0)
16 goto out;
17 ...
18 }

Figure 3: New kernel leak in the wireless subsystem—the whole 6-bytes
array mac_addr is not initialized but sent out. ⋆ denotes memory allocation, !
marks incorrect initialization, and ⊙ notes a leaking point.

them will burden or even annoy developers. The following examples
demonstrate the common causes of uninitialized data leaks and why
existing compiler features cannot detect them. Please note that all
leakage examples listed in this paper are newly discovered by our
system UniSan and fixed only in the mainstream repository; most
deployed kernels may not be patched yet.

2.2.1 Missing Element Initialization
The simplest and most common case of an uninitialized data leak

is when the developers fail to properly initialize all fields of an object
or memory of a buffer. Figure 2 shows a real kernel leak vulnerabil-
ity in the x25 module. Specifically, the object dte_facilities is
supposed to be properly initialized in x25_negotiate_facilities.
However, six fields are still not initialized. The object is then prop-
agated to the external heap object makex25 and finally leaked to
userland in another function x25_ioctl. As we can see, detecting
such leaks would require sophisticated inter-procedural data-flow
analysis, which is not available during normal compilation.

Figure 3 shows another real kernel leak vulnerability caused by
program design and developers. The 6-bytes buffer mac_addr is allo-
cated on stack. It is supposed to be initialized in the dump_station
function before it is sent out. However, since dump_station is an
interface function that has different implementations for different
protocols written by different programmers, it is hard to ensure

922

1 /* File: drivers/usb/core/devio.c */
2 struct usbdevfs_connectinfo {
3 unsigned int devnum;
4 unsigned char slow;
5 /* 3-bytes padding inserted for alignment */
6 };
7 static int proc_connectinfo(struct usb_dev_state *ps,
8 void __user *arg) {
9 ⋆ struct usbdevfs_connectinfo ci = {

10 .devnum = ps->dev->devnum,
11 .slow = ps->dev->speed == USB_SPEED_LOW
12 };
13

14 /* sizeof(ci) == 8, but only 5 bytes are initialized */
15 ⊙ if (copy_to_user(arg, &ci, sizeof(ci)))
16 return -EFAULT;
17 return 0;
18 }

Figure 4: New kernel leak caused by compiler padding. Object ci contains
3-bytes padding at the end, which is copied to userland. Note that ⋆ denotes
memory allocation and partial initiation, and ⊙ notes a leakage point.

the object is consistently initialized. Specifically, this buffer is not
initialized in the implementation of the wilc1000 module. As this
uninitialized data is actually never used by the kernel, it is sim-
ply copied outside the kernel boundary; from the perspective of
compiler, these cases are not errors. Moreover, dump_station is
a function pointer (i.e., dereferenced by an indirect call), tracking
which requires a complete call graph that is not provided by current
compiler features.

2.2.2 Data Structure Padding
Besides developer mistakes, a more interesting source of unini-

tialized data leaks is compiler-added data structure paddings. In
particular, when modern processors access a memory address, they
usually do this at the machine word granularity (e.g. 4-bytes on a
32-bits systems) or larger. So if the target address is not aligned,
the processor may have to access the memory multiple times to
perform shifting and calculating to complete the operation, which
can significantly degrade the performance [33]. Moreover, different
instructions or architectures could also have their own alignment
requirements. For instance, SSE instructions on the x86 architecture
require the operands to be 16-bytes aligned, and ARM processors
always require memory operands to be 2-bytes or 4-bytes aligned.
For these reasons, compilers usually add paddings within a data
structure so fields are properly aligned.

The problem is that as these paddings are not visible at the pro-
gramming language level, and so they are not initialized even when
all fields have been properly initialized in the code written by devel-
opers and hence may lead to information leaks. Figure 4 illustrates a
kernel leak in the USB module caused by data structure paddings. In
this case, although developers have explicitly initialized all fields of
the stack object ci, because of its last 3-byte padding, information
can still be leaked when copy_to_user is invoked to copy the whole
object to user space. To detect such leaks, byte-level analysis is re-
quired; object-level or even field level (i.e., field-sensitive) analyses
are still not fine-grained enough to catch such leaks.

To summarize, leaking padding bytes is a serious problem for
three reasons. First, it is prevalent. Compilers frequently introduce
padding for better performance. Padding is even more prevalent
when porting programs from 32-bits to 64-bits platforms. Second,
inter-procedural and byte-level analysis is required to detect such
leaks. Third, it is often not visible to developers. Padding bytes can
be leaked even developers have correctly initialized all fields.

After we submitted patches for these vulnerabilities, the compiler-
injected padding issue was discussed extensively by the Linux com-
munity and became a major concern to the Linux kernel developers

1 ⋆ struct usbdevfs_connectinfo ci = {
2 .devnum = 1234,
3 .slow = 1
4 };

Figure 5: An example that fields in a object are initialized with constants in
an initializer. LLVM will generate a global initializer for this object.

Unsafe alloc.
detector

LLVM IR

UniSan
(built upon LLVM)

Kernel
Source code

Secured
kernel image

Unsafe alloc.
initializer

complete call graph

reachability analysis
initialization analysis

zero out unsafe
bytes

Modified
LLVM IR

build user graph

Figure 6: Overview of UniSan’s workflow. UniSan takes as input the LLVM
IR (i.e., bitcode files) and automatically generates secured IR as output. This
is done in two phases: identifying all potentially unsafe allocations and
instrumenting the kernel to initialize all detected unsafe allocations.

because, from the developers’ perspective, they have properly ini-
tialized the data structures and this type of leak is hardly visible
even to skilled programmers. On the other hand, from the compil-
ers’ perspective, they have the benefit of not proactively initializing
such padding regions to achieve better performance, because this
design decision can be independently made by each compiler accord-
ing to the C/C++ specification. However, considering its severity,
prevalence and more importantly, its non-trivial nature to develop-
ers, we, as well as many kernel maintainers urge the incorporation
of UniSan’s approach to solve this problem at the compiler level,
perhaps as an extra option to the compiler.
Global initializer in LLVM. Initializers are often used in the ker-
nel; Figure 5 shows an example of an initializer that initializes fields
of the allocated object. When the fields are initialized with constants
(not variables), LLVM will generate a global initializer that will
zero the remaining bytes including the padding in the object. In this
case, we should not report it as an unsafe allocation. On the other
hand, GCC does not use the global initializer to zero the remaining
bytes; hence it is still a leak when the whole object is sent out. This
example demonstrates that compiler-based analysis is necessary to
accurately detect unsafe allocations.

3. OVERVIEW
In this work, we focus on preventing kernel information leaks

caused by uninitialized data reads. UniSan achieves this goal via a
two-phase process (Figure 6). In the first phase, UniSan analyzes
the kernel and conservatively identifies all potential unsafe objects
that may leave the kernel space without having been fully initial-
ized. Then in the second phase, UniSan instruments the kernel to
automatically initialize (zero out) the detected unsafe allocations.

3.1 Problem Scope
The protection target of UniSan is the OS kernel. Since UniSan

performs analysis over source code, we assume the source code of
the kernel is available. We assume the attackers do not have the
kernel privilege (e.g., through loading a malicious kernel driver),
but they can be either local or remote. The goal of the attackers
is to leak sensitive data (e.g., addresses, cryptographic keys, file
content) in the kernel space to the external world (e.g., userland and
network). After gathering the information, the attacker can launch
more attacks, such as privilege escalation and phishing.

As discussed in §2, kernel information leaks have multiple root
causes: uninitialized data read, buffer overread, use-after-free, data
race, logical errors, etc. In this work, we focus on uninitialized
data read because a majority of kernel leaks are caused by this

923

Allocations
(e.g., alloca/kmalloc)

Reachability analysis

data flow Sinks
(e.g., copy_to_user)

Initialization
analysis

Figure 7: Unsafe allocation detector incorporates a reachability analysis
and an initialization analysis to check whether any byte of the allocation is
uninitialized when leaves the kernel space.

particular type of vulnerabilities and there is no practical solution
yet; whereas other types of vulnerabilities can be addressed by
existing techniques and are thus out-of-scope. For instance, buffer
overread and use-after-free bugs can be prevented by memory safety
techniques [26–28, 35]. Data race can be detected by [14]. Logical
errors (e.g., missing permission check) are relatively rare and can
be identified by semantic checking techniques [3, 25].

