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Abstract
Intel Software Guard eXtensions (SGX) provides a hardware-
based trusted execution environment for security-sensitive
computations. A program running inside the trusted domain
(an enclave) is protected against direct attacks from other
software, including privileged software like the operating sys-
tem (OS), the hypervisor, and low-level firmwares. However,
recent research has shown that the SGX is vulnerable to a set
of side-channel attacks that allow attackers to compromise
the confidentiality of an enclave’s execution, such as the
controlled-channel attack. Unfortunately, existing defenses
either provide an incomplete protection or impose too much
performance overhead. In this work, we propose Klotski,
an efficient obfuscated execution technique to defeat the
controlled-channel attacks with a tunable trade-off between
security and performance. From a high level, Klotski emu-
lates a secure memory subsystem. It leverages an enhanced
ORAM protocol to load code and data into two software
caches with configurable size, which are re-randomized for
after a configurable interval. More importantly, Klotski
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employs several optimizations to reduce the performance
overhead caused by software-based address translation and
software cache replacement. Evaluation results show that
Klotski is secure against controlled-channel attacks and its
performance overhead much lower than previous solutions.
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1 Introduction
A trusted execution environment (TEE) aims to safeguard
the confidentiality and integrity of an application’s execu-
tion against various security threats on potentially hostile
platforms that are not physically controlled by the appli-
cation developers (e.g., public cloud). Such threats include
malware, malicious or compromised operating systems (OS),
rogue cloud administrators, etc. TEE can be provided by
both software [16, 24, 32] and hardware [4, 21, 33]. Among
these solutions, Intel Software Guard eXtensions (SGX) [33]
is the most promising one for its availability in commodity
Intel CPUs (since the Skylake microarchitecture) and strong,
hardware-based security guarantees. Specifically, an applica-
tion running inside an SGX-protected TEE (a.k.a. enclave)
only needs to trust the processor, which is a much smaller
trusted computing base (TCB) than software-based solutions.
At the same time, Intel has also made significant efforts
to formally verify the hardware specification of SGX and
the implementation of its cryptography operations [26]. For
these reasons, a variety of SGX-based applications have been
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developed, including data analytics [34, 40], machine learn-
ing [36], Tor [29], containers [6], and library OS to support
legacy applications [7, 46, 52].
Unfortunately, SGX also has weaknesses. In particular,

side-channel attacks are outside the threat model of its de-
sign and researchers have demonstrated the feasibility of
several types of side-channel attacks against applications
running inside enclaves, including page-fault-based attacks
(a.k.a. controlled-channel attack) [45, 56], cache-based at-
tacks [9, 19, 23, 42, 54], branch-prediction-based attack [30],
and transient attacks [10, 14, 31, 41]. Among these attacks,
we argue that controlled-channel attacks are the most criti-
cal because most other finer-grained attacks [10, 14, 23, 30,
31, 41, 53, 54] (except Meltdown [31]) are more costly. Thus,
adversaries usually rely on controlled-channel attacks to
pinpoint functions of interest and only launch fine-grained
attacks when the target functions are executed.
Controlled-channel attacks are possible because (1) at-

tackers can observe memory access patterns [51] and (2)
applications’ memory access patterns are input-dependent.
Therefore, controlled-channel attacks can be defeated by
addressing either one of the root causes. User-space page-
fault detection methods [44, 45] aim to prevent attackers
from acquiring page access patterns through deliberately in-
jected page faults. Unfortunately, they are ineffective against
controlled-channel attacks that do not rely on page-fault
(e.g., access-bit-based attack [54]). SGX-Shield [43] tries to
obfuscate the memory access through memory layout ran-
domization. But as it only randomizes once at load time, it
can be defeated through online profiling [30]. Oblivious exe-
cution techniques [2, 3, 37, 39, 45] are secure against online
profiling but impose much higher performance overhead. For
example, deterministic multiplexing [45] imposes a runtime
performance overhead of over 4000×, multiple program path
execution [37] has an overhead of 9×, and OBFSCURO [2]
has an overhead of 51× over simple benchmarks.

In this work, we aim to defeat controlled-channel attacks
with a tunable trade-off between security guarantees and
performance overhead. At a high level, our proposed system
Klotski acts as a memory subsystem. It consists of two soft-
ware caches (one execution vCache and one data vCache),
a software memory management unit (sMMU), and a vir-
tual main memory. Similar to a physical CPU, all executed
instructions are fetched from the execution vCache and all
data is read from/write to the data vCache. sMMU translates
compile-time virtual addresses, which we refer to as logical
addresses, to runtime virtual addresses (i.e., linear addresses
to the hardware MMU). This mechanism allows us to load a
block of memory into any slot of the vCache. To obfuscate
the memory access pattern during the execution, sMMU uses
the Ring ORAM protocol [38] to access the main memory.
Moreover, because “client-side” ORAM operations, includ-
ing accesses to the metadata (e.g., stash and position map)
are also vulnerable to side-channel attacks, Klotski uses

additional protections to make sure all such operations are
oblivious under our threat model. Finally, vCaches are re-
randomized through random replacement policy and forced
flushing.
While the above design is secure and is similar to previ-

ous work [2, 3, 39], a straightforward implementation would
impose a very high performance overhead. Another vital
contribution of Klotski is several optimization techniques.
First, Klotski reduces the number of address translations
by caching the results. Similar to a hardware translation
lookaside buffer (TLB), Klotski leverages program locality
to avoid redundant address translations. Second, Klotski
improves program locality to reduce the number of cache
replacements, including aligning loops to avoid cross-cache-
block loop bodies and relocating constants to the same code
block. Finally, Klotski provides a tunable trade-off between
the performance and security through configurable param-
eters. On one end of the spectrum, Klotski can guarantee
oblivious execution when developers choose a small vCache
size (e.g., 4 KB), at the price of higher performance over-
head (around 10×). On the other end, developers can choose
to reduce the performance overhead with a larger vCache
size (e.g., enough for the working set), at the price of re-
ducing security guarantees. However, in practice, with re-
randomization of vCaches, even the reduced security guar-
antee is reasonable for most applications (see §6).
We have implemented Klotski based on the Intel SDK

for Linux, LLVM toolchain, and musl-libc. Our experimental
evaluation demonstrates that (1) Klotski is effective against
known controlled-channel inference attacks against enclave
programs, (2) Klotski has good compatibility with enclave
programs, and (3) the performance overhead imposed by
Klotski can be reduced to 1.3× on real programs while
providing reasonable security guarantees.

In summary, this paper makes the following contributions:

• New ORAM-based defense against controlled-
channel attacks. We designed and implemented a
new obfuscated execution technique to protect enclave
programs against controlled-channel attacks. Our se-
curity evaluation show our design is able to prevent
all attacks under our threat model.

• Optimization techniques.We developed several op-
timization techniques to reduce the overhead. The eval-
uation also shows that our optimization techniques are
very effective, which can improve the performance by
asmuch as 6.7×. For real-world applications,Klotski’s
performance is also acceptable, only 2.3× with a good
balance for security.

