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exible and chemi-cally distinct ligands (drug molecules) that underlies an integrated software system called RAPIDcurrently under development. An invariant is a collection of features embedded in <3 which ispresent in one or more of the possible low-energy conformations of each ligand. Such invariants arecalled pharmacophores and contain the parts of the ligand that are primarily responsible for itsbinding with a receptor. The identi�cation of pharmacophores is crucial in drug design since fre-quently the structure of targeted receptor is unknown but a number of molecules that interact withit have been discovered by experiments. In these cases the pharmacophore is used as a templatefor building more e�ective drugs. It is expected that our techniques and results will prove useful inother applications such as molecular database screening and comparative molecular �eld analysis.1 IntroductionComputational chemists working in the area of structure-based drug design consider both chem-ical and geometric properties of the interacting molecules when developing new pharmaceuticaldrugs [4]. The underlying assumption is that drug activity, or pharmacophoric activity, is obtainedthrough the molecular recognition and binding of one molecule (ligand) to a pocket of another,usually larger, molecule (receptor). This assumption is supported by experimental results showingmolecules with geometric and chemical complementarity in their binding conformations [6].When the three-dimensional structure of the receptor is known, docking methods [4] exploit boththe geometric and the chemical information available. However, the geometric structures of rela-tively few molecules have been obtained via X-ray crystallography or NMR techniques. In an e�ortto develop pharmaceutical drugs for receptors whose structure is unknown, chemists start withPreprint submitted to Elsevier Science 1 December 1997



(a) (b) (c)Fig. 1. (a) space-�lling, (b) stick, and (c) set-of-features models of 1TMNa collection of ligands that have been experimentally discovered to interact with the consideredreceptor [5,19]. By examining the chemical properties and the possible shapes of these ligands, theytry to identify a set of features embedded in <3 that is contained in some active conformation ofeach (or most) of the ligands. This is called the pharmacophore and it is considered responsiblefor the observed drug activity. The features of the pharmacophore interact with features of thereceptor, while the rest of the ligand acts as a sca�old. Once a pharmacophore has been isolated,it can be used to further improve the activity of a pharmaceutical drug [4].We consider the following problem: Given a set of ligands that interact with the same receptor, �ndgeometric invariants of these ligands, i.e., a set of features embedded in <3 that is present in oneor more valid conformations of each of the ligands. We refer to this problem as the pharmacophoreidenti�cation problem. Its solution requires dealing e�ciently with large amounts of spatial dataand shape information. Ligand molecules are very 
exible and can assume many distinct potentiallyvalid conformations. A valid conformation is a rigid spatial realization of the atoms of a moleculewhose energy is below a prede�ned threshold [6]. Besides providing templates for drug design, ge-ometric invariant identi�cation is useful in formulating database queries for retrieving functionallyequivalent, but structurally novel, molecules from molecular databases [4] and in suggesting align-ments of molecules for input to CoMFA (Comparative Molecular Field Analysis) and other 3DQSAR (Quantitative Structure-Activity Relationship) methods [5].In this paper we describe our e�orts to prototype an integrated software system, called RAPID(RAndomized Pharmacophore Identi�cation for Drug design) for addressing the pharmacophoreidenti�cation problem. We present brie
y the overall structure of RAPID and outline related work inSection 2. The two main modules of RAPID, conformational search and identi�cation of invariants,are described in Sections 3 and 4. In Section 5 we report preliminary experimental results and inSection 6, we conclude with a discussion of some open questions that merit further consideration.2 Overview of RAPID and Related WorkRAPID tries to identify geometric invariants among a collection of small ligands like the moleculeshown in Figure 1. This molecule is called 1TMN and it is an inhibitor of thermolysin. Figure 1(a)shows the space �lling model of 1TMN, by drawing a Van der Walls sphere [4] around each atomcenter. Figure 1(b) shows the corresponding stick model in which only chemical bonds are drawn.2