3.2 The UniSan Approach
There are multiple candidate solutions for preventing uninitialized

data leaks. The first is zeroing the memory when it is deallocated.
Since we cannot know when the deallocated memory will be al-
located and used in the future, we have to conservatively zero all
deallocated stack and heap objects, which can introduce a significant
performance overhead. More importantly, deallocation is not always
paired with allocation, such as the case of memory leak, thus intro-
ducing false negatives. The second is dynamically tracking the status
of every byte in the object, so that we can know exactly if any unini-
tialized bytes are leaving the kernel space. MemorySanitizer [39]
and kmemcheck [31] are based on this approach. However, while
they are effective and able to detect general uninitialized data uses,
their 3x performance overhead is too high to be used for runtime
prevention. The third is selectively zeroing the allocated memory
that is detected as unsafe by static analysis. After assessing the
effectiveness and performance of these approaches, we chose the
third approach—only initializing the unsafe allocations.

Figure 6 illustrates the approach of UniSan. Specifically, UniSan
takes as input the LLVM IR (i.e., bitcode files) compiled from
the kernel source code, upon which the analysis and instrumen-
tation are performed. Given a stack or heap allocation, UniSan
leverages static data-flow (taint) analysis to check whether this al-
location can reach the pre-defined sinks, such as copy_to_usr and
sock_sendmsg. Along the propagation path, UniSan also tracks the
initialization status of each byte of the allocation. If any byte of the
allocation reaches the sink without having been initialized in any
possible execution path, UniSan considers it unsafe. After collecting
all unsafe allocations, UniSan instruments the IR with initialization
code right after them. For stack allocation, UniSan inserts a memset
or zero-initiailzation to initialize it. For heap allocation, UniSan
adds the __GFP_ZERO flag to the allocation functions (e.g., kmalloc).
Finally, by assembling and linking the instrumented bitcode files,
UniSan generates the secured kernel image.

4. DESIGN
In this section, we present the design of UniSan. We first describe

the design of unsafe allocation detector, including how we generate
the complete call graph, perform reachability analysis, and track the
initialization status of allocations. Then we describe how unsafe
allocation initializer instruments the kernel to generate secured
kernel image.

4.1 Detecting Unsafe Allocations
Our unsafe allocation detection is essentially a static taint analy-

sis that incorporates two orthogonal analyses: object initialization

analysis and sink reachability analysis, as shown in Figure 7. The
initialization analysis checks which bytes of the object will be ini-
tialized along the paths from allocation to sinks, i.e., which bytes
will be assigned with other values. The sink reachability analysis
checks which bytes of the object will leave the kernel space along
the paths from allocation to sinks, i.e., being passed to sinks. The
initialization analysis and reachability analysis are then integrated
to detect unsafe bytes—a byte is unsafe if it is uninitialized when it
leaves kernel space.

The workflow of the detection is as follows. Given the bitcode
files of the target program, it first builds a complete and global
call graph. Then it parallelly performs the reachability analysis
and initialization analysis for each allocation to detect the unsafe
bytes. Our analysis is flow-sensitive in that the order of the uses
of the allocation is maintained with a dedicated user-graph (that
will be elaborated in §4.1.4); context-sensitive in that function calls
are followed with callsite-specific context; and field-sensitive in
that it performs fine-grained tracking for each byte of the allocation.
However, to avoid the path explosion problem and make our analysis
scalable to the whole kernel, our analysis is path-insensitive.

4.1.1 Defining Sources and Sinks
Both the reachability analysis and initialization analysis track the

“taint” status of the allocated bytes from the allocation site to the
sink functions. As the first step, we need to pre-define the sources
(i.e., allocations) and sinks (i.e., data-leaking functions).
Sources. For stack, all objects are allocated by the AllocaInst
(i.e., an instruction to allocate memory on the stack) . By handling
this instruction, we are able to find all tracking sources on stack.
Heap objects can be allocated in many ways. In our current im-
plementation, we include only the standard allocator from SLAB,
namely, kmalloc and kmem_cache_alloc. These heap allocators
accept a flag parameter. If the flag contains __GFP_ZERO bit, the
allocated memory will be initialized with zero. In UniSan, we track
only heap allocations without the __GFP_ZERO flag. Please note that
although UniSan currently does not include custom allocators, it
can be easily extended to support them once developers denote the
function name and allocation flags (i.e., create the source signature).
Sinks. Under the threat model of UniSan, any function that may
send kernel data to userland, network, or file is classified as a
sink function. In UniSan, we use two policies to generally define
the sinks. We first empirically define a list of known sink func-
tions, based on our study of previous kernel leaks. For example,
copy_to_user copies data to userland; sock_sendmsg sends data
to network, and vfs_write writes data to files. Although there
are various implementations for file writing (for different file sys-
tems) and message sending (for different protocols), vfs_write and
sock_sendmsg are the uniformed interfaces, so we can generally
catch the sink functions by annotating these functions.

Clearly, there are more sink functions that are not covered by the
first step. To eliminate false negatives introduced by an incomplete
sink list, we utilized three conservative rules to generally cover
additional sinks. These rules are defined based on the fact that under
our recursive tracking algorithm (Figure 8), for any data to leave
kernel space, it will always be stored to a non-kernel-stack location
(or non-AllocaInst to be specific), so once we cannot determine
that the destination of an store operation is on kernel stack, we treat
it as a sink.

• Rule 1: A StoreInst (i.e., an instruction for storing to mem-
ory) is a sink if the destination is not allocated by an AllocaInst
in kernel;

• Rule 2: A CallInst (i.e., an instruction for calling a function)

924

1 /* Unsafe allocation detection algorithm */
2 UnsafeAllocDetection(Module) {
3 for (Alloc in Module) {
4 /* user relationships are maintained */
5 MergedUnsafeBytes = Array();
6 UserGraph = BuildUserGraph(Alloc);
7 NextUsers = GetFirstUser(UserGraph);
8 RecursiveTrackUsers(Alloc,NextUsers,MergedUnsafeBytes);
9 if (IsNotEmpty(MergedUnsafeBytes))

10 Report(Alloc, MergedUnsafeBytes);
11 }
12 }
13 RecursiveTrackUsers(Alloc, NextUsers, MergedUnsafeBytes) {
14 /* terminate if all bytes have been inited or sinked */
15 if (AllInitied(Alloc) || AllSunk(Alloc))
16 return;
17 UnsafeBytes = Array();
18 for (User in NextUsers) {
19 /* Next users of User are recursively tracked */
20 if (IsLoadInst(User))
21 RecursiveTrackLoad(User, UnsafeBytes);
22 else if (IsStoreInst(User))
23 RecursiveTrackStore(User, UnsafeBytes);
24 else if (IsCallInst(User))
25 RecursiveTrackCall(User, UnsafeBytes);
26 else if (IsGetElementPtr(User))
27 RecursiveTrackGEP(User, UnsafeBytes);
28 ...
29 /* Unrecognized cases */
30 else
31 /* assume remaining uninitialized bytes unsafe */
32 UnsafeBytes += GetUninitializedBytes(Alloc);
33 /* Conservatively merge (union) all unsafe bytes */
34 MergedUnsafeBytes += UnsafeBytes;
35 }
36 }

Figure 8: The pseudo-code of the recursive tracking algorithm for the unsafe
allocation detection.

is a sink if the called value is inline assembly that is not in the
whitelist (§4.1.6);

• Rule 3: A CallInst is a sink if the called function’s body is
empty (i.e., not compiled into LLVM IR).

4.1.2 Building Global Call-Graph
Since UniSan’s analysis is inter-procedural, global call graph is

required. To eliminate false negatives, UniSan must conservatively
identify all potential targets of indirect calls. To this end, we first
collect the address-taken functions, and use the type-analysis-based
approach [30, 41] to find the targets of indirect calls. That is, as long
as the type of the arguments of an address-taken function matches
with the callsite of the indirect call, we assume it is a valid target.
Note that we also assume universal pointers (e.g., char *, void *)
and an 8-bytes integer can match with any type.

4.1.3 Recursive Detection Algorithm
With the global call-graph, we conduct the unsafe allocation

detection. The algorithm of the detection is shown in Figure 8. In
short, given an allocation in a module, we first build its user-graph
(that will be elaborated in §4.1.4). After that, we recursively keep
track of which bytes of the allocated object have been initialized
and which bytes have reached sink functions, by traversing the user-
graph. Different users are handled properly. If there are any corner
cases that are not recognized before, we conservatively assume the
bytes being tracked are unsafe. All unsafe bytes in different paths
are concatenated together. That is, a byte is assumed unsafe as long
as it is unsafe in any possible path.