• Open-source implementation.We implemented an
end-to-end toolchain that supports a variety of enclave
programs. The source code and documentation will
be open to public upon the acceptance of this work
(https://github.com/nczhang88pan/KlotskiSGX.git).

https://github.com/nczhang88pan/KlotskiSGX.git


2 Background
2.1 Intel SGX
SGX provides two security guarantees: confidentiality and
integrity. First, it prevents code and data that belong to an
enclave from being accessible outside the enclave, including
privileged softwares, like an OS and a hypervisor. Second, it
uses a memory encryption [22] to prevent memory attacks
like snooping and cold boot. It also maintains integrity mea-
sures of enclave memory to prevent malicious tampering and
replay attacks. When a hardware exception/interrupt occurs
inside an enclave, the processor generates an Asynchronous
Enclave Exit (AEX) before invoking system software’s excep-
tion handler. SGX first saves the enclave’s execution states to
a State Save Area (SSA) and resets all registers to predefined
values to avoid leaking secrets. For example, when a page
fault occurs, SGXwould clear the lowest 12 bits of the faulted
address. Then the control is transferred to the exception han-
dler. Finally, after finishing the process, the handler resumes
the enclave program.

2.2 ORAM
Oblivious RAM (ORAM) [18], provides a formal and general
model to prevent adversaries from learning anything about
the input of a program from its memory access patterns.
That is, given two inputs i and i ′, their memory access traces
are computationally indistinguishable. ORAM achieves this
goal by obfuscating the memory access patterns through
adding noise, permutating and reshuffling randomly. There
are numerous ways to construct an ORAM. A simple but
extremely inefficient construction is that for every memory
access, accesses the whole memory. Therefore, several differ-
ent ORAM schemes [38, 49, 50, 55] have been proposed to
improve ORAM’s efficiency. In this subsection, we focus on
explaining Ring ORAM [38], which is used in Klotski. Ring
ORAM is an optimization of Path ORAM [50]. It consists of
three components:

• ORAM Tree: a complete binary-tree in an untrusted
server to store encrypted memory blocks. The depth
of this tree is typical O(logN ) where N is the number
of real memory blocks. Each node of this tree, also
known as a bucket, has a fixed number of slots to hold
blocks (Z + S , up to Z slots may contain real blocks,
and at least S slots are filled with dummy blocks), and
a small metadata containing basic information. Since
all real blocks and dummy blocks are encrypted, an
attacker is not able to distinguish them.

• Position Map: a lookup table that is reserved by the
trusted client and used to record which path in the
ORAM tree a real block maps to.

• Stash: a buffer in the trusted client, that stores the
blocks which have not been evicted to the ORAM tree.
A block is either in the ORAM tree or the stash.

Ring ORAM accesses a block in 4 steps:

1. Position Map lookup: The ORAM looks up the po-
sition map to learn in which path l the target block
b currently resides and assigns a new path l ′ to the
block.

2. ReadPath: The ORAM reads all buckets along the
path l and stores b into the stash. Unlike prior tree-
based schemes, only one block is read from each bucket
along the path. Except for the bucket where b resides,
a random dummy block is read.

3. EvictPath: To keep the stash occupancy low, after
every A ReadPath accesses, EvictPath selects a path,
reads Z blocks (all the remaining real blocks and po-
tentially dummy blocks) from each bucket into the
stash and then fill the path with blocks in the stash in
the reverse lexicographical order [38].

4. Early Reshuffles: To avoid a bucket from being read
> S times before EvictPath reshuffles the bucket. For
each ReadPath operation, EarlyReshuffle is performed
on the bucket(s) that have been accessed more than S
times. Similar to EvictPath, EarlyReshuffle reads Z
blocks and writes back Z + S permuted blocks.

3 Related Work and Motivation
3.1 Side-channel Attacks against SGX
Table 1 summarizes and compares the existing side-channel
attacks on SGX from various aspects. Xu et al. [56] first
demonstrated a malicious OS can extract a program’s secrets
by observing its memory accesses at page granularity. In
this attack, they used page faults as a noise-free controlled-
channel. In order to reduce the extraordinary overhead in-
troduced by frequent page faults, they used several sets of
page-fault sequences to identify the start and the end of
functions of interest, and only perform heavy page fault
tracking for these functions. Even with this optimization,
their attacks resulted in an overheads of 209.6× to 354.9×.
J. Bulck et al. [12] then presented a page-table-based attack
that generates fewer page faults. They carefully picked some
trigger page(s) and collected the set of accessed pages be-
tween two successive accesses to trigger pages using the
A(ccessed)/D(irty) flags in page table entries. Using this
method, the victim enclave is only interrupted when a trig-
gering page is accessed. TLBleed [20] measured dTLB la-
tencies to gather page-granular signals for data pages. This
attack collects the activities in the TLB for 2 ms during a
single signing operation.
Page-table-based attacks face a fundamental limit on the

temporal and spatial resolution, attackers cannot observe
memory accesses within a single 4KB page. So more fine-
grained side-channel attacks are proposed. Cache-based at-
tacks [9, 19, 23, 35, 48] demonstrated that Prime+Probe can
still be leveraged to observe cache-line-level memory ac-
cesses of an enclave. Branch shadowing [30] leveraged the



Table 1. Related SGX Side-channel attacks
Resolution Attack Target Side-channel Side-channel pattern AEX frequency Comments

Xu et al. [56]
Page

accessed pages page fault exception page fault sequences every page fault ∼209.6x to 354.9x

J. Bulck et al. [12] specified page sets A/D bits in PTEs accessed pages in between
the access of a trigger page

each access of
the trigger page

TLBleed [20] specified data pages dTLB latency accessed data page
sequences N/A collect the activities

in the TLB for only 2 ms
F. Brasser et al. [9]

Cache
lookup tables

L1 cache latency cache access footprint

N/A
Muti-iterationsA. Moghimi et al. [35] every ∼40 cycles

J. GÃűtzfried et al. [19] N/A
HÃďhnel et al. [23] instructions with

memory operands single stepping ∼3532x
Skarlatos et al. [48] No Noise
branch shadowing [30] Branch branches branch-prediction branch misprediction penalty every ∼50 CPU cycles
SGX-Step [11] Misc N/A N/A N/A single stepping
Nemesis [53] instructions IRQ latency Interrupt arrival timing single stepping

branch prediction latency to gather precise control-flow in-
formation. Similar to traditional side-channel attacks, the
key challenge for these attacks is noises caused by other
uninterested accesses at probing phase. Most of the attacks
mentioned above mitigated this issue by exploiting the x86
local APIC timer to trigger interrupts as frequent as possible
to approximate single stepping [11], so the malicious OS can
break into an SGX application right before and after the ac-
cess of interested memory to reduce pollution. However, this
also makes these attacks extremely slow. Even after using
page-level side-channel to identify target function of interest,
Hähnel et al. [23] reported a 3532× slow down on observing
lookups of a single array.
Finally, Foreshadow [10] demonstrated a new transient

execution attack, which can dump the entire contents of a
victim enclave even without any cooperation within it.
Observation. Most SGX side-channel attacks rely on fre-
quent AEXs to pause the execution of an enclave to re-
duce noises, which also increases the program’s overall ex-
ecution time. This problem becomes more severe in fine-
grained side-channel attacks. To make them practical, at-
tackers only launch fine-grained attacks after leveraging
coarse-grain side-channel to pinpoint function(s) of inter-
est. Therefore, we can hinder these fine-grained attacks by
preventing coarse-grained side-channels.