The degrees of freedom of ligands include bond lengths, bond angles (angles between two consecutivebonds), and dihedral or torsional angles (angles formed by the �rst and third of three consecutivebonds, viewed along the axis of the second bond). In practice, only the torsional degrees of freedomare considered since these are the ones that exhibit large variations in their values. Figure 1(c) showsthe conformation of 1TMN of Figure 1(a) as a set of points in <3. These points may represent atomcenters or groups of atoms aggregated to one point endowed with a feature common to all theseatoms (e.g., a rigid benzene ring) [19]. We assume that once a conformation is given, one canautomatically transform it to a unique collection of points.In RAPID, the identi�cation of geometric invariants in a collection of 
exible ligands denoted byM = fM1;M2; : : : ;MNg is treated as a two-stage process addressing the two following problems:Problem 1 (Conformational Search) Given a collection of ligands M = fM1;M2; : : : ;MNg,the degrees of freedom for each of them, and an energy function E, �nd for each Mi, a set ofconformations C(Mi) = fCi1; Ci2; : : : ; Cikig, such that E(Cij) � THRESHOLD and d(Cij; Cil) >TOLERANCE for l 6= j and 1 � j; l � ki, where THRESHOLD and TOLERANCE are pre-speci�edvalues and d(�; �) is a distance function.Problem 2 (Invariant Identi�cation) Given a collection of ligands M = fM1;M2; : : : ;MNgwhere each Mi has a set of conformations C(Mi) = fCi1; Ci2; : : : ; Cikig, determine a set of labeledpoints S in <3 with the property that for all i 2 f1; : : : ; Ng, there exists some Cij 2 C(Mi) suchthat S is congruent to some subset of Cij. A solution S, if it exists, is called an invariant of M .In practice, the input may contain ligands that do not contain the pharmacophore. This requiresus to consider a relaxation of Problem 2 above, where a geometric invariant need only be presentin conformations of some K of the N molecules. Although at this stage the two modules of RAPIDwork independently, we plan to support their interaction as the system develops. A third moduleof RAPID, currently under development, involves the computation of molecular surfaces [9,13].Related Work We o�er below a brief overview of related work. The interested reader can �ndan extensive survey in [10,16]. As far as conformational search is concerned, both systematic andrandomized techniques are being investigated [18]. Randomized methods obtain conformations byapplying random increments to the torsional DOF of the molecule starting from a user-speci�edinitial conformation [11] or from a previously found low-energy conformation [8]. Recent articles,which attempt to compare di�erent methods, emphasize the superior quality of the results obtainedwith randomized techniques [11].Invariant identi�cation is related to the well-studied problem in geometric optimization of �ndingcommon point sets [1,17]. Determining the congruence of two point-sets in <3 is tractable [1] in theabsence of complications such as noise. However, invariant identi�cation is more closely related tothe problem of identifying the largest common point set (LCP). Unfortunately, the LCP problemturns out to exceedingly di�cult; in fact, even for m collections of n points on the real line, theLCP cannot be approximated to within an n� factor unless P = NP , and only weak positiveresults are known [17]. In computational chemistry, the most popular algorithms for invariantidenti�cation are based on clique-detection. For instance, DISCO [19] initially considers a pair ofconformations belonging to di�erent molecules and constructs a graph whose cliques correspond to3



candidate pharmacophores. Although maximum clique detection is NP-hard, the algorithm seemsto work well in practice [19]. The approach can be generalized to n conformations by choosing areference conformation and comparing it with the other n � 1 conformations, but it can lead toa combinatorial explosion in the operations performed [5]. Other techniques for pharmacophoreidenti�cation include expansion of small invariants, hashing techniques, and genetic algorithms(see [16] for a survey).3 Conformational SearchOur algorithm proceeds as follows. Initially a large number of conformations are generated atrandom. In contrast with previous randomized search methods, we obtain a random conformationby selecting each degree of freedom from its allowed range according to a user-speci�ed distribution.This distribution is frequently the uniform distribution. However, if some a priori information isavailable about the preferred values of a particular degree of freedom, then the corresponding valuesare selected according to a distribution that re