4.1.4 Building User-Graph
In LLVM IR, a user of a value is an instruction or expression

that takes the value as an operand. The unsafe allocation detection

%i = alloca i32

store i32 0, i32* %i

call @put_user(i32* %i,
i8* %u)

int *i;

if (p == NULL)

 i = 0;

put_user(&i, u);

source code user-graph

Figure 9: A simple user-graph example.

is designed to be flow-sensitive, which requires considering the
order of users. Given the being tracked value (e.g., the allocated
value), LLVM framework only tells us all the users but not the
relationships (e.g., sequential and parallel relationships) among
them. To maintain the relationships of the users, we build the user-
graph for the tracked value. Figure 9 shows a simple user-graph
example. Instructions that do not use the tracked value will not
show up in the graph. More specifically, we first put all the users in
the corresponding basic blocks. Users in the same basic block are
always in a sequential order. Then we use the DominatorTree pass
of LLVM to understand the relationships among the involved basic
blocks. With this information, we chain all the users together into a
user graph. When an alias of the tracked value is generated (e.g., by
the CastInst and GetElementPtr instructions), all the users of the
alias will be seamlessly merged into the user-graph as well.

4.1.5 Fine-Grained Status Tracking
UniSan performs unsafe allocation detection in a fine-grained

manner (i.e., byte-level analysis). There are several advantages of
performing the analysis at byte granularity. First, due to the com-
piler’s padding, initializing all fields of an object does not guarantee
that all bytes are initialized (Figure 4). Therefore, byte-level analysis
is necessary to detect the uninitialized padding bytes. Second, union
is widely used in kernel data structures and byte-level tracking can
help resolve the issue introduced by field alias. Finally, byte-level
detection can precisely filter out safe bytes, so that the instrumen-
tation module can selectively initialize only the unsafe ones, thus
further reducing the runtime performance overhead.

To perform the byte-level analysis, we use a buffer to record the
initialization and sinking status of every byte in a tracked alloca-
tion. Whenever an object is allocated, a buffer of the same size
is created. Currently, we only use two bits of the corresponding
byte in the buffer to represent the initialization and sinking status of
each byte in the original object. To keep track of which bytes are
being accessed, at every GEPOperator (an instruction or expression
for type-safe pointer arithmetic to access elements of arrays and
structs) node in LLVM IR, we calculate the offset (into the base
of the object) and the size of the obtained element. In our current
design, we do not perform range analysis, so if any of the indices
of the GEPOperator node are not constants, we cannot statically
calculate the resulting element. In this case, we conservatively treat
all bytes of the allocation as uninitialized and pause the initialization
analysis—as long as the reachability analysis determines that the
allocation can leave the kernel space, we assume it is unsafe. Since
non-constant indices are not common in GEPOperator node, our
byte-level analysis works well in most cases.

4.1.6 Eliminating False Negatives
As a prevention tool, UniSan aims to eliminate potential false

negatives. Clearly, aggressively initializing all stack and heap al-
locations can guarantee no false negative; however, such a naive
approach will introduce unnecessary performance overhead, since
most allocations will either never leave kernel space or be properly
initialized. To make UniSan more efficient, our principle is to elim-

925

inate as many false positives as possible while ensuring no false
negative; and whenever we encounter an undecidable problem or an
unhandled corner case, we always sacrifice the detection accuracy
and assume the tracked allocation is unsafe. In this subsection, we
summarize cases that may introduce false negatives and describe
how we handle them.
Complete call graph. LLVM’s built-in call graph pass does not
find callees of indirect calls. As described in §4.1.2, we adopt a
conservative type-analysis to find indirect call targets to build a
complete and global call graph.
Conservative path merging. There are often many paths from the
allocation site to the sink points. And in different paths, the allocated
object can be initialized differently. In LLVM IR, the most common
cases that can introduce multiple paths include: 1) load and store
instructions. These instructions copy the tracked value to somewhere
else, creating a new data-flow; 2) indirect call instructions; 3) return
instructions; 4) branch instructions. To ensure that no leaks will be
missed, UniSan always tracks each path independently and merges
the tracking results (when tracking of a path returns) by calculating
the union of all unsafe bytes; in other words, a byte is deemed unsafe
as long as it is unsafe in one path.
Propagation to alias. Our reachability and initialization analyses
are performed in a forward manner (i.e., from source to sink). When-
ever an alias of the tracked value is created (e.g., by CastInst or
GetElementPtr instructions), we further track the alias by merging
its users into the user-graph of the current tracked value. Therefore,
we do not need alias analysis for this case. However, when the
tracked value is stored to another value, we need a backward slicing
analysis to find the possible aliases of the store-to value, which is
difficult for some cases (e.g., global variable). To handle this, we
employ the simple basic alias analysis [21]. Additionally, we en-
force two conservative policies to eliminate potential false negatives:
1) if we find that the aliases are pointing to a non-stack object (e.g.,
global variable or heap object), whose data-flow is hard to follow,
we assume the tracked value is unsafe; 2) if we find the aliases is a
returned value of a function call or a parameter of current function,
we also assume the tracked value is unsafe.
Inline assembly. To improve performance, kernel developers com-
monly write inline assembly. Since inline assembly is not compiled
into LLVM IR, our detection cannot be directly applied. To handle
inline assembly, we manually whitelisted some safe inline assembly
that will not leak the tracked value or store the tracked value to
other places. All other inline assembly functions are conservatively
treated as sinks.

4.2 Instrumenting Unsafe Allocations
After identifying all unsafe allocations, the initializer module

of UniSan further instruments the kernel to initialize the identified
unsafe allocations by zeroing the unsafe bytes. In particular, the
initialization code is inserted right after the allocation (e.g., the
stack Alloca and kmalloc). Since the detection module reports
unsafe allocation at the byte-level, in many cases, we do not have
to initialize the whole allocated object but only the unsafe bytes.
In particular, for stack allocation, we use StoreInst to zero the
unsafe bytes if they have a continuous size of less than or equal to
8; otherwise, memset is used for zeroing the bytes. Heap allocation
is also initialized in a similar way except that the __GFP_ZERO flag
is passed to the heap allocator to initialize the memory if all bytes
are unsafe. With the initialization, all possible uninitialized leaks
cannot disclose any meaningful entropy from the kernel space, and
thus can be prevented.

5. IMPLEMENTATION
In this section, we present the implementation details that read-

ers may be interested in. UniSan is built on the LLVM compiler
infrastructure with version 3.7.1. The unsafe allocation detector is
implemented as two analysis module passes. One is for building the
complete call graph iteratively and maintaining all necessary global
context information (e.g., defined functions); the other performs
the initialization and reachability analyses based on the built call
graph. The unsafe allocation initializer is implemented as a transfor-
mation function pass, invoked after the detection pass. Both passes
are inserted after all optimization passes. To compile the kernel
into LLVM IR, we leverage the LLVMLinux project [23]. Because
llvm-link has a symbol renaming problem, instead of merging all
bitcode files into a single module, we adopt the iterative algorithm
from KINT [43] to process individual bitcode files. So the input of
the analysis phase is just a list of bitcode files. UniSan is easy to
use:

$ CC=unisan-cc make
$ unisan @bitcode.list

5.1 Bookkeeping of the Analysis
For each tracked allocation, we use a dedicated data structure to

record its tracking results along the propagation paths. This data
structure mainly includes the initialization and sinking information
of each byte. The tracking history is also included to avoid repeat-
edly tracking a user—we do not need to track a user multiple times
if the status of the tracked value is not changed.

As mentioned in §4.1.4, UniSan maintains the user-graph for the
tracked value. The users in the graph may access different elements
of the tracked value. To know which part of the tracked value is
being initialized or sunk during the tracking, element information is
also kept in each node of the user-graph.

Moreover, we maintain reference hierarchy for pointers. The ref-
erence hierarchy is to understand if a pointer is directly or indirectly
(recursively) pointing to the tracked allocation. To better understand
it, let us see this example: store i8* %A, i8** %B stores value
A to the memory pointed to by B but not B itself. To differentiate
whether the storing operation is targeting the tracked allocation or
its reference, the referencing relationship between them is required,
and thus we maintain the reference hierarchy. Our reference hier-
archy is straightforward: the “indirectness” is decreased by one by
LoadInst; but increased by one by StoreInst. To tackle the alias
problem, if StoreInst stores to non-stack memory, we assume it is
sinking and stop tracking. Certainly, point-to analyses can achieve
the same goal, but they are heavyweight—analyzing the kernel may
take many hours.

The initialization status is updated when the tracked value is
assigned another value by StoreInst, while the sinking status is
updated when the tracked value is stored to a non-stack value in
StoreInst or it is passed to sink functions in CallInst.