3.2 Existing Defenses
T-SGX [44] used Intel Transactional Synchronization eXten-
sions (TSX) to limit the generating of an enclave’s AEXs
while the critical code is executing. Chen et al. [15] also
leveraged the TSX to implement an execution-based refer-
ence clock for detecting the interruption of critical execu-
tions. The problem of TSX-based solutions is that some at-
tacks [9, 19, 20, 54] acquire access pattern without triggering
AEXs. SGX-Shield [43] introduced a code block-level ran-
domization at the load time of an enclave program. However,
a malicious OS can still infer an enclave’s memory layout by
observing its memory access patterns on an input from the
OS [30]. Zigzagger [30] obfuscates a set of branch instruc-
tions into a single indirect branch to prevent branch-based
side channel attacks but it only protects code execution and

have been defeated by some fine-grained attacks [11, 53].
ENCLANG [47] obfuscates leaf functions which do not call
other functions. DR.SGX [8] continuously re-randomizes all
enclave data at the granularity of cache lines during an en-
clave’s execution. But it only focuses on data accesses and
does not obfuscate code execution. Shinde et al. [45] intro-
duced an oblivious execution approach called deterministic
multiplexing that places sensitive code and data to one page
to hide page access patterns. Their scheme imposes a very
high performance overhead (over 4000×) and requires man-
ual optimization. OBLIVIATE [3], ZeroTrace [39], and OBFS-
CURO [2] use ORAM protocol to obfuscate memory accesses.
ZeroTrace only considers data obliviousness. OBLIVIATE
provides an obfuscated file system for an enclave but does
not eradicate the controlled-channel for its execution. OBFS-
CURO obfuscates accesses of both code and data. While it
provides strong protection against both cache and timing
side-channels, it can only support programs of small code
and data size (8KB); hence is not practical for real programs.
Besides, its performance overhead is significantly higher:
55× on their customized small benchmarks.

InvisiPage [1] proposes a new hardware design that is sim-
ilar toKlotski, where a program inside enclave can populate
its own page table and its page access pattern is protected
by an ORAM protocol. While a hardware implementation
could provide better performance, Klotski can be applied
to existing hardware and all of Klotski’s compile-time opti-
mizations are also applicable to InvisiPage.
Observation. Existing defenses suffer from three limita-
tions: (1) incomplete protection against even coarse-grained
side-channel attacks, (2) incomplete protection of both code
and data, or (3) high performance overhead. Klotski aims
to address these limitations by providing a subpage-level
runtime randomization scheme for both code and data. This
scheme breaks the fixed relationships of a program’s ad-
dresses and contents. In addition, Klotski uses an ORAM-
based shuffling approach to prevent possible information
leakages during runtime re-randomization. As a result,Klotski
can prevent attackers from locating the access of code/data
of interest via coarse-grained side-channel attacks. Although
Klotski does not directly mitigate fine-grained side-channel
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attacks, it forces attackers to monitor code/data access all
the time, which would make the attack extremely slow and
impractical.

4 Design
4.1 Threat Model
We assume the same threat model as previous controlled-
channel works [44, 45, 56]. First, except the enclave itself, all
other components in the software stack are not trusted, so
the page access pattern is visible to the adversary. Second,
we assume the code of a target program, including its source
code and binary code, is known to the adversary; so an at-
tacker can perform any automatic or manual analysis on
the program to extract necessary information. Moreover, we
assume that an attacker can feed attacker-controlled inputs
to the target program, so as to perform online training to
learn the memory access pattern. Finally, since our focus is
on preventing side-channel attacks, we deem any attacks ex-
ploiting software vulnerabilities (e.g., buffer overflow) within
the target program out of scope. Any defense that mitigates
these exploits is complementary to our work.

While our solution leverages ORAM tomitigate side-channel
attacks, our threat model is much stronger. Existing ORAM
solutions assume a client-server model. In this model, the
server is untrusted, but the client is trusted. This means all
client-side operations are not subject to side-channel attacks.
In contrast, in our scenario, all components are running
inside the same enclave thus are subject to side-channel
attacks.

4.2 Overview
In this work, we mitigate side-channel attacks using a run-
time re-randomization-based obfuscation approach. Figure 1
illustrates an overview of Klotski, which includes two main
components: a compiler extension and an ORAM-based run-
time. The compiler extension performs two transformations.
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First, it instruments all memory access instructions, includ-
ing control-transfer (code access) instructions of an enclave
program to go through the runtime. Second, it divides the
program’s code and data into small chunks that can be re-
located to any virtual address. The runtime acts as a mem-
ory subsystem which obfuscates memory accesses using
an enhanced Ring ORM protocol [38]. To speed-up the ex-
ecution, the runtime also consists of two memory buffers
of configurable size, which serve as code cache and data
cache. Note, to avoid confusing between Klotski’s soft-
ware cache and architecture/hardware cache, we will use
vCache to denoteKlotski’s cache. Code and data chunks are
fetched into the vCaches using the ORAM protocol. vCache
re-randomization is done through either nature replacement
(with a random replacement policy) or forced flush.

4.3 Software MMU
Klotski builds a target program’s source code into aKlotski-
enhanced version with a modified compiler. The overall goal
is to instrument memory access operations to consulting the
software MMU to translate an original logical address into a
real virtual address in the vCache. This stage is performed
at a trusted machine.
Translation Data Structure. To reduce the overhead of
each address translation, Klotski’s software MMU only uses
one level page table. Each page table entry (PTE) is 4 bytes
long. During translation, an input address (64-bit) is split
into two parts: page index (against the base address of the
enclave) and page offset. This split depends on the ORAM
block’s size.Note, to avoid confusing between a basic block of
the program and anORAM block, we will usemini-page inter-
changeably with ORAM block. For instance, in our prototype
implementation, the mini-page size is 2 KB. The software
MMU uses the mini-page index to look up the corresponding
PTE. A valid PTE records the offset between the compile-
time logical address and the runtime virtual address. Hence,
the software MMU can efficiently calculate the runtime vir-
tual address by just adding the offset (i.e., PTE’s value) to
the logical address. Klotski guarantees that all offsets are
within the valid range of a 32-bit PTE.

Since only mini-pages that have already been loaded into
the vCache have valid PTEs, we also use the page table as a
virtual position map, similar to how OS kernels implement
virtual memory (in Figure 2). If a mini-page is in the vCache
(valid, 00), then its PTE records the offset, as described above.
If a mini-page is in the stash (01), then its PTE records its



new path in the ORAM tree. If a mini-page is in the ORAM
tree (11), then its PTE records its current path in the tree.
Explicit Memory Accesses. Explicit memory accesses
include branches (jmp, call, ret) and data accesses
(load, store). Since a mini-page’s effective virtual address
changes at runtime, in addition to instrumenting memory
access operations, we need to ensure that all the addresses
(pointers) stored in the memory are original logical addresses
instead of virtual addresses. As a result, we need to handle
the call, ret, jcc, and lea instructions specially. A call
instruction pushes the effective virtual address as the return
address onto the stack. To fix this issue, during instrumenta-
tion, Klotski will replace each call instruction with a push
instruction followed by a jmp instruction. In doing so, the
logic address is pushed on the stack, and the jmp instruction
takes the effective virtual address as an operand, and trans-
fers execution to the target function. To fix a ret instruction,
Klotski replaces each ret instruction with a pop and a jmp
instruction and inserts the address translation logic in be-
tween. Conditional jump instructions are more complicated
because they use relative addresses (i.e., the operand is the
offset between the current address and the target address). To
handle them, Klotski replaces the target with a trampoline
to perform address translation and control transfer.