ects the a priori information (e.g., Gaussian). Ane�cient minimizer [7] is then used to obtain conformations at local energy minima. Minimizationis the most time-consuming step, so we have carefully optimized this procedure.To obtain a representative set of conformations from our sample, we partition it into sets that re
ectgeometric similarity as captured by the distance measure DRMS. We de�ne DRMS(Ci,Cj) as thesquare root of the mean of the squared distances of the corresponding atoms of Ci and Cj , after Ciis transformed to Cj. This transformation is computed using a basis of three prede�ned atoms a1,a2, and a3 [3]. The clustering algorithm used is described in Gonzalez [12]. It is an approximationalgorithm that runs in time O(nk), where n are the conformations to be clustered and k is thenumber of clusters, and guarantees a solution within twice the optimal value. The centers of theclusters are returned as representatives of the possible conformations of the molecule.Our experience with randomized techniques for searching high-dimensional spaces has shown thatrandomized exploration is superior to systematic exploration when the shape of the underlying spaceis irregular [15]. The same observation holds for conformational search: a systematic procedure hasa higher chance of missing the irregularly shaped basins of attraction of the energy landscape of themolecule (see also [11]). This has been our main motivation for the development of the randomizedconformational search procedure described above.4 Identi�cation of InvariantsThe set of cluster centers, denoted by C(M) = C(M1) [ : : :[ C(MN) is the input for the invariantidenti�cation module. Each conformation in C(M) is now represented as a set of labeled pointsin <3 (see Section 2). We wish to determine a structure S that is congruent to a substructure ofsome conformation in every molecule. The congruence relation is with respect to 3-D rotations andtranslations that ensure equality of labels. Our formulation of the invariant identi�cation problemassumes noise-free data, speci�cally that all point positions are known exactly. In practice, atompositions are fuzzy and it may not be possible to align them exactly. Therefore, we adopt the4



convention that two points p1 and p2 are said to match when jp1 � p2j � �, where � is the pointlocation error. Similarly, two triangles are said to be congruent if each point in the �rst triangle iswithin distance � of the corresponding point in the second.As mentioned before, the invariant identi�cation problem is a variant of the largest common pointset problem (LCP) in d dimensions: Given s point sets P1; P2; : : : ; Ps in <3, determine the point setof maximum cardinality congruent to some subset of each point set. For convenience, we assumethat each point set Pi has cardinality exactly n. For arbitrary s and d, LCP is hard to approximatewithin a factor of n�, for some � > 0. In the sequel, we consider the following variant of LCP, calledLCP-�: determine a point set S of size jSj � �n congruent to some subset of each Pi; 1 � i � s.The motivation for focusing on this subproblem is that it more accurately captures our primaryapplication, where pharmacophores are desired to have a certain minimum size.4.1 Phase 1: Pairwise MatchingIn this section, we focus on the invariant identi�cation problem for two point sets, denoted byMATCH. This problem has been studied extensively in the literature [20]. For general �, the bestknown algorithms were obtained in [1]. These have a worst-case running time ofO(n4:6) for unknown�, and O(n2:6=�2) (randomized) when � is known for 3D. In 2D, the corresponding bounds obtainedare O(n3:2) and O(n2:2=�). However, these bounds apply only to the noise-free model of point sets.The noisy version of the problem was considered in [2] yielding an O(n8) algorithm in 2D. (Referto [14] for recent results in the noisy model.)We now describe two random-sampling schemes for solving LCP-� on noisy data. Our analysis(presented in [10]) assumes that the data is exact. We use the notation g(n) = ~O(f(n)), wheref and g are functions, to indicate that g(n) = O(f(n) logn). Also note that in three dimensions,a unique transformation T (upto re
