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ABSTRACT

This paper uses a social grouping model to improve target
handover across multiple non-overlapping cameras to enable
wide-area video understanding. Prior work focuses on model-
ing appearance and spatial-temporal cues for target handover.
In cameras with different conditions, these cues are weak,
at best. We provide a complete generative social grouping
model which generalizes a recent single-camera case. Our
extension requires strengthening the probabilistic interpre-
tations and the resulting optimization over track handovers
and social groupings can be formulated in terms of stan-
dard fast algorithms. We demonstrate the effectiveness of the
method over existing techniques on challenging real-world
multi-camera video.

Index Terms— Tracking, Video Understanding, Social
Grouping, Optimization

1. INTRODUCTION

Multi-target tracking aims to maintain the trajectories and
identities of multiple moving objects across video frames. It
lays the foundation for understanding high-level events such
as activity recognition and event detection, enabling appli-
cations such as automatic surveillance, content-based video
retrieval and recommendation, and human-computer interac-
tion [1, 2]. Compared to single camera tracking, multiple
camera tracking—especially inter-camera tracking with non-
overlapping fields of views (FOVs)—is a very challenging
but less explored topic. However, the value of understanding
wide-area videos makes it of great practical importance.
Multi-camera tracking systems conduct intra-camera
tracking first, and then associate or “handover” targets across
different cameras to achieve consistent labeling of multiple
targets across large areas. The handover task with multiple
non-overlapping camera views is difficult as traditional visual
evidence for intra-camera tracking is very weak. Object ap-
pearance is unreliable across different cameras due to differ-
ing characteristics, view-points, or illumination conditions.
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Fig. 1. An illustration of the multi-camera target handover
problem and the dataset we use. Notice the severe appear-
ance change, strong within-camera illumination change, and
the heavy interactions among individuals. However, social
grouping behavior generally exists.

To establish more robust appearance matching, re-
searchers often learn the brightness transfer functions (BTFs)
between each pair of cameras, which may not be invariant
over time. Furthermore, the illumination conditions are not
necessarily consistent within each camera. Spatial-temporal
cues (such as location, time and velocity) are less reliable due
to open blind areas between cameras. Finally, a multi-camera
tracking system must be able to identify whether a track be-
longs to a newly entered person or should be linked to an old
one. This can be challenging under the ambiguity inherent
in the problem. In this work, we look beyond traditional vi-
sual cues and model social grouping behavior to mitigate am-
biguities in the multi-camera handover problem. Sociology
research shows that in natural scenes, up to 70% of people
walk in groups as friends, couples or families, staying close
to each other and possessing similar speeds and trajectories
[3]. We note that social grouping behavior is essentially in-
variant to factors that make multi-camera handover difficult,
such as camera conditions.

In this work, we consider the quality of target grouping for
target handover for videos captured in multiple cameras. Our



major contributions are (1) We propose to use social grouping
information for the multi-camera tracking scenario, as a prin-
cipled regularizer for the visually ambiguous tracking solu-
tion. This social model may be combined with existing meth-
ods. (2) We derive the model by building a complete gener-
ative model for multi-camera tracking using social grouping,
which strengthens the probabilistic understanding of the sys-
tem. We show in a unified framework that this model gener-
alizes a recently proposed case for single camera and answers
questions about implementation concerns of building social
groups across multiple cameras.

2. RELATED WORK

Compared to single camera tracking, multi-camera tracking
with non-overlapping FOVs is a less explored topic. As noted
in the previous section, researchers typically employ spatial-
temporal and appearance cues to handover targets across cam-
eras with non-overlapping FOVs.

For spatial-temporal information, [4] used a Parzen win-
dow density estimator to jointly model the inter-camera travel
time intervals, locations of exit/entrances, and velocities of
objects. [5] proposed an unsupervised learning method to val-
idate the camera network model. [6] described the observed
pattern of pedestrian motion via a stochastic transition matrix.

