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Abstract—Modeling and analysis of large scale scientific
systems often use linear least squares regression, frequently
employing Cholesky factorization to solve the resulting set
of linear equations. With large matrices, this often will be
performed in high performance clusters containing many
processors. Assuming a constant failure rate per processor,
the probability of a failure occurring during the execution
increases linearly with additional processors. Fault tolerant
methods attempt to reduce the expected execution time by
allowing recovery from failure. This paper presents an analysis
and implementation of a fault tolerant Cholesky factorization
algorithm that does not require checkpointing for recovery
from fail-stop failures. Rather, this algorithm uses redundant
data added in an additional set of processors. This differs from
previous works with algorithmic methods as it addresses fail-
stop failures rather than fail-continue cases. The implemen-
tation and experimentation using ScaLAPACK demonstrates
that this method has decreasing overhead in relation to overall
runtime as the matrix size increases, and thus shows promise
to reduce the expected runtime for Cholesky factorizations on
very large matrices.

Keywords-Algorithmic Based Fault Tolerance; Linear Alge-
bra; Checkpoint Free

I. INTRODUCTION

In scientific computing, the manipulation of large matrices

is often used in the modeling and analysis of large scale

systems. One such method is the use of linear least squares

regression which is widely used across many applications. In

general principles, the optimal least squares estimates for the

linear variables is obtained by collecting more data points

than there are variables in a linearly independent manner.

Then a matrix X is created, where the values from the data

points are the elements of the matrix. As there are more

samples than variables, X will be of dimension M by N,

with M larger than N. The next step is to compute the matrix

product of the transpose of X multiplied by X. The resulting

matrix A, which is N by N, can then be used to determine the

regression estimate for the specified values of the variables.

This matrix is by definition symmetric positive semi-definite.

Factoring this matrix into triangular forms for optimization

techniques is often desirable.

One highly efficient method for factoring a symmetric

positive semi-definite matrix is through the Cholesky fac-

torization method. In this factorization method, the result is

either the upper triangular matrix U, such that transpose U

times U is A, or the lower triangular matrix L, such that

L times L transpose is A. In this paper we focus only on

creating the lower factorization L, although all methods that

are used for L can be done for U as well since it is a

symmetric algorithm. The Cholesky method is favored for

many reasons, the foremost being it is numerically stable

and does not require pivoting. The sequential Cholesky

algorithm has several forms, of which the main forms are the

outer product method, the Cholesky-Banachiewicz method,

and Cholesky-Crout algorithm. As it suits itself well to the

techniques being explored, the outer product method will be

focused on in this paper.

The sequential, unblocked Cholesky outer product method

can be separated into iterations for which N iterations are

performed to complete the factorization, each with its own

modified version of the original matrix A. In an iteration i,

the matrix A(i) is defined as the identity matrix of size i-1 in

the upper left hand corner, with the remainder of those rows

filled out with zeros. The remainder of the matrix has the

top left corner ai,i, the remainder of its column and row bi,

and transpose bi, as well as the remaining submatrix of the

lower right hand corner B(i) [18]. The matrix L(i) consists

of the identity matrix with the exception that the ith column

contains i-1 zeros, the square root of ai,i, and bi divided by

the square root of ai,i. The eventual resulting L matrix is

defined by the ordered multiplication of these L matrices.

The next iteration of the matrix can be defined as a matrix

of Identity of size i in the upper left, with the remainder

being B(i) subtracting the product of bi and transpose bi.

As the bi multiplication is an outer product, this method is

called the outer product method.

Computationally speaking, since the B matrix is symmet-

ric there is no need to maintain the entire submatrix. Also,

as after the iteration has passed a row or column the data

is never needed again. It is thus possible to fill values of

L into elements that have already been passed by, so as to

do the entire algorithm inline. Furthermore, it is possible to

compute half of the B matrix at the same time that the L
matrix is being filled in. This is feasible as the data in the

B matrix is symmetric, and thus only needs one copy to

complete the preparation for the next iteration. The unfortu-

nate result of these optimizations is that after the Cholesky

algorithm step has been performed, inline matrix area that

 

978-1-4244-6443-2/10/$26.00 ©2010 IEEE 



contains B is no longer symmetric. The algorithm functions

efficiently to perform the Cholesky factorization. However,

any method that tries to take advantage of symmetry will

require adjustment.