ection) between two point sets P1 and P2 is determined bymatching three points p; q; r in P1 with three points s; t; u in P2.BASIC-SAMPLE: For some constant c, perform (c logn)=�3 iterations of the following process:sample a triplet of points <p1; p2; p3> randomly from P1; determine three points in P2 congruentto this set; compute the resulting induced transformation and determine the number of points inP1 matching corresponding points in P2; and, if this number exceeds �n, declare SUCCESS.Theorem 1 Given a common subset S of size jSj � �n, the probability that BASIC-SAMPLEfails to declare SUCCESS is O(1=n).Theorem 2 BASIC-SAMPLE runs in time ~O(n2:8=�3) using space O(n2).Run-time pro�ling revealed that BASIC-SAMPLE examines many spurious triples, i.e. tuples thatdo not yield a large invariant. We propose the following modi�cation of the random samplingprocedure to handle this problem.PARTITION-SAMPLE: For some constant c, perform c logn iterations of the following pro-cess: randomly select two subsets A and B of size 1=� from P1; also select a subset C of size 1=�from P2; store all distances d(p; q), for all p 2 C and q 2 P2�C, in a hash table; for every triangle(a; b; p) with a 2 A; b 2 B, and p 2 P1� (A [B), probe for d(p; a) and d(p; b) in the hash table to5



determine all matching triplets (c; p1; p2) with c 2 C and p1; p2 2 P2 � C; �nally, as before, if theresulting transformation induces a match of more than �n points, declare SUCCESS.Theorem 3 Given a common subset S of size jSj � �n, the probability that PARTITION-SAMPLE fails to declare SUCCESS is O(1=n).Theorem 4 PARTITION-SAMPLE runs in time ~O(n3:4=�3) using space O(n=�2).Although the asymptotic running time of PARTITION-SAMPLE is worse than that of BASIC-SAMPLE, experiments (see Section 5) reveal that PARTITION-SAMPLE consistently outperformsBASIC-SAMPLE, generating far fewer spurious triples with an improved degree of success. Addi-tionally, experimental results suggest that both predicted running times are overly pessimistic.There are two issues which deserve further discussion. The �rst concerns the elimination of redun-dant solutions, that is solutions satisfying a containment relationship with respect to each other.Given invariants S1 and S2, we need to check if S1 � S2 by invoking MATCH on these two setswith � = 1: The second issue concerns the inaccuracies present when computing the transforma-tion that overlaps 3 points in the two point-sets. A source of problems is the fact that our pointlocations are noisy and this transformation may not be unique. We employ a number of heuristicsto compensate for this. For example, we determine a seed transformation T and then sample threerandom pairs from the set of correspondences that T induces and use these pairs to construct a newtransformation. Clearly, in a perfect world, we will obtain T again. However, given the inaccuraciesin point location, it turns out that some choices of triplets may yield more correspondences thanbefore.4.2 Phase 2: Multiple MatchingCandidate solutions obtained from Phase 1 are tested against the remaining molecules to determinethe invariant. Each MATCH call operates on two conformations. Since each molecule is representedby many conformations, we extend MATCH to twomolecules by doing all pair-wise matches betweenthe sets of conformations. Note that comparing a candidate solution against a new conformationmay result in 0; 1; or many solutions, since the solution may decompose into smaller pieces oncomparison.There are various strategies one could use to process multiple molecules. A simple strategy that weimplement performs a linear merge. We take each solution and compare it with the next molecule.We do this for all current solutions, concatenate and prune the results, and repeat with a newmolecule. In addition to this, we may wish to �nd an invariant that does not exist in all themolecules, but in some �xed number of them. We use a marking scheme (described in [10]) tokeep track of the number of times an invariant fails to match against a molecule, and reject thoseinvariants which exceed the maximum allowed number of failures.5 Experimental ResultsThis section reports experimental results for the algorithms described above. All reported timingsare on an SGI Indigo2 with a 175 MHz MIPS R8000 processor and 384MB RAM. Code was written6



(a) (b)Fig. 2. (a) 1TLP, 4TMN, 5TMN, and 6TMN are inhibitors of thermolysin, (b) the moleculesoverlaped in their active conformation