In terms of appearance similarity, [7] showed that the
BTFs between cameras lie in a low dimensional subspace
and proposed a method to learn them with labeled correspon-
dences. A cumulative brightness transfer function (CBTF)
was proposed by [8] for mapping color between cameras us-
ing sparse training set. [9] used Multiple Instance Learning
(MIL) to learn a discriminative appearance affinity model on-
line. [10] proposed a new illumination-tolerant appearance
representation. [11] evaluated several BTFs and showed that
they demonstrated similar behaviors and limitations. Some
notable work focuses on the general optimization or learn-
ing framework, but again, apply them only to appearance and
spatial-temporal cues, either for Bayesian path reconstruction
[12] or unsupervised incremental learning for better time in-
variance [13, 14].

Simultaneously, social behavior has attracted more atten-
tion in tracking. Researchers have used various social factors
to improve tracking performance, including a pedestrian’s
destination, desired speed, repulsion from other individuals,
and social grouping behavior [15, 16, 17, 18]. However, all
these approaches are designed for intra-camera tracking and
whether they can be applied to wide area video understand-
ing is not clear. Recent work [19] employed a social force
model to model common paths to help the multi-camera han-
dover task without using appearance information, but it only
focuses on individual tracks. In this paper, we build on [18] to
use social grouping to improve multi-camera tracking. To the
best of our knowledge, this work is the first to generally use
other tracks as social grouping context for the multi-camera

tracking problem.

3. GENERATIVE SOCIAL GROUPING FOR
MULTI-CAMERA TRACKING

We first derive a complete generative model for target han-
dover across cameras using social context. We then describe
the choice for each component of the model, some of which
are naturally derived from existing work.

3.1. Problem Formulation

Let the within-camera track set T'= {17, ..., Tn } have N to-
tal input tracks in a time window. Each track T;, over the time
interval ¢ € [tstort 771 s g sequence of {(a;(t), z;(t))}
with a;(t) denoting the camera for track ¢ at time ¢ and z;(t)
denoting the position of the track in the camera-centric coor-
dinate system. (Note that for any ¢, and £, € [t5to, ¢/
a;(t1) = a;(t2) as the track is within the same camera.) Tra-
ditional track handover can be modeled as a maximum a pos-
teriori (MAP) problem [12] with the objective function

>

¢* = argmaxP(¢|T), (1)
ped

where the association result is represented by a correspon-
dence matrix ¢ such that

1 if T} is linked to T; as the same target,
bij = . 2
0 otherwise,

with the non-overlapping constraint that ;i = 1and
>;®i; = 1, meaning that each track can only precede or
follow one track. & is the set of valid correspondence matri-
ces.

In this work, we take the quality of social grouping be-
havior into consideration to help eliminate visual ambiguities
in the multi-camera tracking system. We assume people form
social groups denoted by the set G = {gi1 ..., g|q|} where
|G| is the number of social groups and g, is the description
of the kth group. Each track should be assigned to one social
group, as represented by a social grouping matrix :

1 if track 7 is assigned to group k,
VYik = . 3)
0 otherwise.

Again there is an added constraint that ), 1; , = 1 stating
that each track can only be assigned to one group and we let
U be the set of valid social grouping matrices.

Then we can model the MAP formulation of track han-
dover across cameras as

(¢",¢",G") = argmax P(¢,9,G|T), “4)
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where
P(¢,9,G|T)  P($,%,G) P(T|¢, 4, G)
= P(G) P(4|G) P(¢|v,G) [] P(Tilo,v.G), ©
T; €T

assuming that the likelihood of input tracks are conditionally
independent given the track correspondences and group as-
signments. The likelihood of one track models the probabil-
ity of false alarms. In this work, we set P(T;|¢,v,G) = 1
for all ¢ as reliable single camera tracking algorithms shall
largely remove false alarms. If a model of intra-camera track-
ing is available, it can be incorporated. The other three terms
indicate the probability of a social group set and how this so-
cial setting generates the track group assignment and track
handover.

3.2. Description of MAP Components

First, we model the probability of social groups as
P(G) x e *IG1 (©6)

penalizing large numbers of social groups to avoid overfitting
(such as placing each person in a separate group).