In order to use this method for large data sets, high per-

formance methods need to be used that take into account the

effects of performance based on cache usage. The libraries

LAPACK and BLAS aid in optimizing the usage of cache

through the blocking technique. The impact of this technique

on the Cholesky method is that more than one iteration

is effectively handled at once. Specifically, the number of

iterations handled at once is the block size, NB. This turns

the overall algorithm into much fewer blocked iterations. As

the blocked iterations will be used from here going forward,

the word iteration will refer to blocked iteration for the rest

of this paper. The advantage of the blocked approach is

that for many of the steps certain data is used frequently.

Taking the actions across the entire row will clear the cache

of this data, causing additional cache misses. Therefore,

by reducing the cache misses, the overall performance is

improved.

If using a single processor is not fast enough, the multiple

processor methods have been explored, particularly in the

widely known software ScaLAPACK [9]. ScaLAPACK

combines both the usage of LAPACK blocked techniques

and support for multiple processors. Since there are more

processors and there is an advantage to distributing the

work across many processors, ScaLAPACK uses block-

cyclic matrix distribution of data. In block-cyclic matrix

distribution, the blocks that a particular processor contains

will come from many parts of the global matrix. As such,

additional consideration must be taken when developing

algorithms that act with ScaLAPACK and also interact with

the processors data directly.

As the number of processors employed grows large, the

probability of a failure occurring on at least one proces-

sor increases. In particular, a single processor failure is

commonly modeled using the exponential distribution. This

modeling is largely accurate for processors that are beyond

their break in phase and not yet to their end of life. In

other words, this model is accurate for the majority of

the lifespan of the processor. Under the assumption of an

exponential failure rate of each processor, the failure rate of

the overall system can be shown to grow linearly with the

number of processors. Thus, for systems with increasingly

large numbers of processors, this means that failures will

become an increasing problem.

In order to counteract this increasing failure rate as

systems grow, many techniques and systems [11] [12] have

been developed in order to provide fault tolerance. The most

traditional technique is that of the checkpoint, which either

routinely saves the state of the execution or saves the state of

execution when instructed by the program to do so. Usually

this requires saving the state to a stable storage device,

which can be both a bottleneck and time consuming. More

recent techniques make use of diskless checkpointing [16],

which helps avoid the stable storage bottleneck, but can only

recover from a set number of failures. This approach has

already been applied to Cholesky factorization [15]. The

layering of diskless and standard checkpoints [19] [20], as

well as layering multiple layers of diskless checkpointing,

have previously been investigated [13]. Some research has

suggested that checkpointing approaches may face further

difficulties as the number of processors expands [10].

Another promising approach is in the use of additional

data held within the algorithm being executed to allow

the recovery of a failed processor. Previous uses of this

approach are known as algorithm based fault tolerance

(ABFT) [14] [3], which use information at the end of

execution of an algorithm to detect and recover failures and

incorrect calculations for fail-continue failures. Fail-continue

failures are failures which do not halt execution. ABFT

algorithms have received wide investigation, including de-

velopment for specific hardware architectures [4], efficient

codes for use in ABFT [2] [17], and analysis of potential

performance under more advanced failure conditions [1].

This paper investigates the use of algorithmic methods to

help recover during fail-stop failures, or failures that halt

execution. An ABFT method for fail-stop failures has been

done before for matrix multiplication [6] [7] [5].

The differences between using data from within an algo-

rithm versus a general checkpointing system are numerous.