A lea instruction may load the virtual address into a reg-
ister. In Klotski, since the code is not compiled as position
independent, code pointers are generated statically instead
of with lea. So the only special case is to obtain a stack ad-
dress. In this case, we need to translate the loaded virtual
address back to logical address before it is stored to mem-
ory or passed to another function. Because stack addresses
are not determined at compile time, the conversion is done
by (1) preserving a region (i.e., a set of PTEs) for stacks, (2)
assigning a unique PTE as the logical base of the stack, and
(3) storing the logical base of the stack in the thread local
storage for future conversion.
Implicit Memory Accesses. An implicit memory access
happens when the processor attempts to fetch the next in-
struction. If the next instruction is in the same mini-page,
no instrumentation is needed; otherwise, an explicit control
transfer should be inserted. This is done in two steps. First,
when emitting machine code, Klotski ensures that no basic
block will across the boundary of a mini-page. Second, simi-
lar to the conditional jump, Klotski inserts a pair of mov +
jmp instructions at the end of each basic block that has an
implicit fall-through. During target code generation, if both
the source and target basic block are in the same mini-page,
Klotski discards the explicit fall-through instructions to
avoid unnecessary translations.
OCalls. External Library functions, system calls, and I/O
instructions such as sendto() and recvfrom() are not sup-
ported within an enclave thus need to be wrapped as Ocalls.
Because these wrappers may access data objects that cross

multiple non-consecutive mini-pages, we also need to mod-
ify them to be compatible with Klotski. Specifically, for
Ocalls that transfer data from the enclave to outside (e.g.,
sendto), they will first allocate a consecutive buffer and then
copy the data object from Klotski’s vCache to the buffer.
For Ocalls that transfer data from outside into the enclave
(e.g., recvfrom), they will invoke the software MMU to write
the data back to data vCache carefully.
Bootstrapping. To construct the desired memory layout,
Klotski initialized the enclave in two steps: (1) enclave
bootstrapping deployed by the untrusted OS, creates and
initializes an enclave for the SGX program, and (2) secure
in-enclave bootstrapping initializes both the SGX program’s
memory layout and Klotski’s data structures in the enclave.
During enclave bootstrapping, two regions of consecutive
pages are allocated with read and write permissions (RW).
One is for in-enclave program’s data (i.e., data vCache and
stack) and the other is for the ORAM (i.e., stash and ORAM
tree). The ORAM tree will be used to store all data and code
sections of the enclave program, as well as the heap. A fixed
number of pages with the permission of read, write, and
execution (RWX) are allocated as the execution vCache. The
in-enclave loader, the software MMU, and the ORAMmodule
will be mapped as parts of the program. Since they will be
invoked frequently, they will remain at their initial loading
addresses.
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Figure 3. Requesting a mini-page from ORAM: This example re-
quests a mini-page (index 9) from the ORAM tree and does a PathE-
vict to refresh the Path 1. The processing contains 4 steps: 1○:
EvictCache randomly picks a vCache slot and swaps its mini-page
to stash. 2○: ReadPath loads the target mini-page (Index 9) into
the reserved vCache slot. 3○: the Spare Stash ptr occurs the stash
boundary, so Oshuffle permutes the order of mini-pages in stash to
reset the pointer. 4○: EvictPath reads mini-pages from the Path 1
and then refreshes the buckets along it.

4.4 ORAM Access
When a mini-page is not found in the vCache, the control
flow is transferred to the ORAM component to load the
mini-page into the vCache. The overall process is similar
to the Ring ORAM protocol described in §2. However, a
big difference between traditional ORAM’s threat model
and Klotski’s threat model is that we do not have a trusted
“client”; so accesses to stash and position map are also subject
to side-channel attacks. To mitigate these threats, Klotski



adds additional oblivious operations and enhances some
existing operations.

• ORead is a primitive operation to read from a target
mini-page without revealing which mini-page is the tar-
get. Similar to cmov operation, in a single iteration, all
the related mini-pages are accessed, but only data in real
mini-page is read into a 256-bit ymm register while data
from other mini-pages is read into a dummy register; then
it iterates again until all available ymm registers are filled.

• OShuffle permutes the order of a list of mini-pages with-
out revealing the new order.

• WriteStash ReadPath, EvictPath, and EvictCache all need
to write mini-pages to the stash. Two types of informa-
tion could be leaked during this operation: (1) writing a
mini-page to a slot means the slot is empty, so it must have
been evicted previously; and (2) if a slot has been written
more than once without being read, then its previously
stored content must be dummy. To mitigate this threat,
Klotski re-randomizes the stash to obfuscate the position
of the real, dummy, and empty slots. Specifically, Klotski
remembers the index of the last written slot (Spare Stash
Pointer in Figure 3). When trying to find the next empty
slot, Klotski scans from this location to the end of the
stash. If an empty slot is found, then it will be used to
store the mini-page and the pointer will be updated. If
the pointer reaches the end of the stash, an OShuffle op-
eration is performed and then the pointer is reset to the
beginning of the stash.

• ReadPath reads one mini-page from each bucket along
with a selected path and then only stores the mini-page
of interest to the stash. In traditional ORAM threat model,
the store operation is not observable to the adversaries
so they cannot know which bucket contains the target
mini-page. However, in Klotski, directly copying the tar-
get mini-page to the stash will leak the information that
current bucket contains the real mini-page. To mitigate
this kind of risk, Klotski uses the ORead operation to read
all buckets along the path and then uses WriteStash to
write the target mini-page to stash.

• EvictPath deterministically reads Z mini-pages from ev-
ery bucket along the path into the stash, so it does not
require ORead. However, it does use WriteStash to write to
the stash. After shuffling, to avoid leakingwhich stash slots
are evicted, EvictPath uses ORead to load the mini-page
to be evicted and write it back to the target bucket.

• LoadCache uses ORead to “scan” the stash and load the
target mini-page into an empty vCache slot if the target
mini-page is in stash; otherwise, it invokes ReadPath to
directly load the target mini-page into an empty vCache
slot. Finally, LoadCache updates the mini-page’s PTE to
replace its path information with the offset information
(see §4.3).

• EvictCache randomly picks a mini-page and uses
WriteStash to evict it to stash when the vCache is full and
a new mini-page needs to be loaded. We use the random
replacement (RR) instead of more commonly used policies
like least recent used (LRU) or Pseudo-LRU because our
(a) RR can avoid leaking information and (b) Klotski’s
vCache is relatively small. Since the path information is
lost during LoadCache, a new path is assigned when the
block is evicted from the cache.