Fig. 3. Di�erent clusters of 1TLPin C/C++, and compiled using SGI CC. In Figure 2, we show four di�erent inhibitors of theprotease thermolysin. These molecules �t into the same cavity of thermolysin and by their presenceinhibit the activity associated with that cavity. This example was chosen because all the inhibitorshave been crystallized with thermolysin and their active conformations are known and recorded inthe PDB database [4]. Note that 1TLP has 69 atoms and 10 torsional degrees of freedom, 4TMNhas 68 atoms and 15 degrees of freedom, 5TMN has 64 atoms and 13 degrees of freedom, and 6TMNhas 63 atoms and 12 degrees of freedom.Conformational Search. Each of the molecules in Figure 2(a) was run through our confor-mational search software. A cuto� value of 20 Kcals/mol was used for the energy of the validconformations. The clustering algorithm terminated when the average distance of each of the con-formations from the center of its assigned cluster dropped below a THRESHOLD of 1.2 �A. It took9.4h, 34.1h, 10.4h, and 9.2h to create 10,000 conformations of 1TLP, 4TMN, 5TMN, 6TMN corre-spondingly. The running times for clustering were 5.2m, 18.2m, 15.2m, and 14.1m, producing 128,253, 241, and 219 clusters. A few clusters of 1TLP are shown in Figure 3. The conformations ina single cluster are overlaid to illustrate that they are close to each other and this justi�es usingthe center of a cluster as its representative. As mentioned in Section 3, an important problem inconformational search is to decide how many conformations to produce. At this stage, this numberis determined experimentally: we stop producing new conformations when these do not increasethe overall number of clusters signi�cantly.Identi�cation of Invariants. An experimental comparison of BASIC-SAMPLE and PARTITION-SAMPLE reveals that PARTITION-SAMPLE works signi�cantly better than BASIC-SAMPLE,and a second suite of tests provides some explanation for this. For our input molecules, the \solu-7



Number of Running Histogram of Solution SizesConformations Time 4 5 6 7 8 9 10 11 12 13 totalBASIC 1 7.5 2 1 3SAMPLE 11 789.35 44 20 10 5 2 1 1 8221 13909.64 224 84 38 17 10 18 4 1 395PARTITION 1 2.8 2 1 3SAMPLE 11 182.16 15 6 10 6 5 1 4321 3530.19 39 35 30 22 20 6 6 2 1 1 162Fig. 4. Comparison of BASIC-SAMPLE and PARTITION-SAMPLEtion" consists of the overlapping portions of the molecules when aligned as shown in Figure 2(b).This is the lower right handside T-shaped portion of this diagram. The entire invariant consists ofroughly 7 atoms and an additional 7 atoms of \sca�olding," or connecting atoms with no phar-macophore functionality. In all cases, we required the invariant to be present in all of the fourmolecules.We run our search procedure on sets consisting of 1, 11, and 21 conformations including the activeconformation. The search values for �; �; and � were set experimentally to 1.3, 0.5, and 0.3. the cor-responding prune values are 3.5, 1, and 1. We present in Figure 4 the results of this test. In all cases,the quality of solutions (in terms of the largest solution found) is comparable, and PARTITION-SAMPLE consistently runs signi�cantly faster than BASIC-SAMPLE. When the number of con-formations increases, more invariants are produced because some of the added conformations haveadditional \sca�olding" which also could be matched.As observed earlier, a formal analysis of the algorithms does not explain the marked di�erence inperformance. Our second suite of experiments attempts to investigate this discrepancy. For this setof tests, we used the four molecules from the above examples, but with only one conformation each(so as to maximize the in
uence of the basic sampling algorithm). We vary � between 10 and 35(in intervals of 5) and �x (�; �) = (1:3; 0:5). The parameters that control the running time of thesampling algorithm are (a) the number of candidate triangle-triangle pairs examined (�c), (b) thenumber of valid transformations produced (�i), and (c) the number of valid transformations thatyield solutions above the minimum required size (�m).An experimental evaluation (shown in [10]), reveals a strong correlation between the running timeof the algorithm and �c, and a much weaker correlation between the running time and �m. Ourmost intersting experiment is the plot of �c against � for the two algorithms in Figure 5. Notice thatBASIC-SAMPLE examines a signi�cantly larger number of such pairs than PARTITION-SAMPLE(�c for PARTITION-SAMPLE is scaled by 10 on the graph for ease of reading). However, most ofthe work that BASIC-SAMPLE performs is wasted e�ort, as seen in Figure 5, which explains theexperimentally good performance of PARTITION-SAMPLE.8
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