The most specific difference is that the algorithm, for the

most part, runs with little modification or stoppage to

perform a checkpoint. If the amount of time to recover

is approximately constant relative to the overall execution

time, then this greatly improves the recovery time. The

disadvantage of algorithmic recovery is that it will only work

on the algorithm in question, whereas a single checkpointing

can often work regardless of what computation is being

performed. Furthermore, depending on the algorithm and the

recovery method, it may require more intense computation

time to determine and restore the state of a failed processor,

which may or may not exist in checkpointing systems.

In this paper, the use of algorithmic recovery for fail-stop

failures will be developed for recovering a single failure

during a Cholesky factorization. Specifically, this will be

modifying ScaLAPACK’s PDPOTRF routine in order to

enable a single failed processor to be recovered without

need for checkpointing. In order to do this, redundant data

will be introduced into the matrix, as well as increasing the

number of processors used. In doing so, this redundant data

can be used to recover the data on a failed processor after

it has been restored to a running state. It should be noted

that while this paper only examines the case of a single

failed processor, adaptation for recovery of multiple failures

is certainly possible [8].



Figure 1. Global Matrix of a 6x6, symmetric checksum matrix to be used in demonstration of algorithm.

II. ALGORITHM

A. Algorithm Overview

The algorithm functions by reserving an extra row and

column of processors to hold a checksum of the values,

which will be called the checksum row and column re-

spectively. In this row and column of processors, a sum

of the respective values of the other blocks in the same

column and row, respectively, will be kept. As each block

will contain MB*NB data points, this checksum will actually

be a matrix of size MB*NB values. For simplicity, this

paper will only cover the case where the processor grid,

without the checksum row and column, is square P by P.

Additionally, the blocking is assumed to be square. In other

words MB equals NB. Finally, for ease of implementation,

the matrix is assumed to be evenly divisible into blocks, i.e.

the modulus of N by NB is zero. While these assumptions

greatly ease the implementation, this method can still be

used for Cholesky factorizations where these conditions do

not hold. However, the demonstration of the extension of

this method for other conditions will be contained in future

work.

The first step in the algorithm is to perform a checksum

by two reductions of the values in each processor column

and row into the checksum row and column respectively. The

reduction can be done as first a row-wise sum reduction, and

then a column-wise sum reduction. This means the reduction

will actually be checksumming data from nonadjacent parts

of the global matrix into the checksum matrix. However, as

the checksum is in the respective positions of each local

matrix, the overall global matrix checksum is preserved.

Also note that this step needs to be performed whether a

failure occurs or not, but it only occurs once per execution of

the algorithm. The reduction can be done via either pipeline

method or binomial tree method, depending on which is

faster, based on the number of elements each process holds

and the network parameters.

With additional modification to the Cholesky low level

block details, it would be possible to only use a check-

sum row without a checksum column. However, for ease

of implementation and as future work will require this

extra column for two failure recovery, this algorithm will

include both checksum row and column. The inclusion

of the checksum column eases the implementation as the

current ScaLAPACK Cholesky routine, PDPOTRF, requires

a square, symmetric matrix. If only a checksum row were

added, the matrix would no longer be square, and thus

would no longer be symmetric. However, with the checksum

row and column the matrix forms into a N+MXLLDA by

N+MXLLDA matrix, where MXLLDA is the number of

elements in one row or column of the submatrix stored on

one processor. MXLLDA will be the same as NB only in the

case that each processor holds only one block, as opposed

to the widely used block cyclic techniques. Most of the time

MXLLDA will be larger than NB.

The execution of the Cholesky routine proceeds just as

a normal blocked outer product routine would with the

following exception: every P iterations, when a checksum

block would be the next block to be used as the matrix

diagonal, the algorithm will jump to the next iteration.

As such, no additional iterations will be performed in the

running of the Cholesky routine. However, each iteration

may take longer due to the additional communication and

time due to the existence of the checksum row and column.

Other than this, the Cholesky routine functions as a standard

block cyclic routine, such as is found in ScaLAPACK’s

PDPOTRF.