P(1|G) models the probability of track-group assignment
given social groups as

P@G) o ] P(Tilgr), )
ivkhbtk:l
where P(T;|gx) is the likelihood that track i comes from
group k, which we decompose across time as

tfinish

H P ai ‘gk (

t= ts‘tart

P(Tilgr) = i(t)|ai(t), gx).  (8)

P(a;(t)|gr) is the probability that group k appears at camera
a;(t), a parameter of the model for group k& which we denote
as by q(t). P(x;(t)|a;(t), gr) is the probability that at time
t, a member of the group in camera a;(t) will appear at po-
sition x;(t), which we model as a Gaussian centered around
the mean uy, o (t), the position for group & in camera a at time
t, also a parameter of the model for group k. We use a fixed
variance o for all such Gaussians.

P(é]1, G) measures the probability of track handover
given the social group information. Compared to other track
handover methods, this adds a group constraint that if two
tracks are linked (they are the same person), they belong to the
same group (one group per person, but note that people-group
assignment is free to change across different time windows):

(bl,(/}a H Pznzt H Pterm
2|Vm ém,i=0 |Vm ¢5,m=0
H {lek(i,j) if Vk, ¥ 1, = wg,k,
i ilon=1 0 otherwise.

(€))

where P;,,;+(T;) is the likelihood of T; being an initial track,
and Pier,(T;) the likelihood of T; being the last track.
Piink (i, 7) is the likelihood that track j is the first instance
following track <. This part is usually called the basic affinity
model in track handover.

4. OPTIMIZATION

In the previous section, we proposed a complete generative
model for multi-camera tracking using social grouping in the
literature. Here we show that the resulting optimization can
be formulated in terms of standard fast algorithms.

4.1. Optimization Reformulation

We perform optimization of Eq. 5 in the negative log-
likelihood space (a minimization problem). First, since
—In P(T;|¢, v, G) = 0, we drop that term. Ignoring an addi-
tive constant from the proportionality in Eq. 6,

—In P(G) = k|G|. (10)

Ignoring a similar additive constant, for P(¢)|G) (Eq. 7), we
have —In P(¢|G) =

t_finish,

Z Z —aInby g, 1) () + Blzi(t) — g0, ()|

ik =1 t=t3tart

S DT 1) (v
ik =1
from Eq. 8 where a and 3 are weighting parameters relat-
ing to the variance of the Gaussian. For simplicity, we use
D(T;, gi,) to denote the “distance” of track ¢ from group k.
P(¢|v, G) can be transformed to an assignment problem
by defining a 2N x 2N handover matrix

link erm
H = ( Hivn | v ) (12)
HN>l<N ‘ ONxN

with Hf]"k = —In Pnk(i,9), Hf’;” = —In P, (Ty),
Hf,efm = —InPierm(T;) and infinity (—In0) elsewhere.
Eq. 9 is 0 if any assignments violate the constraint that linked
tracks must be in the same social group. Therefore, if we add
this constraint (V4, j, k ¢; ;(¢ir — ;) = 0), the resulting
equation can be written in terms of [:

—In P(g[¢), G Z@,J i (13)

Our optimization’s outer loop tries different numbers of
social groups. Inside, we can drop Eq. 10 and minimize the
sum of Eq. 13 and Eq. 11 with the above constraint:

arg min GiiHij+ > i1 D(T5, gi)
PED,YEV,G EJ: Y Ez; (14)

st Vi, gk ¢ii(Yik —¥jk) =0.
We call Eq. 14 the primal problem.



4.2. A Two-stage Alternating Minimization Algorithm

We apply the two-stage iterative alternative optimization al-
gorithm proposed in [18] to solve Eq. 14 by first applying
Lagrange theory, yielding

L(¢0,Gop) = ¢iHij+ Y ¢inD(T;, gr)
7 ik

+ ) ijndi g Pk — b)),

ijk

s)

in which the us are the Lagrange multipliers. The dual of this
problem is

max q(u)

here = i
W ar) ¢e<b%lgxp,c

Lig .G p). 10

The resulting correspondence ¢ of the optimization is the out-
put of the method. For a fixed p, let

(¢, 9", G") = argmin L(¢,9,G,p).  (17)
pe®,YeV,G

To solve Eq. 16, we use a quasi-Newton strategy with
limited-memory BFGS updates and Wolfe line search con-
ditions guided by the subgradient:

dq
8/%;7%

= ¢ (Vi — Vje)- (18)
1%

To calculate the subgradient, we use a two-stage block
coordinate-minimization algorithm to solve Eq. 17. The first
stage minimizes over ¢ (the track correspondence result) from
Eq. 15 with ¢ and G fixed:

o = arg rginz i [Hig + Y ijh(@ik — ¥5k))- (19)
c —
17 k
This amounts to adding a penalty term to the matrix scores
(compare with Eq. 13). So Eq. 19 is a standard assignment
problem and can be efficiently solved by the Hungarian algo-
rithm.