• ReadPTE reads a PTE from the software page table. Be-
cause the page table (virtual position map) is mapped at
a fixed address, attackers may figure out which logical
address is accessed through the access to the position map.
To mitigate this threat, Klotski uses an oblivious access
operation based on the Oget function from [? ] which it-
eratively applies the vpgatherdd instruction to read an
element from an aligned 512-byte array obliviously.

• WritePTE leverages the non-temporal write instructions [8]
to update a PTE. Non-temporal write instructions imme-
diately affect the DRAM and do not buffer the data into
the cache hierarchy. Therefore the updating is invisible to
an attacker.

5 Optimization
The baseline design of Klotski incurs a high runtime over-
head, which mainly comes from two sources: (1) additional
software address translation logic and (2) vCache misses (i.e.,
ORAM accesses). In this section, we present several opti-
mization techniques to reduce the performance overhead of
Klotski.
Note that these techniques only optimize accesses to the

vCaches, instead of the ORAM protocol itself (e.g., making
access to ORAM faster), so they would not affect the security
guarantees of the ORAM protocol.

5.1 Address Translation Reduction
The baseline implementation of Klotski inserts the trans-
lation logic before every memory access. Klotski reduces
the number of address translations by eliminating redundant
ones: when a new pointer is derived (adding or subtracting
an offset) from an older pointer whose address has already
been translated, we can reuse the already translated address
as long as (1) the new pointer is guaranteed to be within the
same mini-page, and (2) the corresponding mini-page has
not been evicted from vCache. Based on this observation,
Klotski performs the following optimizations.
Code. To optimize code accesses, Klotski first tries to place
an entire function into a single mini-page. Next, for each con-
trol transfer, Klotski checks if its target address is inside the
same mini-page; if so, it eliminates the address translation.
Data. Optimizing data accesses are more complicated. The
first challenge is the contiguous policy. In particular, while it
is possible to enforce that small objects will never across the



Figure 4. Examples of how Klotski caches translation results. Typ-
tically translation instructions (filled) are inserted before every
memory access instruction (right side). In example (a), if condition
is not met (i==0), Gv’ is still valid at 4○; so there is no need to
translate the address. If i != 0, calling function Bar kills all previ-
ous translations and needs to translate Gv’s address again before
accessing 4○. The right side is the optimized one. In example (b),
Klotski moves the translating of Gv’s address out of the loop’s
body.

boundary of a mini-page, objects that are larger than the size
of a mini-page will inevitably occupy multiple mini-pages.
So the first step to optimizing data access is to identify which
memory accesses can be optimized.

Large objects. To identify memory accesses to large objects,
we used a conservative inter-procedural field-sensitive data-
flow analysis based on the type-based alias analysis (TBAA)
from LLVM. For each heap allocation site, wemark the return
value (pointer to the allocated object) as “tainted” if the
allocation size is larger than the size of a mini-page or if the
allocation size is unknown at compile time. We then use the
data-flow analysis to find all memory access instructions that
may access large objects (i.e., dereferencing a tainted pointer).
The rest memory accesses are thus safe to be optimized.
We also modified common data accessing library functions
like memset, memcpy, memmove to support going beyond the
boundary of a mini-page.
Small objects. Optimizing access to small heap or global

objects is similar to the code: once translated the base ad-
dress of an object, future accesses to the same object do
not require additional address translations. Klotski uses a
classic liveness analysis to track logical addresses that have
already been translated. When instrumenting the code, for
each memory access (i.e.load, store), Klotski first checks
if the target address derives from a virtual address from the
liveness set. If the virtual address is not found, Klotski in-
serts a translating instruction pair and adds the result to the
set (Figure 4).

The second challenge for data access is that a translated ad-
dress will become invalid when the correspondingmini-page
is evicted. Since it requires very sophisticated analysis to
predict when a mini-page would be evicted. To solve this,
Klotski takes a simple way: (1) it invalidates all translated
addresses when calling another function and (2) Klotski
will only evict data vCache at function call and return.

Finally, Klotski further minimizes the number of transla-
tions by promoting a translation logic closer to the entry of

a function, as long as it will not be killed. This is especially
helpful to avoid translating the address repeatedly inside a
loop (Figure 4 (b)).

5.2 Loop Alignment
Since instructions inside loops execute repeatedly, they ac-
count for a large portion of a programś execution time. Thus,
optimizing loops is critical for improving the program’s per-
formance. In Klotski, if a basic block and its successor(s)
do not reside in the same mini-page, then address transla-
tion will be inserted at the end of this basic block (§4.3).
If this happens inside a loop body, then it can incur very
high performance overheads. To avoid such behavior and
improve the locality of the program, Klotski tries to align
loops such that the body of most loops will not across a
mini-page boundary. If a loop body is too large to fit into a
single mini-page, then Klotski will still leave its basic block
split into two mini-pages. Fortunately, such large loops are
rare.

5.3 Constant Embedding
To reduce the size of a program and improve performance, a
common compiler optimization is to merge and move con-
stant values (especially floating-point constants) to the pro-
gram’s data section; thereafter loads these constants from the
memory into registers during a runtime. While this is an ef-
fective optimization strategy for regular programs, it causes
troubles for Klotski-enhanced programs. First, access to
each of these constants would cause an address translation,
which is expensive. Second, these constants are stored in
the data section, an access to a constant value would require
loading it from the data section into the data vCache. Due to
the limited size of Klotski’s data vCache, this also results
in additional vCache load and eviction.

To minimize this overhead, Klotski employs another op-
timization: it embeds constants that aught to be accessed
by a basic block into a spare space of the corresponding
mini-page. This optimization allows a basic block to use PC-
relative addressing to access constants without translating
the address and affecting the data vCache.

5.4 Configurable Mini-page and vCache Size
Our design ofKlotski is generic, so the sizes of themini-page
and the vCache are configurable. However, when config-
uring these parameters, one must carefully consider the
trade-off between security and performance. Specifically,
a smaller mini-page size may improve the security [2] and
the vCache hit rate; but it will also increase the number of
address translations as well as the cost of each translation:
smaller mini-page size requires more PTEs to index, and the
cost of ReadPTE (§4.4) is proportional to the size of the page ta-
ble. Similarly, from the security perspective, the ideal size of
the vCache is one physical page (i.e., 4 KB) under our threat
model. However, it is well-known that when the vCache size



is smaller than the working set of the program, it would end
up with thrashing [17], i.e., the system will spend most of
the time copying data to/from ORAM. Because thrashing
cannot be avoided through vCache replacement algorithms,
from the performance perspective, a larger vCache size is
preferred. While smaller vCache is implicitly re-randomized
via frequent replacement, larger vCaches require explicit re-
randomize (by flushing). Klotski allows user to configure
the flushing frequency (e.g., after a fixed number of code
address dereferences).

6 Security Analysis
In this section, we analyze the security of Klotski under
our threat model (i.e., controlled-channel attacks).