After any given iteration of the inline algorithm, the global

matrix will contain three different parts. Figure 2 shows

the breakdown of a matrix after one iteration. Specifically,

in the inline algorithm, one part will consist of the partial

result matrix L, the unfactorized part B, and data that is

no longer used. The L portion of the matrix actually holds

the partial result of the matrix L. This section is all in the

lower triangle, and expands from its more filled columns

to less filled columns. The second part is the B matrix,

which contains the yet to be factorized part of the matrix.

This is always a square section consisting of the lower right

corner of the global matrix, from one column to the right of



Figure 2. Global Matrix of a 6x6 checksum matrix in a 4x4 processor grid after one iteration. The block size is 1. Green shows parts of L. Blue shows
valid data in B. Red shows parts of B that are invalid. Orange shows n longer needed sections.

the end of L. In theory this is a symmetric matrix, though

in ScaLAPACK the symmetry is not naturally maintained

and need not be maintained for the algorithm to work.

Specifically, this is because the division by the diagonal

element through a row can be combined in a single loop

with the updating of the b vector, which is the vector that

is a precursor to the next column of L. As it is a symmetric

matrix, the other half of the matrix can be used to calculate

the L matrix as necessary, and therefore updating the upper

triangle of B is not necessary. As such, the B matrix will

not be symmetric for most of the execution. The rest of

the matrix is no longer used. This is the remaining section

of the matrix, which forms something that looks like the

transpose of L minus the diagonal. A sample matrix is

provided showing the progression of the matrix parts through

three iterations, starting with the second iteration. The first

iteration is often handled separately as additional checks are

taken. As such, this is how ScaLAPACK’s routine is shown,

and for convenience the second iteration is shown first.

The row checksums are maintained differently based upon

what section of the matrix they are in. For data that is in the

L section of the matrix, the checksum is the sum of the entire

column of corresponding local entries up until the diagonal.

For data in the B section of the matrix, the checksum will

be the sum of the elements in the column of the B matrix,

including those past the diagonal. However, these elements

must be of the true, symmetric B matrix rather than the

undefined data that results from the ScaLAPACK routine.

For data in the no longer used section of the matrix, no

checksum is maintained and it need not be. If a piece of

data is destroyed in this section, it can be ignored or set to

zero.

This view is valid from the standpoint of the global view

of the matrix. However, in a block cyclic distribution, one

processor may contain data from all three sections. Thus,

upon a failure, each element must be examined individually

to determine how it should be recovered. One common

framework that eases the complexity of recovery is if the

entire matrix is a state where checksums match up by the

respective elements of the column above them. The goal of

this is simply to be able to do a reduction on the column to be

able to recover the data. In order for this to work, elements

of the unused section of data must be set to zero so as to have

no effect, and the data of the checksum processors should be

negated. In this formation, the result of a sum reduction will

either be the values for the data if the processor that failed

was a contained a checksum, or the negation of values for

the data in all other cases. As a reduction is to be performed,

this should not occur in the original matrix, but rather in a

’work’ matrix that will be used by the reduction call.

When a failure occurs, the algorithm restores the values of

the failed data to the failed processor. In order to do this, the

following preconditions must be met: the row and column of

the failed processor must be known, it must be assumed that

no additional processors will fail during recovery, a copy of

the most recent version matrix being operated on must be

available where no items have been changed since the last

recoverable point, and knowledge of what the last successful

iteration of the Cholesky routine was. When a processor

fails, due to the block cyclic nature of the data structure, it is

possible for multiple blocks of data to need to be recovered

from different parts of the matrix. However, they will all

be held on processors that have either a process row or

processes column that is the same as the process column

of the failed processor.

B. Transpose Method

A stable method to compute the data lost due to failure is

to perform a transpose of elements needed and then reduce

column wise. The first step is to zero all elements that

are above the diagonal in the process column of the failed

processor. The next step is to make the B section symmetric

for the column of the failed processor. This can be done

through several methods. The naïve method is to copy the

matrix, zero out all but the b section, take the transpose, zero

the diagonal in the transpose, and then add the transpose

back to the original matrix. Unfortunately, in ScaLAPACK

taking the transpose of a matrix requires using PDGEMM.