The second stage minimizes Eq. 15 over ¢ and G, with ¢
fixed: (v, GH) =

argmin » 1 k[D(T, g) + Y (wijndi — jinj.i)l-

YeV.G T J
(20)

This amounts to a standard K -means clustering problem. If
the “centers”, G, are fixed, the assignments, 1/, are made to
minimize the augmented distance. When the assignments are
fixed, the centers can be placed to minimize their distances
to the captured points. Several initial group assignments are
tried, as K-means converges to local minimum. The output
of the one with the minimum value for Eq. 16 for one specific
|G| (number of groups) is maintained.

At the end we add the linear penalty of |G| indicated by
Eq. 10 and the outer loop (over |G]) selects the solution with
the minimal negative log-likelihood score.

5. IMPLEMENTATION DETAILS

In this section we describe some implementation details of
the system and how our model generalizes the single-camera
case.

5.1. Building the Basic Affinity Model

We build the basic affinity model (A in Eq. 13) using a
Brightness Transfer Function (BTF) for appearance (app)
cues and a Parzen window density estimator for spatial-
temporal (st) cues:

—In P (is j) = —Inp{® —mpil. @D
We use the BTF model in [7] for —In p;”j’p and the Parzen
window technique in [4] for spatial-temporal information
— ltlpffj. Readers could refer to [7] and [4] for more detail.

P;pit(T;) and Pierr, (T;) are set to be a single constant (from
training) for simplicity.

5.2. Augmented Social Grouping Model for Multi-
camera Tracking

The remaining problem is how to implement the two steps of
K-means clustering: group update (when the group assign-
ments are given) and track assignment (when group parame-
ters are given).

Recall that we modeled the group mean trajectory for gy
as, at each time ¢, a distribution over which camera a mem-
ber of the group appears in (by .(¢)) and a mean position
within each camera a that a group member would appear
(ug,q(t)). Track assignment (finding ¢ given a fixed G) is
simple: for each track T;, compute D(T;, gi) from Eq. 11 for
each group g and select the one that minimizes the negative
log-likelihood.

For group update of g, with the assignment v fixed, we
must find the parameter assignments to by, . and uy,,. that max-
imize the likelihood. The log-likelihood is a sum across time,
so the maximization can be done independently at each time
point. by 4(t) is a multinomial parameter and therefore its
maximum likelihood estimate is proportional to the number
of tracks assigned to group k at time ¢ that are in camera a.

ug,q(t) is the conditional mean for group k at time ¢ in
camera a. Therefore, its maximum likelihood parameter is
the average position of all tracks assigned to group £ at time
t in camera a. If at any point there are no tracks for group k
and camera a, we use linear interpolation or extrapolation to
generate a mean. If no tracks in camera a are ever assigned to
group k, we place uy, o () in the middle of the image for all £.

If there is only one camera, the distribution by, ,(¢) is de-
generate and drops out of the equations. The remaining model
is the same as in [18], thus this is a generalization to multiple
cameras.
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Fig. 2. Topology of the cameras in the experiments.

6. EXPERIMENT

Compared to single camera tracking, datasets publicly
available for real-world multi-camera tracking with non-
overlapping FOVs are extremely limited. In this work, we test
our method using two sets of videos on the VideoWeb dataset
[20]. We choose Cam27, Cam20, Cam36 and part of Cam21
(indexed by 1-4) to establish the desired non-overlapping set-
ting, the topology of which is shown in Fig. 2. Multi-camera
tracking in this setting is very challenging for the following
reasons. (1) We use 4 cameras, unlike most prior work that
use 2-3. (2) This is an outdoor dataset with a cluttered envi-
ronment. As shown in Fig. 1, there is severe within-camera
illumination change, which makes traditional methods that es-
tablish one single transformation between each camera pairs,
such as BTFs, much less reliable. (3) Since this dataset is
mainly designed for complex real-world activity recognition,
there exist heavy interactions among individuals, unlike “de-
signed” tracking datasets, e.g. [7].