6.1 Baseline Design
We first analyze the baseline design of Klotski (§4) with
4 KB vCache size. We start the analysis with each important
step of Klotski.
Claim 1. Accessing blocks from the ORAM tree leaks no
information. The algorithm of Ring ORAM ensures that even
though its subroutines, including ReadPath, EvictPath, and
EarlyShuffle may have externally observable behaviors,
they leak no useful information. Moreover, Klotski uses the
ORead operation (see §4.4) to prevent attackers from distin-
guishing real/dummy blocks and inferring the remaining
blocks inside a bucket.
Claim 2. Data exchanges between the stash and vCache
leak no information. Klotski utilizes ORead operation to
load blocks from the stash. Because ORead will access every
block in the stash at each time, the pattern is oblivious un-
der our threat model. When evicting a vCache block to the
stash, Klotski uses the random replacement policy, so the
evicting block is independent of the program’s past access
pattern. Furthermore, Klotski uses WriteStash operation
to store blocks into the stash. This operation also reveals
no access information as the distribution of empty slots is
re-randomized during the shuffling. Thus, attackers cannot
get useful information from the data exchange steps.
Claim 3. Accessing the page table (and the virtual position
map) leaks no information. Klotski uses the ReadPTE and
WritePTE operations to access the position map. Since they
are oblivious operations, this step leaks no useful information
(i.e., attackers cannot find out which logical block is being
accessed).
Claim 4. Execution inside the vCache leaks no information.
When the size of both the execution and the data vCache
is set to one physical page, the execution exhibits the same
memory access pattern to an attacker, thus no executing
information leaks under our threat model. This is identical
to the claim made by Shinde et al. [45].

Original CS  = 4 CS = 32 CS = 32 w/t re-randomize

Figure 5. Controlled-channel attacks against Klotski-enhanced
djpeg under performance-oriented configurations. CS denotes the
vCache size. The second row shows the pixel distribution of each
image in the same column. Horizontal axis represents pixels. Verti-
cal axis expresses pixel numbers.

Because every step of Klotski’s execution leaks no infor-
mation, we conclude that Klotski is secure (i.e., page-access-
oblivious) under our threat model.

6.2 Performance-Oriented Configuration
While the baseline design of Klotski is secure, it also has a
high performance overhead, especially when the working
set is larger than the vCache size (see §7). In this subsection,
we analyze the security of Klotski when developers opt for
better performance by increasing the vCache size.
Because vCache size is irrelevant to Claim 1, 2, 3, they

still hold under this configuration. The only problematic one
is Claim 4—when the vCache size is larger than one phys-
ical page, the execution could exhibit distinct page access
pattern. This distinction is especially dangerous when the
vCache contains the whole working set. However, we argue
that even with configuration, launching controlled-channel
attacks against Klotski is still very difficult in practice. First,
the random vCache eviction policy means the same block
can be loaded into any random slot of the vCache. Second,
as the mini-page size in Klotski is usually less than a phys-
ical page (e.g., 2 KB in the prototype implementation), the
combination of two arbitrary blocks will generate new ac-
cess patterns which introduce additional noise thus make it
more difficult to attack. Finally, whenKlotski re-randomizes
vCache (through vCache flushing), any information acquired
through previous profiling will be invalidated. So even an
infrequent rate of re-randomization would make it very
difficult to carry information learned from previous (e.g.,
attacker-controlled) input to the next input.
Empirical Evaluation. We replayed the JPEG and the
FreeType attacks [56] with various vCache size configura-
tions. One major difference is that because Klotski prevents
us from using the way in the original attacks to infer the start
and end of the interested function, we had to manually mod-
ify the two programs’ source code to insert a special OCall
to notify us the start and end of the function of interest.
Figure 5 demonstrates part of the results of our JPEG at-

tack. With a vCache size of 16 KB (4 + 4 mini-pages), it is
very difficult to recognize the content from the recovered im-
age; and the distribution of pixel values of the restored image
is very smooth. When the vCache size is increased to 128 KB



(32 + 32 mini-pages), the working set of the vulnerable func-
tions can fit into the vCache. Without re-randomization, the
attack sucessfully recovers many pixels of the original im-
age. However, even with a low re-randomization frequency
(once after every 1280 address translations), most details be-
come unrecognizable and its pixel distribution is relatively
smoother than the one without re-randomization. For the
FreeType attack, the accuracy of predicting a word was only
0.04%, 0.23%, and 8.42% when the vCache size was set to 16,
32, and 64 KB and without a random flush.
We want to emphasize again that, in these two attacks,

we had given the adversary an advantage to precisely dis-
tinguish the boundaries of the target functions. In practice,
because with vCaches being repeatedly re-randomized, it is
not easy to distinguish which mini-pages are in the vCache.
Based on these empirical results, we recommend a 2.5% evict-
ing rate of the execution vCache to reach a balance between
the security (see Figure 5) and the performance (see §7.2).

6.3 Other Side-channel Attacks
Cache-based side-channel attacks [9, 10, 19, 23, 42] and timing-
based attacks [11, 53] have been successfully demonstrated
against SGX enclaves to infer fine-grained access pattern.
Although Klotski is not designed to fully mitigate these
attacks, it still makes them very difficult to succeed. Specifi-
cally, all input inference attacks require to know when the
input-dependent functions/instructions are executed, which
is especially important for fine-grained attacks because a
single inferencewill require significant amount of time. To ac-
celerate the attack, they usually start the fine-grained attack
after detecting the execution of some specific functions of in-
terest, by leveraging enclave preemption via page faults [56]
or a dedicated spy thread [12]. By performing regular vCache
re-randomization and using random vCache eviction policy,
mini-pages in Klotski’s vCache are continuously changing;
so, it is hard to know when the functions of interest will be
swapped into or out from the vCache. Moreover, because
every 4 KB physical page in Klotski’s vCache is formed
by combining two arbitrary mini-pages at the runtime, at-
tackers cannot use a fixed page access pattern to locate the
functions of interest. Therefore, to launch a successful attack,
attackers need to find good way to overcome these chal-
lenges. More importantly, if the vCache are re-randomized
before the attacks can pinpoint the function of interest, it
would be almost impossible to launch the attack. Recall that
in our empirical evaluation we had to modify the target
programs to notify us when the functions of interest were
executed, which is unrealistic in practice.

7 Performance Evaluation
Environment Setup. All experiments were carried out on
a machine with an Intel Skylake i7-6700 @ 3.4GHz, 16 GB
RAM and 128 MB PRM. The machine is running with an

operating system of Ubuntu 14.04 64-bit with Linux kernel
4.4.0 and the Intel SGX SDK (version 1.9.100) [28] and Intel-
SGX-driver (version 1.8) [27].
We run Klotski on both benchmark suites and real ap-

plications with a general Ring ORAM configuration: each
bucket contains six slots which up to two slots are reserved
for real mini-page (Z = 2), and the remains are for dummy
mini-page (S = 4). After every four oblivious accesses (A =
4), a path eviction operation would be taken. A mini-page
size is set at 2 KB. All programs were compiled with opti-
mization level 2 (-O2). Unless otherwise specified, the size of
the execution vCache and the size of data vCache are equal.

7.1 Nbench Benchmark
We chose the Nbench benchmark suites [13] to evaluate the
performance overhead, which is also used in SGX-Shield [43]
and T-SGX [44].