5.2 Tracking Different Users
Analyses are carried out by traversing the user-graph. UniSan

handles different kinds of users accordingly. After handling a user,
the next users of the current user will be further tracked. In this
section, we detail how the handling of each type of user is imple-
mented.
LoadInst. LoadInst loads the data pointed to by the tracked
value to the target value. We independently track both values and
merge (i.e., the union operation) the unsafe bytes when both track-
ing processes return. Since LoadInst is essentially dereferencing
the tracked value that is a pointer, we also increase the reference
hierarchy by one in the tracking of the target value.

926

StoreInst. StoreInst stores the tracked value to the memory
pointed to by the target value. Let us see store i8* %A, i8** %B
again. When the tracked value is A (i.e., it is the value operand),
we first use the conservative basic alias analysis (§4.1.6) to find
the aliases of B. If not all aliases can be found or some aliases
are from non-stack memory, we assume A is sunk and update its
sinking status; otherwise, we further track aliases independently
and merge all unsafe bytes. Since the target value is a reference of
the stored value, the reference hierarchy is decreased by one in the
tracking of aliases. When the tracked value is B, we first consult the
reference hierarchy (§5.1) to see if B is the tracked allocation (but
not its reference); if yes, we record that the corresponding bytes of
the tracked allocation are initialized.
CallInst. When the tracked value is passed to callees via argument,
we recursively track the arguments in callees independently and
merge all unsafe bytes. Inline assembly is conservatively handled as
shown in §4.1.6. If the called function is a sink, we record that the
corresponding bytes are sunk.
GEPOperator. GEPOperator statements get the pointer of an
element of the tracked value, which essentially creates an alias of
the tracked value. The offset of the target element into the base
of the tracked value and its size are calculated and maintained in
the user-graph. The users of the target element are merged into the
user-graph of the tracked value. The element information is the key
to implement the byte-level analyses; however, when the indices
of GEPOperator are not constants, we will not be able to obtain
the element information. In this case, we stop the initialization
analysis and only continue the reachability analysis, since we cannot
statically decide which bytes will be initialized.
ReturnInst. ReturnInst is an instruction that returns a value from
a function. We first use the global call-graph to find all CallInsts
that call the current function containing the ReturnInst. Then these
CallInsts are independently tracked, and unsafe bytes are merged.
CastInst, SelectInst, and PHINode. The definitions of these
statements can be found at [1]. These cases are generating alias of
the tracked values. We find their users and merge the users to the
user-graph of the tracked value.
CmpInst, SwitchInst, BranchInst. The definitions of these state-
ments can be found at [1]. We skip the handling for these cases,
since they do not operate the tracked value.
Others. Any other cases are conservatively treated as sinks, so all
uninitialized bytes in the tracked value are assumed to be unsafe.

5.3 Modeling Basic Functions
Similar to traditional static program analyses, we also modeled

some basic functions. Specifically, we modeled string-related func-
tions that typically use loops to process strings, to improve the
efficiency of tracking. Moreover, we modeled some frequently used
LLVM intrinsic functions (e.g., llvm.memset) that do not have func-
tion bodies in LLVM IR. In total, we modeled 62 simple functions
by summarizing how they propagate and initialize the arguments.

5.4 Dynamic Allocations
Dynamic allocations create objects with a dynamic size. They are

common (about 40%, according to our study) in heap. In general,
we do not perform initialization analysis for dynamic allocations,
because we cannot determine which bytes are being accessed at
compiling time. As a result, we conservatively consider the whole
allocation as uninitialized and only perform reachability analysis.
With one exception, during the initialization analysis we will record
the size value (in LLVM IR) of the dynamic allocation; if the al-
location is later initialized by a basic function (e.g., memset) using

the same size value as recorded, we consider that it is fully initial-
ized and safe. In the instrumentation module, extra instructions
are inserted to compute the size at runtime for dynamic allocations
on stack, which is then passed to memset to initialize the memory.
For dynamic allocation on heap, we utilize the __GFP_ZERO flag for
initialization.

6. EVALUATION
We systematically evaluated UniSan to answer the following

questions:

• The accuracy of UniSan, i.e., to what extent can UniSan filter
out safe allocations?

• The effectiveness of UniSan, i.e., whether it can prevent
known and detect previously unknown uninitialized data leaks?

• The efficiency of UniSan, i.e., what is the performance over-
head of the secured kernel?

Experimental setup. We applied UniSan to both x86_64 and
AArch64 kernels. For x86_64, we used the latest mainline Linux
(with version 4.6.0-Blurry Fish Butt) with patches from the
LLVMLinux projects [23]. x86_64 kernels were tested in a desktop
machine equipped with an Intel(R) Xeon(R) CPU E5-1620 v2 @
3.70GHz processor and 32GB RAM. The OS is the 64-bits Ubuntu
14.04. For AArch64, we used the latest Android kernel (with ver-
sion tegra-flounder-3.10-n-preview-2) from the Android Open
Source Project, with patches from [38]. The Android kernels were
tested in the Nexus 9 device that has a duo-core ARMv8 processor
and 2GB RAM. We used the default configurations for both kernels.

6.1 Accuracy of Unsafe Allocation Detector
We first conducted the statistical analysis on the accuracy of the

unsafe allocation detector—how many allocations are reported as un-
safe. The results are shown in Table 1. In particular, there are around
2k modules (i.e., bitcode files) enabled by the default kernel config-
uration. It is worth noting that LLVM’s optimizations aggressively
inline functions and significantly opt-out most allocations—there
were 156,065 functions and 413,546 static stack allocations before
the optimizations. UniSan is accurate in detecting unsafe stack allo-
cations: only 8.4% and 9.5% stack allocations are detected as unsafe
for x86_64 and AArch64, respectively. Since dynamic allocation is
common for a heap object, UniSan’s detection rate is higher for heap
allocations—13.2% for x86_64 and 14.9% for AArch64. UniSan
performs byte-level detection, so we also report the total number
of statically allocated bytes and the detected unsafe bytes. These
statistic results show that UniSan can filter out most safe allocations
to avoid unnecessary initializations.

To understand how initialization analysis and reachability analysis
individually help in filtering out safe allocations, we further counted
the number of unsafe allocations when we disable one of them.
Specifically, in x86_64, if we disable the initialization analysis, there
are 3,380 unsafe stack allocations. If we disable the reachability
analysis (i.e., assuming all function calls as sinks), there are 14,094
unsafe stack allocations. In AArch64, the numbers are 2,961 and
11,209, respectively.

6.2 Effectiveness of Preventing Leaks
Preventing known leaks. Conservative policies (§4.1.6) have
been enforced to eliminate potential false negatives of UniSan. To
confirm that UniSan does not miss uninitialized data leaks in prac-
tice, we selected 43 recent kernel uninitialized data leaks reported
after 2013. All these leaks have been assigned with CVE identifiers.

927

Arch Module Function Static Dyn. Static Dyn. Unsafe Unsafe Static Unsafe
Alloca Alloca Malloc Malloc Alloca Malloc Bytes Bytes

x86_64 2,152 92,954 17,854 24 1,768 1,161 1,493 386 3,588,095 863,455
AArch64 2,030 93,067 15,596 32 1,790 1,233 1,485 451 11,525,808 3,351,181

Table 1: Detection accuracy of UniSan, measured by how many allocations are detected as unsafe. Alloca represents stack allocations, while Malloc represents
different heap allocations. Please note that only the code (about 10% of the whole kernel code) enabled by the default kernel configuration is included.