We compare our proposed multi-camera social group-
ing behavior tracking (MulSGB) to directly using the Bhat-
tacharyya distance between RGB color histograms without
BTF transformation or spatial-temporal information (Color),
Parzen window estimation for spatial-temporal information
and the original color histogram for appearance (Parzen Win-
dow) in [4], and the BTF plus Parzen window estimation
framework in [7](Parzen Window + BTF).

Due to the availability of the dataset, we gather 9 videos
using all 4 cameras and 4 videos with camera 1-3. We use 5
videos from the first set for training and all the other videos
for testing (note the second set of videos contains a subset of
cameras of the first set so no additional training is needed).
All other videos in the dataset either had no inter-camera mo-
tion or were missing data for more cameras. The data used
has roughly 40,000 frames (25fps) for each of the four cam-
eras for training and 80,000 frames for each camera for test-
ing. For detection, we use a state-of-art pedestrian detector
[21] to get detection responses and generate reliable intra-
camera tracks using [18]. We use time windows of length
4000 frames and allow frame gaps as long as 1200 frames

(only tracks with a time gap of less than 1200 frames can be
linked). We hand-labeled ground truth and measure the per-
centage of correctly linked pairs for the eight testing scenes
(which consist of 244 single-camera tracks in total). Fig. 3
and Fig. 4 show the results for each set of videos.

100

T
I Color

or [ Parzen Window
S0l [ Parzen Window + BTF| |
I MulSGB

Percentage of correctly linked pairs

Videol Video2 Video3 Video4 Total
Fig. 3. Percentage of correctly linked pairs on the four video
sequences with four cameras. Each video sequence consists
of 27, 5, 5 and 23 (60 in total) ground truth linked pairs re-
spectively.
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Percentage of correctly linked pairs

Video1 Video2 Video3 Video4 Total

Fig. 4. Percentage of correctly linked pairs on the four video
sequences with three cameras. Each video sequence consists
of 17, 24, 9 and 14 (64 in total) ground truth linked pairs
respectively.

We have the following observations. (1) Given the poor
color histogram result especially for the four-camera set-
ting (demonstrating the difficulty of the dataset), the overall
performance is very promising, as our MulSGB model in-
deed improves tracking performance over competing meth-
ods. (2) The example in Fig. 5 shows a representative exam-
ple where social grouping helps to disambiguate, while other
methods fail under this challenging sequence. (3) Since our
social grouping model serves as a regularizer, the basic affin-
ity model upon which we built social grouping model is some-
times a bottleneck, especially for challenging sequences as in
our case. For example, we observe no improvement upon the
baseline model for two sequences in Fig. 4. We observed that
in such cases, although the optimization usually heads toward
a good solution, it could not recover wrong links since the
basic model provides very unlikely handover possibility be-
tween the correct pairs. For example, when the illumination
condition changes between the testing set and training set, the
learned BTF may even hurt the performance comparing to
pure color histogram comparison, as is the case for videol in
Fig. 4.



Frame 5809 (Cam 3)

Frame 6222 (Cam 3)

Frame 6295 (Cam 2)

Fig. 5. Example tracking results (first row: [7] without social grouping, second row: ours with social grouping, where G indi-
cates group number). Because people form groups and show proximity to group members, social grouping provides powerful
contextual information to improve multi-camera tracking. Other methods tend to identify a new person (Frame 6295 target 1)
or output an identity switch (target 3 and 5) on this sequence, because traditional evidences are highly unreliable

7. CONCLUSION

We offer an explicit generalization of a single-camera social
grouping behavior model to the multi-camera tracking prob-
lem with non-overlapping FOVs to enable wide-area video
understanding. We propose a generative social grouping
model that strengthens the probabilistic interpretation of so-
cial grouping generation, for which the single camera track-
ing is a special case. Our experiments on a very challenging
publicly available real-world dataset show improvements over
other methods.
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