In Klotski, two primary sources of the overhead are soft-
ware address translation and ORAM access. To demonstrate
the overhead of these two sources and the benefits of dif-
ferent optimization techniques, we evaluated Klotski with
multiple configurations. For each configuration, the result
was measured over 100 runs. For each test case, an iteration
number was selected to yield a total time greater than 5
seconds.
When obfuscated execution is enabled (Table 2), perfor-

mance overhead varies greatly across benchmarks and con-
figurations. Generally, benchmarks with lower vCache hit
rates exhibited higher performance overheads. When the
vCache sizes are increased, the relative overheads decreased
from 10.22× to 3.46×. After examining the benchmark source
code, we found that: almost every benchmark uses a cus-
tomized heap allocator that allocates smaller chunk of data
from a large memory buffer. Unaware of this characteristic,
Klotski treated the large buffer as a single memory object
and disabled address translation optimization. Therefore, this
result can be considered as one of the worse case scenarios
for Klotski.
To estimate the performance overhead under normal cir-

cumstances (i.e., when small objects are directly allocated
from our modified heap allocator), we disabled the detec-
tion of large objects during compilation (§5.1) and evaluated
again (the right half of Table 2). For benchmarks with a small
working set (Num sort, String sort, Assignment, Huffman,
and Lu.decomp.), their EC hit rates are above 98% when the
vCache size is 4 KB, so their performance overhead is rela-
tively the samewith larger vCache size. For benchmarkswith
a moderate working set (Fp.emu, Idea and Neural net), their
EC hit rate improved significantly when the vCache size is in-
creased from 4 KB (2 mini-pages) to 8 KB (4 mini-pages), so
their performance overhead also dropped significantly. For
benchmarkswith a largeworking set (Fourier), the overhead
only drops significantly when the vCache size is increased
to 16 KB (8 mini-pages). We dived into this case and found



Table 2. The performance overheads of Klotski with different vCache size. The baseline is the native run without Klotski in an enclave
and shown in microseconds. EC = and DC = represent the maximum number of mini-page in the execution vCache and data vCache. RO
represents the relative overheads compared to the baseline in a multiple (×) or percentage (%). Columns under EChit/DChit are the hit rate
of execution/data vCache. The average standard deviation is 0.075% (the maximum is 0.53%)

Baseline
(µ)

full features disabled big objects
EC=2,DC=2 EC=4,DC=4 EC=8,DC=8 EC=2,DC=2 EC=4,DC=4 EC=8,DC=8

RO
(×)

EC hit
(%)

DC hit
(%)

RO
(×)

EC hit
(%)

DC hit
(%)

RO
(×)

EC hit
(%)

DC hit
(%)

RO
(%)

EC hit
(%)

RO
(%)

EC hit
(%)

RO
(%)

EC hit
(%)

Num sort 329 58.59× 81.78 76.38 23.75× 91.75 92.86 13.88× 93.93 96.29 1.46 99.97 2.19 99.98 1.04 99.99
String sort 4383 2.06× 94.35 93.37 1.84× 97.82 98.03 1.41× 99.99 99.99 7.83 99.94 8.83 99.95 4.98 99.98
Bitfield 0.0013 3.12× 87.36 99.99 3.10× 89.47 99.99 3.09× 93.68 99.99 58.59 99.99 58.09 99.99 58.04 99.99
Fp emu 2555 14.25× 62.96 97.79 7.38× 99.79 99.99 6.83× 99.99 99.99 329.95 89.91 94.77 99.97 92.57 99.99
Fourier 18 52.72× 67.57 36.54 30.02× 80.74 99.99 1.16× 99.99 99.99 5339.66 78.89 3015.65 85.41 14.16 99.99
Assignment 14600 3.08× 99.03 98.95 2.78× 99.95 99.95 2.77× 99.05 99.95 2.50 99.94 3.61 99.96 1.09 99.97
idea 84 3.23× 99.99 99.99 3.16× 99.96 99.98 3.12× 99.99 99.99 1215.58 33.33 13.23 99.99 11.16 99.99
Huffman 227 22.75× 99.67 88.29 3.20× 90.47 99.66 2.90× 99.99 99.99 73.53 99.15 70.63 99.94 69.08 99.96
Neural 8581 41.45× 32.17 30.40 22.82× 89.90 99.99 4.90× 99.99 99.99 2010.82 68.41 151.24 93.99 25.94 99.99
Lu decomp 319 4.67× 98.59 97.19 4.14× 99.98 99.98 4.17× 98.59 99.99 64.58 98.55 11.65 99.99 10.13 99.99
GEOMEAN 10.22× 78.58 76.17 6.17× 93.43 99.02 3.46× 98.49 99.61 256.32 83.14 89.56 97.80 25.52 99.98

the root cause: Fourier calls pow,cos, and sin functions in
its most inner loop. Because the total size of these three func-
tions is more than 4 mini-pages, thrashing happened when
the size of the vCache is smaller than 4 mini-pages.
Effectiveness of Optimizations. For Klotski’s optimiza-
tions, Table 3 shows their impact on the number of address
translations and overall performance, with the large object
detection disabled. Overall, translation reduction is the most
general and effective one. When it is enabled, all benchmarks
showed some data translating reduction (ranging from 4.50%
to 99.96%, 72.08% on geometric average) and performance

Table 3. The effectiveness of address translation reduction. All
results are run without ORAM access and big object detection.
The Baseline is the number of address translations executed per-
iteration without any optimization. We add different optimization
schemes step-by-step. C and D denote code and data separately.
TN denotes the Total Number of address translations in a case. TR
denotes the Translation Reduction rate comparing to the previous
result (at the left side). SU represents the speed-up.

Baseline Translation
reduction

Constant
embedding

Loop
alignment

TN TR
(%)

SU
(×)

TR
(%)

SU
(×)

TR
(%)

SU
(×)

Num sort D 673 K -94.58 3.53 0.00 1.00 0.00 1.01C 15 K -99.96 0.00 0.00

String sort D 1391 K -93.21 1.50 0.00 0.99 0.00 0.98C 34 K 1.76 0.00 -0.01

Bitfield D 3 -33.33 1.80 0.00 1.01 0.00 0.96C 1 0.00 0.00 0.00

Fp emu. D 7640 K -75.41 2.55 0.00 1.02 0.00 0.99C 20 K 579.64 -86.87 -8.26

Fourier D 9 K -4.50 1.00 -90.94 3.95 0.00 1.04C 3 K -6.90 7.41 -15.39

Assign. D 17775 K -99.88 2.78 0.00 1.05 0.00 1.01C 0.203 K 482× -99.79 0.00

Idea D 60 K -38.33 1.16 0.00 1.23 0.00 0.98C 3 K 466.66 -88.24 0.00

Huffman D 258 K -52.74 1.71 0.00 0.97 0.00 1.06C 0.004 K -0.01 2468× -99.96

Neural net D 35486 K -93.27 2.86 -68.89 2.42 0.00 0.96C 494 K 1.14 2.00 0.00

Lu decomp. D 809 K -96.75 4.17 -0.02 1.04 0.00 0.98C 0.207 K 0.00 -96.62 0.00
GEOMEAN 2.09× 1.29× 1.00×