CVE Mem. Sink Leak Cause UniSan
Bytes

CVE-2015-5697 heap user <4096 M ✓
CVE-2015-7884 stack user 4 M ✓
CVE-2015-7885 stack user < 28 M ✓
CVE-2014-1444 stack user 2 P ✓
CVE-2014-1445 stack user 2 P ✓
CVE-2014-1446 stack user 4 M ✓
CVE-2014-1690 stack sock < 16 M ✓
CVE-2014-1739 stack user 192 M ✓
CVE-2013-4515 stack user 10 M ✓
CVE-2013-3235 stack user 12 M ✓
CVE-2013-3234 stack user 12 P+M ✓
CVE-2013-3233 stack user 12 M ✓
CVE-2013-3232 stack user 6 P+M ✓
CVE-2013-3230 stack user 4 M ✓
CVE-2013-3223 stack user 1 P ✓
CVE-2013-2636 stack sock < 20 M ✓
CVE-2013-2636 stack sock 4 P+M ✓
CVE-2013-2636 stack sock 3 P ✓
CVE-2013-2636 stack sock 18 M ✓
CVE-2013-2635 stack sock 32 M ✓
CVE-2013-2634 stack sock 32 M ✓
CVE-2013-2634 stack sock 34 M ✓
CVE-2013-2634 stack sock 8 M ✓
CVE-2013-2634 stack sock 20 P+M ✓
CVE-2013-2634 stack sock 32 M ✓
CVE-2013-2634 stack sock 18 M ✓
CVE-2013-2547 stack sock < 64 M ✓
CVE-2013-2547 stack sock 8 M ✓
CVE-2013-2237 heap sock 1 M ✓
CVE-2013-2234 heap sock 2 M ✓
CVE-2013-2148 stack user 1 M ✓
CVE-2013-2141 stack user 4 M ✓
CVE-2012-6549 stack user 2 M ✓
CVE-2012-6548 stack user 2 M ✓
CVE-2012-6547 stack sock 4 M ✓
CVE-2012-6546 stack user 2 P ✓
CVE-2012-6545 stack sock 1 P ✓
CVE-2012-6544 stack sock 2 M ✓
CVE-2012-6543 stack sock 2 M ✓
CVE-2012-6541 stack user 4 P ✓
CVE-2012-6540 stack user 12 M ✓
CVE-2012-6539 stack user 4 P ✓
CVE-2012-6537 stack user 4 P ✓

Table 2: Tested known uninitialized data leaks. UniSan can successfully
prevent all of them. In the cause column: P-compiler padding; M-missing
element initialization.

Please note that some leaks are not included because the correspond-
ing code is not enabled by the default kernel configuration or a
very similar leak has already been included. The patches of these
vulnerabilities are temporarily reverted for testing. The results of
the experiment are shown in Table 2. UniSan successfully detected
and prevented all these leaks without any false negative; hence the
effectiveness in preventing existing leaks is confirmed.
Detecting previously unknown vulnerabilities. UniSan is de-
signed as a prevention tool that can automatically detect and fix all
uninitialized data leaks at the LLVM IR level; no manual effort is
required. However, to confirm that UniSan can truly prevent new
leaks and estimate the false positives due to our conservative policies,

we manually review the unsafe allocations reported by the unsafe
allocation detector. As shown in Table 1, UniSan detected about
1,500 possible unsafe stack allocations and 300 possible unsafe heap
allocations. Due to limited time and labor, we randomly chose 300
detected unsafe stack allocations and 50 unsafe heap allocations. In
summary, we have verified 19 new uninitialized data leaks in the
latest Linux kernel and Android kernel. All of these vulnerabilities
are from stack, more details can be found in Table 3. All of them
have been confirmed by the Linux kernel team and Android security
team. Since UniSan has not been adopted by them yet, we have to
manually write the corresponding patches in source code.

6.3 Efficiency of the Secured Kernels
UniSan carries out flow-sensitive, context-sensitive, and field-

sensitive analyses to accurately detect the unsafe allocations, so that
the performance overhead is controlled by minimizing the number
of initializations. To quantify this benefit, we conducted a series
of extensive performance evaluations. In particular, we first used
the LMBench [24] micro benchmark to evaluate the performance
on core system operations (e.g., syscalls latency). We then used
Android Benchmarks and the SPEC Benchmarks as the macro bench-
marks to evaluate the performance impacts on user space programs
for the protected Android kernel and Linux kernel, respectively. To
measure the performance impacts on I/O intensive server programs,
we further used ApacheBench to test the performance of Apache
web server. All these evaluations consist of three groups: 1) native
mode, in which UniSan is not applied; 2) blind mode, in which all
stack allocations and heap allocations without the __GFP_ZERO flag
are initialized without checking whether or not they are safe; and
3) UniSan mode, in which UniSan is applied. In the three groups
of evaluations, the kernel was replaced with the corresponding one.
Note that, we did not further break down the performance over-
head introduced by stack and heap, because the overall overhead is
already negligible.

6.3.1 System Operations
In order to measure how UniSan affects the performance of core

operating system services, we used LMBench [24] as the micro
benchmark. Specifically, we focus on the latency of syscalls (e.g.,
null, write, open/close, sigaction, etc.) and impact on band-
width (e.g., pipe). We ran each experiment 10 times, and the results
are shown in Table 4. In the blind mode, the performance overhead
could be up to 22% (the signal handle case). There are also some
cases (e.g., select and pipe) where its overhead is more than 10%.
Such a performance overhead is significant for the OS kernel—the
foundation of computer systems. In contrast, UniSan has a much
lower performance overhead than the blind mode; its maximum
overhead is 7.1% in the protection fault case. We also notice that
UniSan’s performance overhead is negligible (< 1%) in many cases.
On average, the performance overhead of UniSan is less than 1.5%
for both the Linux and Android kernels.

As a comparison, we further measured STACKLEAK’s perfor-
mance overhead in the same settings as UniSan except using GCC
to compile it. As shown in Table 4, STACKLEAK imposes an aver-
age of more than 40% performance overhead in system operations,
which is much higher than UniSan.

928

Sub- Module Object Mem. Sink Leak Cause Kernel Patch CVE
System Bytes

1 net/core rtnetlink.c map stack sock 4 P A&L ✓ CVE-2016-4486
2 usb devio.c ci stack user 3 P A&L ✓ CVE-2016-4482
3 net/wireless nl80211.c mac_addr stack sock 6 M A&L ✓ AndroidID-28620350
4 nec/llc af_llc.c info stack user 1 P A&L ✓ CVE-2016-4485
5 sound timer.c tread stack user 8 P A&L ✓ CVE-2016-4569
6 sound timer.c r1* stack user 8 P A&L ✓ CVE-2016-4578
7 sound timer.c r1* stack user 8 P A&L ✓ CVE-2016-4578
8 net/x25 af_x25.c dte_facilities stack user 8 M A&L ✓ CVE-2016-4569
9 net/tipc netlink_compat.c link_info stack sock <60 M A&L ✓ CVE-2016-5243
10 net/rds recv.c minfo stack sock 1 M A&L ✓ CVE-2016-5244
11 net/mac80211 mlme.c deauth_buf stack sock 26 M A S AndroidID-28620568
12 net/wireless wl_cfg80211.c sinfo stack sock <116 M&P A S AndroidID-28619338
13 net/wireless util.c hdr stack sock 1 M A S AndroidID-28620324
14 net/netfilter ...queue_core.c phw stack sock 2 M A S AndroidID-28673002
15 net/netfilter nfnetlink_log.c phw stack sock 2 M A S AndroidID-28672819
16 net/netfilter nfnetlink_log.c pmsg stack sock 1 M A S AndroidID-28616963
17 media media-device.c u_ent stack user <192 M&P A S AndroidID-28616963
18 media media-device.c pad stack user 10 M&P A S AndroidID-28616963
19 media media-device.c link stack user 28 M&P A S AndroidID-28616963

Table 3: List of new kernel uninitialized data leak vulnerabilities discovered by UniSan. In Patch column, S represents it has been submitted, and ✓represents
it has been applied. In the Cause column, P is compiler padding and M is missing element initialization. In the Kernel column, A represents Android and L
represents Linux. *These two “r1” are in different functions. AndroidID is internally maintained by Android security team at Google.

Linux (x86_64) Android (AArch64) STACKLEAK (x86_64)
Native Blind (%) UniSan (%) Native Blind (%) UniSan (%) W/O With (%)

null syscall 0.04 0.04 (0.0%) 0.04 (0.0%) 0.42 0.42 (0.0%) 0.42 (0.0%) 0.04 0.12 (200.0%)
stat 0.37 0.40 (8.1%) 0.38 (2.7%) 1.33 1.43 (7.5%) 1.37 (3.0%) 0.45 0.70 (55.6%)
open/close 1.20 1.22 (1.7%) 1.15 (-4.2%) 6.09 6.27 (3.0%) 6.07 (-0.3%) 1.17 1.74 (48.7%)
select TCP 2.44 2.48 (1.6%) 2.44 (0.0%) 9.67 10.67 (10.3%) 9.80 (1.3%) 2.13 2.37 (11.3%)
signal install 0.11 0.11 (0.0%) 0.11 (0.0%) 0.58 0.58 (0.0%) 0.57 (-1.7%) 0.11 0.24 (118.2%)
signal handle 0.58 0.71 (22.4%) 0.60 (3.4%) 1.79 1.98 (10.6%) 1.85 (3.4%) 0.63 0.71 (12.7%)
fork+exit 156 157 (0.6%) 156 (0.0%) 851 892 (4.8%) 861 (1.2%) 156 167 (7.1%)
fork+exec 452 464 (2.7%) 455 (0.7%) 2687 2737 (1.9%) 2742 (2.0%) 455 467 (2.6%)
prot fault 0.295 0.317 (7.5%) 0.316 (7.1%) 1.37 1.47 (7.3%) 1.35 (-1.5%) 0.315 0.462 (46.7%)
pipe(latency) 9.673 10.21 (5.6%) 9.909 (2.4%) 8.850 8.898 (0.5%) 8.882 (0.4%) 9.141 10.2 (11.6%)
TCP(latency) 91.8 99.5 (8.4%) 97.3 (6.0%) – – – – – 92.3 99.8 (8.1%)
pipe(bandw) 3,321 3,250 (2.1%) 3,315 (0.2%) 838 728 (13.1%) 804 (4.1%) 987 960 (2.7%)
TCP(bandw) 2,331 2,264 (2.9%) 2,333 (-0.1%) – – – – – 1514 1183 (21.9%)

Table 4: LMBench results. Time is in microseconds. The last two rows are measuring bandwidth, which is the bigger the better. We do not have numbers for
TCP case in Android kernel, because we were not able to establish the TCP socket to our Nexus 9. STACKLEAK is compiled with GCC.

6.3.2 User Space Programs
For x86_64, we used the standard SPEC CPU 2006 benchmark

suite to test the performance impacts of UniSan on user space pro-
grams. The benchmark programs were compiled with the common
options (-pie -fPIC -O2) and each benchmark was run 10 times.
The results are shown in Table 5. Specifically, the performance
overhead introduced by UniSan is only 0.54%, which is negligible.
The performance overhead of the blind mode is higher than UniSan,
which is 1.92%. Note that the moderate blind-mode overhead over
SPEC benchmarks is when the user-space is not protected; when
we also applied the blind mode to the user-space code, the overhead
becomes 10% (7% from stack and 3% from heap).

For AArch64, we instead used the dedicated benchmarks for
Android: AnTuTu (including 3DBench) and Vellamo. They are
typical Android benchmarks to test a variety of cases (e.g., video
streaming, web browsing, photo editing, etc.). Each testing was
repeated five times for deriving the average numbers. The evaluation
results are shown in Table 6. Again, UniSan’s performance overhead
is negligible (<1%) and is lower than blind mode.

6.3.3 Server Programs
We used ApacheBench to test the performance impacts of UniSan

Programs Native Blind (%) UniSan (%)
perlbench 3.61 3.61 (0.0%) 3.59(-0.6%)
bzip2 4.74 4.78 (0.8%) 4.78 (0.8%)
gcc 0.968 0.970 (0.2%) 0.966(-0.2%)
mcf 2.73 2.76 (1.1%) 2.74 (0.4%)
gobmk 14.0 14.0 (0.0%) 14.0 (0.0%)
hmmer 2.07 2.03 (-1.9%) 2.04(-1.4%)
sjeng 3.27 3.30 (0.9%) 3.33 (1.8%)
libquantum 0.0387 0.0397 (2.6%) 0.0395 (2.1%)
h264ref 9.26 9.32 (0.6%) 9.28 (0.2%)
omnetpp 0.362 0.364 (0.6%) 0.362 (0.0%)
astar 7.81 7.92 (1.4%) 7.92 (1.4%)
xalancbmk 0.0758 0.0779 (2.8%) 0.0738(-2.6%)
milc 4.57 4.76 (4.2%) 4.76 (4.2%)
namd 8.85 8.86 (0.1%) 8.83(-0.2%)
dealII 10.5 10.6 (1.0%) 10.6 (1.0%)
soplex 0.0166 0.0186 (12.0%) 0.0170 (2.4%)
povray 0.427 0.439 (2.8%) 0.426(-0.2%)
lbm 1.68 1.69 (0.6%) 1.69 (0.6%)
sphinx 1.19 1.28 (7.6%) 1.20 (0.8%)
Geo-mean (seconds) 1.92% 0.54%

Table 5: User space (x86_64) performance evaluation results with the SPEC
benchmarks. Time is in second, the smaller the better.

929

Benchmark Native Blind (%) UniSan (%)
AnTuTu 94,998 92,900 (2.2%) 94,735 (0.3%)
Vellamo-Browser 4,776 4,711 (1.4%) 4,729 (1.0%)
Vellamo-Metal 2,766 2,777 (-0.4%) 2,776 (-0.4%)
Vellomo-Multicore 2,610 2,499 (4.3%) 2,600 (0.4%)

Table 6: User space (AArch64) performance evaluation results with multiple
android benchmarks. The scores are the higher the better.

on the latency and bandwidth of the server program—Apache web
server. The ApacheBench ran in the laptop connected to our desk-
top machine with an one Gigabit cable. We used Apache with its
default configurations. We first used a 1KB file to evaluate the
latency when the concurrency (i.e., simultaneous connections) was
set to be 1, 50, 100, 150, 200, and 250. Then we used files with
different sizes (100B, 1KB, 10KB, 100KB, and 1MB) to measure
the bandwidth (i.e., throughput) of the web server. In the bandwidth
evaluation, the concurrency was set to be 32; the network I/O was
not saturated except when the file size was 1MB. The request for
each experiment was repeated 10,000 times. The evaluation results
show that the blind mode incurs an average slowdown of 0.7% in
the concurrency experiment and 0.9% in the bandwidth experiment.
In contrast, UniSan imposes an unobservable slowdown (<0.1%) in
both experiments. These results confirm that UniSan incurs almost
no overhead to the server programs that are I/O intensive.

6.4 Miscellaneous
Scalability. UniSan is scalable, which can analyze complex pro-
grams like the OS kernel. To better understand its scalability, we
also measure the time for it to protect the kernels. In our physi-
cal machine, UniSan finished the protection of kernels within 117
seconds for x86_64 and 170 seconds for AArch64.
Binary size. UniSan inserts small initializers (e.g., zero-initialization)
for unsafe allocations. To confirm that it does not significantly in-
crease the binary size, we measured the size of the installed boot
images. The results showed that UniSan increases the size of Linux
boot image from 7,417KB to 7,445KB (0.38%) and the one of
Android from 6.348KB to 6.366KB (0.27%). Both are negligible.

7. RELATED WORK
Kernel leak detection and prevention. The most related works
are Peiró’s model checking based kernel stack leak detection [32],
PaX STACKLEAK plugin [40], and Split kernel [20].

Peiró’s model checking is essentially a simple taint tracking from
stack allocation to copy_to_user. If there is no assignment or
memset between the allocation and copy_to_user, a leak is reported.
Such an approach has some limitations: it does not track targets of
indirect calls, different sinks, the propagation of uninitialized data,
or handle partial initialization, so many leak cases will be missed. In
UniSan, we accurately track each byte of an allocation and eliminate
false negatives thoroughly.
STACKLEAK simply clears the used kernel stack when the control is

transferred back to the user space. Such an approach cannot prevent
leaks that disclose data generated in the current syscall. Split ker-
nel [20] instead clears the stack frame whenever a function is called.
Both approaches impose significant performance overhead (see Ta-
ble 4) because they need to frequently zero-out blocks of memory.
Compared with UniSan, these approaches provide a broader security,
as they also prevent other uninitialized data uses (e.g., uninitialized
pointer dereferencing).

None of above approaches can protect heap allocations. To the
best of our knowledge, UniSan is the first approach that prevents
both stack and heap uninitialized data leaks efficiently.

Detecting uninitialized memory accesses. Traditional uninitial-
ized data read detections and undefined behavior [42] detections can
also detect uninitialized data leaks.

Both LLVM and gcc provide the -Wuninitialized option to de-
tect uninitialized data use. First, they only perform intra-procedure
analysis; however, all the uninitialized data leaks propagate data
across function boundary (e.g., calling copy_to_user); hence they
cannot detect such leaks. Second, their analysis does not handle
many common cases. For example, reading the uninitialized data
through its pointer cannot be caught.

Some dynamic tracking techniques [5, 31, 36] have been proposed
to detect uninitialized data reads. These techniques rely on dynamic
instrumentation platforms (e.g., Valgrind [29] and DynamoRIO [5])
to instrument the binary and analyze memory access patterns dy-
namically. These tools can report uninitialized data use without
false positives; however, their performance overhead (>10x) is too
high for them to be adopted as prevention tools.