improvement (2.09× speedup on geometric average), com-
pared to the baseline. Because the translation reduction elim-
inates most of the data translation instructions, it also de-
creases the code’s size and changes the code’s layout. Some of
the benchmarks (e.g., Num sort) benefit from the decreased
code size because more functions can be put into the same
mini-page. However, the numbers of code translating in-
creased for other benchmarks (Fp emu, Assign, and Idea).
This is because the changes to their code layouts caused
some functions/loops to go across mini-page boundaries and
resulted in extra inter-mini-pages control flow transfers and
additional overheads. Constant embedding decreases the data
translating of Fourier (90.94%) and Neural net (68.89%) sig-
nificantly, because there are a lot of accesses to constants
in the loops. However, due to the change of code layout,
the number of code address translations of Huffman went up
significantly (2468×) after this optimization; while the num-
ber of translations of previously affected three benchmarks
(Fp emu, Assign, and Idea) dropped back to normal. After
applying the loop alignment, the number of code address
translations all decreased to normal. This result highlighted
the importance of combining all three optimizations.
Table 4 shows the impact of Klotski’s optimization on

code vCache hit rate, when the vCache size is set to 4
mini-pages. Data vCache hit rate is very high, so we omit-
ted the results on data vCache. Here, we mainly focus on
constant embedding and loop alignment. These two optimiza-
tion techniques aim to improve the locality of the execution,
so their effectiveness depends on the target program. Con-
stant embedding remarkably improves the performance of
Fourier and Neural net as they contain lots of constant
accesses. However, constants inserted at the begin of each
mini-page also increased the code size and the possibility of
thrashing, so the overhead for Neural net is increased. Loop
alignment notably improved the performance of Neural net
(2.3× speedup). That is because of the improvement of its lo-
cality (code vCache hit rate from 92.26% to 99.99%). Nonethe-
less, our loop alignment algorithm also increased the code



Table 4. The effectiveness of Klotski’s optimization on vCache
hit rate. The results are measured with ORAM enabled, and the
size of execution/data vCache is set as 4 mini-pages. The Baseline
columns run withTranslation reduction enabled. Its left column is
the overhead measured in microseconds. Optimization schemes are
added step by step to measure the results. SU denotes the relative
speed up compared to the previous column. EChit donates the
execution vCache hit rate.

Baseline + Constant
embedding

+ Loop
alignment

(µs) EC hit SU EC hit SU EC hit
Num sort 375 99.96% 1.13× 99.98% 0.99× 99.99%
String sort 4769 99.95% 0.99× 99.95% 1.01× 99.95%
Bitfield 0.002 99.99% 0.99× 99.99% 1.00× 99.99%
Fp emu. 6511 99.61% 1.33× 99.97% 1.00× 99.97%
Fourier 822 57.01% 1.83× 76.04% 0.81× 60.41%
Assignment 15204 99.96% 1.02× 99.95% 1.00× 99.96%
Idea 94 100.00% 1.00× 100.00% 1.00× 99.99%
Huffman 376 99.85% 0.97× 99.94% 0.99× 99.94%
Neural net 38463 98.99% 0.78× 92.26% 2.30× 99.99%
Lu decomp. 358 100.00% 1.00× 100.00% 1.00× 100.00%
GEOMEAN 94.37% 1.08× 96.49% 1.06× 94.47%

Table 5. The performance overheads in running an HTTPs sever
when handling a single request. Columns of with vCache shuffle
are measured with re-randomizing both vCaches after every 1280
code translations. The mean time of the native server to handle a
single request is 75.76ms .

with vCache shuffle
Overheads DC hit EC hit Overheads DC hit EC hit

EC,DC=2 1542.42% 98.66% 53.30% 1667.87% 98.66% 53.27%
EC,DC=4 1062.37% 99.73% 66.96% 1066.28% 99.72% 66.92%
EC,DC=8 657.81% 99.98% 80.95% 673.79% 99.96% 80.46%
EC,DC=16 222.12% 99.99% 95.59% 295.26% 99.99% 93.66%
EC,DC=32 48.02% 99.99% 99.89% 153.10% 99.99% 97.52%

size, so the performance of Fourier is decreased (0.81x com-
paring with the non-loop-alignment one).
ComparingwithOBFSCURO. Wealso tested all the bench-
marks used in [2]. Since the benchmark programs are very
simple, we used 4 KB vCache size. The geometric average
slowdown of Klotski is 88.08% (over 1 billion executions),
which is much lower than that of OBFSCURO (51×).

7.2 Real-World Applications
The first real application is an HTTPS sever mbedTLS [5],
which is an open source Transport Layer Security (TLS) li-
brary. This project includes a sample HTTPS sever. The size
of this HTML file is 30 KB in our test. To measure the per-
formance, we used ab command to request the files from
this HTTPs server 20,000 times and reported the mean of the
total elapsed time to handle a single request. Table 5 displays
the results. Overall, Klotski imposed about 15.4× slowdown
than the native one while the vCache size is set to 4 KB. The
performance overhead reduced exponentially as the vCache
size increased (from 15.4× to 48.02%). We also measured the
larger vCache configurations with re-randomization, which
increased the overhead to 153.10%.

Table 6. Performance overheads in running cjpeg and djpeg when
process a single image in an enclave. The native cjpeg is 3.21ms
and djpeg is 7.94ms . The frequency of vCache re-randomization is
once per 1280 code translations.

with vCache shuffle
djpeg cjpeg djpeg cjpeg

EC,DC = 2 271.30% 552.19% 292.60% 550.20%
EC,DC = 4 171.91% 367.74% 200.48% 335.95%
EC,DC = 8 112.35% 238.13% 162.77% 235.73%
EC,DC = 16 77.61% 108.42% 126.92% 168.25%
EC,DC = 32 57.68% 67.42% 113.05% 137.30%

The next two applications are from libjpeg [25], which
is a widely used C library for reading and writing JPEG im-
age files and is attacked by Xu et al. [56]. cjpeg and djpeg
are two examples in this project to show the processing of
compressing a BMP or PPM file to a JPEG file and decom-
pressing a JPEG file to another type of file. To measure the
performance of cjpeg, we randomly downloaded ten PPM
images with a fixed pair of width and height (227*149 pixels).
The cjpeg enclave program compresses all these ten files
to PPM files at one time and outputs the average time of
processing an image. We ran the program for 100 times for
each image and computed its mean. For the djpeg, we fol-
lowed the same procedure for cjpeg, except that the inputs
were ten JPEG images and its outputs were BMP file. Table 6
displays the performance overheads. When the vCache size
is set to 4 KB, we see that Klotski imposed 2.7× and 5.5×
slowdown, respectively. Similar to the results of nbench and
mbedtls, the performance overhead is reduced exponentially
as the vCache size increases.

8 Conclusion
In this work, we present Klotski, an efficient oblivious exe-
cution technique against controlled-channel attackswith tun-
able trade-off between security and performance. Klotski
essentially emulates a secure processor by performing the
execution inside two in-memory vCaches in a page-access-
oblivious way and leveraging ORAM protocol to load/evict
content into/from the vCaches. We also designed and imple-
mented several optimization techniques to reduce the over-
head of Klotski. Our security analysis shows that Klotski
is secure against controlled-channel attacks under our threat
model. Performance evaluation over our prototype imple-
mentation shows that Klotski has much lower performance
overhead than previous solutions and our optimization tech-
niques are very effective.
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