Differently, MemorySanitizer [39] relies on compile time instru-
mentation and shadow memory to detect uninitialized data use at
run-time. Its performance is much better than dynamic instrumen-
tation based tools; however, it still imposes a 3-4x performance
overhead. Usher [44] proposes value-flow analysis to reduce the
number of tracked allocations to reduce the performance overhead
of MemorySanitizer to 2-2.5x.
Memory safety and model checking. Many memory safety tech-
niques [26–28, 35] have been proposed to prevent spacial memory
errors (e.g., out-of-bound read) and use-after-free bugs, and model
checking techniques [3, 25] can detect semantic errors caused by
developers. These tools are effective to detect or prevent kernel
leaks caused by spacial memory errors, use-after-free, or semantic
errors, and thus are orthogonal to UniSan. DieHard [4] probabilis-
tically detects uninitialized memory uses for heap but not stack.
Cling [2] constrains memory allocation to allow address space reuse
only among objects of the same type, which can mitigate exploits
of temporal memory errors (e.g., use-after-free and uninitialized
uses). StackArmor [7] is a sophisticated stack protection that also
prevents uninitialized reads in binaries. Since StackArmor uses
stack layout randomization to prevent inter-procedural uninitialized
reads, such a protection is probabilistic. Type systems [12, 15]
can prevent dangling pointer and uninitialized pointer dereferences,
and out-of-bound accesses; however uninitialized data leaks are not
covered.
Protections using zero-initialization. Zero-initialization has been
leveraged to achieve protections in previous works. Secure deal-
location [8] zero-initializes the deallocated memory to reduce the
lifetime of data, thus reducing the risk of data exposure. Lacuna [13]
allows users to run programs in “private sessions”. After a session
is over, all memory of its execution is erased. In general, zeroing-
upon-deallocation has two issues: 1) deallocations are not always
available (e.g., deallocation is missing in the case of memory leak);
2) it is hard to selectively zero deallocations for efficiency, as dis-
cussed in §3.2. StackArmor [7] only zero-initializes intra-procedural
allocations (i.e., not be passed to other functions) that cannot be
proven to be secure against uninitialized reads.

8. DISCUSSION AND FUTURE WORK
Custom heap allocator. In the current implementation, UniSan
only tracks typical heap allocators (kmalloc and kmen_cache_alloc).
To handle custom heap allocations (e.g., alloc_skb), UniSan can
use the specifications of allocators provided by developers. In
fact, for user space programs, LLVM already provides an API
isMallocLikeFn to test whether a value is a call to a function that

930

allocates uninitialized memory based on heuristics. We plan to also
use heuristics to infer “malloc-like” functions in the kernel.
Source code requirement. Source code is required. In case that
some kernel drivers are close-sourced, we have to carefully identify
all possible calls that target these drivers and assume all such calls as
sinks. Failures in identifying such calls will result in incompleteness
of call-graph and thus false negatives.
Security impacts of zero-initialization. Some systems use unini-
tialized memory as the source of randomness. For example, the
SSLeay implementation of OpenSSL uses uninitialized buffer as en-
tropy source to generate random number (see ssleay_rand_bytes()).
Zero-initialization will clearly reduce the entropy of such a source
of randomness; however, we argue that using such a source of ran-
domness is insecure and should be avoided—reading uninitialized
data is classified as memory error.
False positives. In many cases, UniSan eliminates false negatives
by sacrificing accuracy (i.e., increasing the false positive rate). There
is still room to reduce the false positives. For example, point-to
analysis [16] can help find indirect call targets, and dynamic taint
analysis [34] can help handle cases like inline assembly.

Considering that false positives do not affect program semantics
but just introduce more performance overhead and that UniSan is
already efficient, we leave these optimizations for future work.
More kernel modules. In our experiments, we included only
modules enabled by the default kernel configurations. Since the
current Linux kernel has around 20,000 modules total, a majority
of them have not been included in our evaluation. Unfortunately,
due to some GCC-specific features, some modules are still not
compilable by LLVM and require extra engineering effort to patch.
Since UniSan is a proof-of-concept research project, we believe
supporting these additional modules is out-of-scope. We may be
able to rely on the open source community to provide the required
patches (e.g., the LLVMLinux project [23]) or port UniSan to GCC.
Beyond kernels. UniSan’s detection and instrumentation work on
the LLVM IR level, and thus it can be naturally extended to protect
user space programs. Specifically, to support user space program,
IR of libraries should also be included, and sources (for heap) and
sinks should be re-defined. As a future work, we will use UniSan
to detect and prevent information leaks in security- and privacy-
sensitive programs (e.g., OpenSSL).

9. CONCLUSION
Information leaks in kernel pose a major security threat because

they render security protection mechanisms (e.g., kASLR and Stack-
Guard) ineffective and leak security-sensitive data (e.g., crypto-
graphic keys and file caches). In particular, uninitialized data read is
the most critical vulnerability because it is the cause of most infor-
mation leaks in kernel. Furthermore, none of the existing defenses
can completely and efficiently prevent uninitialized data leaks.

The key idea behind UniSan is to use byte-level, flow-sensitive,
and context-sensitive reachability analysis and initialization analysis
to identify any allocation that leaves kernel space without having
been fully initialized, and to automatically instrument the kernel
to initialize this allocation. UniSan has no false negatives. That is,
it prevents all possible uninitialized data leaks in kernel. We have
applied UniSan to the latest Linux kernel and Android kernel and
found that UniSan can successfully prevent 43 known uninitialized
data leaks, as well as many new ones. In particular, 19 of the new
data leak vulnerabilities in the latest kernels have been confirmed
by the Linux community and Google. Extensive evaluation has
also shown that UniSan is robust and imposes only a negligible
performance overhead.

10. ACKNOWLEDGMENT
We thank Byoungyoung Lee, Herbert Bos, Anil Kurmus and the

anonymous reviewers for their valuable feedback, as well as our
operations staff for their proofreading efforts. This research was
supported in part by the NSF award CNS-1017265, CNS-0831300,
CNS-1149051, CNS-1563848 and DGE-1500084, by the ONR
under grant N000140911042 and N000141512162, by the DHS
under contract N66001-12-C-0133, by the United States Air Force
under contract FA8650-10-C-7025, by the DARPA Transparent
Computing program under contract DARPA-15-15-TC-FP-006, by
the ETRI MSIP/IITP[B0101-15-0644]. Any opinions, findings,
conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the NSF,
ONR, DHS, United States Air Force, DARPA or MSIP.

References
[1] LLVM Classes Definition, 2016. http://llvm.org/docs/doxygen/

html/annotated.html.

[2] P. Akritidis. Cling: A memory allocator to mitigate dangling
pointers. In Proceedings of the 19th USENIX Security Sympo-
sium (Security), Washington, DC, Aug. 2010.

[3] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg,
C. McGarvey, B. Ondrusek, S. K. Rajamani, and A. Ustuner.
Thorough static analysis of device drivers. In Proceedings
of the 1st ACM SIGOPS/EuroSys European Conference on
Computer Systems 2006, EuroSys ’06, 2006.

[4] E. D. Berger and B. G. Zorn. Diehard: Probabilistic memory
safety for unsafe languages. In Proceedings of the 2006 ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Ottawa, Canada, June 2006.

[5] D. Bruening and Q. Zhao. Practical memory checking with dr.
memory. In Proceedings of the 2004 International Symposium
on Code Generation and Optimization (CGO), Washington,
DC, Mar. 2011.

[6] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and M. F.
Kaashoek. Linux kernel vulnerabilities: State-of-the-art de-
fenses and open problems. In Proceedings of the 2nd Asia-
Pacific Workshop on Systems (APSys), Shanghai, China, July
2011.

[7] X. Chen, A. Slowinska, D. Andriesse, H. Bos, and C. Giuffrida.
StackArmor: Comprehensive Protection from Stack-based
Memory Error Vulnerabilities for Binaries. In Proceedings
of the 2015 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2015.

[8] J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum. Shredding
your garbage: Reducing data lifetime through secure deallo-
cation. In Proceedings of the 14th Conference on USENIX
Security Symposium, Berkeley, CA, USA, 2005.

[9] K. Cook. Kernel address space layout randomization, 2013.
http://outflux.net/slides/2013/lss/kaslr.pdf.

[10] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, and Q. Zhang. Stackguard: Au-
tomatic adaptive detection and prevention of buffer-overflow
attacks. In Proceedings of the 7th USENIX Security Sympo-
sium (Security), San Antonio, TX, Jan. 1998.

[11] C. Details. Vulnerabilities By Type, 2016. http://www.
cvedetails.com/vulnerabilities-by-types.php.

[12] D. Dhurjati, S. Kowshik, and V. Adve. Safecode: enforcing
alias analysis for weakly typed languages. In Proceedings of
the 2006 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), Ottawa, Canada,
June 2006.

931

http://llvm.org/docs/doxygen/html/annotated.html
http://llvm.org/docs/doxygen/html/annotated.html
http://outflux.net/slides/2013/lss/kaslr.pdf
http://www.cvedetails.com/vulnerabilities-by-types.php
http://www.cvedetails.com/vulnerabilities-by-types.php

[13] A. M. Dunn, M. Z. Lee, S. Jana, S. Kim, M. Silberstein, Y. Xu,
V. Shmatikov, and E. Witchel. Eternal sunshine of the spotless
machine: Protecting privacy with ephemeral channels. In
Proceedings of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Hollywood, CA,
Oct. 2012.

[14] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk.
Effective data-race detection for the kernel. In Proceedings of
the 9th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Vancouver, Canada, Oct. 2010.

[15] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and
J. Cheney. Region-based memory management in cyclone.
In Proceedings of the 2002 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
Berlin, Germany, June 2002.

[16] B. Hardekopf and C. Lin. The ant and the grasshopper: Fast
and accurate pointer analysis for millions of lines of code.
In Proceedings of the 2007 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
San Diego, CA, June 2007.

[17] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis.
Ret2dir: Rethinking kernel isolation. In Proceedings of the
23rd USENIX Security Symposium (Security), San Diego, CA,
Aug. 2014.

[18] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis. kguard:
Lightweight kernel protection against return-to-user attacks.
In Proceedings of the 21st USENIX Security Symposium (Se-
curity), Bellevue, WA, Aug. 2012.

[19] M. Krause. CVE-2013-1825: various info leaks in Linux ker-
nel, 2013. http://www.openwall.com/lists/oss-security/2013/
03/07/2.

[20] A. Kurmus and R. Zippel. A tale of two kernels: Towards end-
ing kernel hardening wars with split kernel. In Proceedings of
the 21st ACM Conference on Computer and Communications
Security (CCS), Scottsdale, Arizona, Nov. 2014.

[21] LLVM. LLVM Alias Analysis Infrastructure, 2016. http:
//llvm.org/docs/AliasAnalysis.html.

[22] LLVM. The LLVM Compiler Infrastructure, 2016. http://llvm.
org/.

[23] LLVMLinux. The LLVMLinux Project, 2016. http://llvm.
linuxfoundation.org/index.php/Main_Page.

[24] L. W. McVoy and C. Staelin. Lmbench: Portable tools for per-
formance analysis. In USENIX Annual Technical Conference,
1996.

[25] C. Min, S. Kashyap, B. Lee, C. Song, and T. Kim. Cross-
checking semantic correctness: The case of finding file system
bugs. In Proceedings of the 25th ACM Symposium on Operat-
ing Systems Principles (SOSP), Monterey, CA, Oct. 2015.

[26] S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Watch-
doglite: Hardware-accelerated compiler-based pointer check-
ing. In Proceedings of the 2014 International Symposium on
Code Generation and Optimization (CGO), Orlando, FL, Feb.
2014.

[27] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.
SoftBound: Highly compatible and complete spatial memory
safety for C. In Proceedings of the 2009 ACM SIGPLAN
Conference on Programming Language Design and Implemen-
tation (PLDI), Dublin, Ireland, June 2009.

[28] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.
CETS: compiler enforced temporal safety for C. In Interna-
tional Symposium on Memory Management, 2010.

[29] N. Nethercote and J. Seward. Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation. In Proceed-
ings of the 2007 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), San Diego, CA,
June 2007.

[30] B. Niu and G. Tan. Modular control-flow integrity. In Proceed-
ings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2014.

[31] V. Nossum. Getting Started With kmemcheck, 2015. https:
//www.kernel.org/doc/Documentation/kmemcheck.txt.

[32] S. Peiró, M. M. noz, M. Masmano, and A. Crespo. Detecting
stack based kernel information leaks. In International Joint
Conference SOCO’14-CISIS’14-ICEUTE’14, 2014.

[33] J. Rentzsch. Data alignment: Straighten up and
fly right – Align your data for speed and correct-
ness, 2005. https://www.ibm.com/developerworks/library/
pa-dalign/pa-dalign-pdf.pdf.

[34] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever
wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask). In
Proceedings of the 2010 IEEE Symposium on Security and
Privacy, SP ’10, 2010.

[35] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov.
AddressSanitizer: A fast address sanity checker. In Proceed-
ings of the 2012 USENIX Annual Technical Conference (ATC),
Boston, MA, June 2012.

[36] J. Seward and N. Nethercote. Using Valgrind to detect unde-
fined value errors with bit-precision. In Proceedings of the
2004 USENIX Annual Technical Conference (ATC), Anaheim,
CA, June–July 2005.

[37] H. Shacham. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In Pro-
ceedings of the 14th ACM Conference on Computer and Com-
munications Security (CCS), Alexandria, VA, Oct.–Nov. 2007.

[38] C. Song, B. Lee, K. Lu, W. R. Harris, T. Kim, and W. Lee.
Enforcing Kernel Security Invariants with Data Flow Integrity.
In Proceedings of the 2016 Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, Feb.
2016.

[39] E. Stepanov and K. Serebryany. MemorySanitizer: fast de-
tector of uninitialized memory use in C++. In Proceedings of
the 2015 International Symposium on Code Generation and
Optimization (CGO), San Francisco, CA, Feb. 2015.

[40] P. Team. PaX - gcc plugins galore, 2013. https://pax.grsecurity.
net/docs/PaXTeam-H2HC13-PaX-gcc-plugins.pdf.

[41] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Er-
lingsson, L. Lozano, and G. Pike. Enforcing forward-edge
control-flow integrity in gcc & llvm. In 23rd USENIX Security
Symposium, 2014.

[42] X. Wang, H. Chen, A. Cheung, Z. Jia, N. Zeldovich, and M. F.
Kaashoek. Undefined behavior: What happened to my code?
In Proceedings of the 3rd Asia-Pacific Workshop on Systems
(APSys), Seoul, South Korea, July 2012.

[43] X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F. Kaashoek.
Improving Integer Security for Systems with KINT. In Pro-
ceedings of the 10th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), Hollywood, CA,
Oct. 2012.

[44] D. Ye, Y. Sui, and J. Xue. Accelerating dynamic detection of
uses of undefined values with static value-flow analysis. In
Proceedings of the 2014 International Symposium on Code
Generation and Optimization (CGO), Orlando, FL, Feb. 2014.

932

http://www.openwall.com/lists/oss-security/2013/03/07/2
http://www.openwall.com/lists/oss-security/2013/03/07/2
http://llvm.org/docs/AliasAnalysis.html
http://llvm.org/docs/AliasAnalysis.html
http://llvm.org/
http://llvm.org/
http://llvm.linuxfoundation.org/index.php/Main_Page
http://llvm.linuxfoundation.org/index.php/Main_Page
https://www.kernel.org/doc/Documentation/kmemcheck.txt
https://www.kernel.org/doc/Documentation/kmemcheck.txt
https://www.ibm.com/developerworks/library/pa-dalign/pa-dalign-pdf.pdf
https://www.ibm.com/developerworks/library/pa-dalign/pa-dalign-pdf.pdf
https://pax.grsecurity.net/docs/PaXTeam-H2HC13-PaX-gcc-plugins.pdf
https://pax.grsecurity.net/docs/PaXTeam-H2HC13-PaX-gcc-plugins.pdf

	Introduction
	An Analysis of Kernel Information Leaks
	Kernel Information Leaks
	Uninitialized Data Leaks
	Missing Element Initialization
	Data Structure Padding

	Overview
	Problem Scope
	The UniSan Approach

	Design
	Detecting Unsafe Allocations
	Defining Sources and Sinks
	Building Global Call-Graph
	Recursive Detection Algorithm
	Building User-Graph
	Fine-Grained Status Tracking
	Eliminating False Negatives

	Instrumenting Unsafe Allocations

	Implementation
	Bookkeeping of the Analysis
	Tracking Different Users
	Modeling Basic Functions
	Dynamic Allocations

	Evaluation
	Accuracy of Unsafe Allocation Detector
	Effectiveness of Preventing Leaks
	Efficiency of the Secured Kernels
	System Operations
	User Space Programs
	Server Programs

	Miscellaneous

	Related work
	Discussion and Future Work
	Conclusion
	Acknowledgment