Figure 3. Status of global matrix after two step iterations of the Cholesky algorithm.

Figure 4. Status of global matrix after three step iterations of the Cholesky algorithm.

if Local Node Failed then
Data ← 0

end if
if Above Diag AND Column = Failure Column then

Receive(Data, Transpose)

end if
if Below Diag AND Row = Failure Column then

Send(Data, Transpose)

end if
if Column = Failure Column then

if Row = Checksum Row then
ColumnReduce(FailureRow,−Data)

else
ColumnReduce(FailureRow, Data)

end if
end if

Figure 5. The steps performed by each node to recover from a failure.
Data is the local data matrix, Row is the processor row, Column is
processor column, Failure Row and Column are the row and column of
the failed node. Send, Receive, and ColumnReduce represent calling the
MPI functions buffered appropriately for the size of data within the implied
communicator.

The recovery method would be as computationally expensive

as redoing the problem if it is necessary to transpose the

whole matrix. Instead, it is possible to transpose only part

of the matrix, the B section, which makes for significant

savings if the failure occurs later in the process.

In a square matrix, with square blocks, in a square process

grid, it is possible to transpose more easily by trading

data between transposed processors in the process grid.

While this seems like a straightforward method, one needs

to consider that after the data is received it needs to be

transposed within the cell and zeroed if it is not part of

the B matrix going forward. This is shown in figure 8 and

figure 9. This process is more complicated if the blocks are

not square.

III. IMPLEMENTATION

In order to evaluate the method, two separate functions

were compared for doing the Cholesky factorization. The

first, PDPOTRF, is the ScaLAPACK function for doing

Cholesky factorization. In order to simulate a failure, a sec-

ond Cholesky factorization routine was written that assumes

the full matrix with checksum row and column are given

as parameters. During this method, it skips any data blocks

along the diagonal that belong to the checksum processes.

At the end of the method, the contents of the first P-1 by

P-1 processor contents are examined to verify they match

the result from a standard call to PDPOTRF on the matrix

without the checksum processes. To verify correctness, small

scale tests were run and the sum of squared error of original



Figure 6. A checksum matrix in the transpose method with block size of 2, yellow and white. The yellow and white has been left on the horizontal row
to show that the data has come from the transpose. In general, it is easier and not much more costly to transpose the entire B matrix as opposed to just
the failed processor column.

Figure 7. The local view of the global matrix shown in figure 6.

matrix values versus recovered matrix values was calculated.

For matrices on the order of ten by ten or less, the residual

was on the order 10−30. Unfortunately, verifying accuracy

in this manner does not scale well as the size of the matrix

increases. For the larger tests, comparing the one norm of the

residual divided by the one norm of the original matrix, the

recovery routine was verified to be accurate and scalable.

This method has three additional parameters that specify

where and when a failure occurs. Specifically, it takes the

row and column of the process to fail and the iteration

failure will occur. There are weaknesses to this simulation

approach, specifically that in a real recovery routine, it would

be required to use the local copy of the matrix saved after

every iteration. This is also not adequate to do a full scale

simulation assuming an exponential distribution of failure.

However, it successfully tests that the recovery method

works and the time required to recover by this method.

The recovery function has two phases. In the first phase

it sets up the checksum recovery so as to make a column

reduction to the failed processor provide all the data needed

to recover. In the second phase, the actual reduction occurs

and the failed processor uses the data to reset its values in

the global matrix.

The first phase requires that each processor go through

its elements and determine which will be necessary for

recovery. In the end, this will be maintained in a temporary

matrix, which will in turn be used to perform the reduc-

tion. Improvements in the future might include looking at

multiple reductions for individual segments of data to be

communicated rather than analyzing the whole local matrix.

However, for now, the local matrix is analyzed and separated

as follows. In the first step, all matrix elements that are in

the upper triangle of the global matrix are set to zero in

the temporary matrix, and the ones in the lower triangle are

copied into the temporary matrix. The checksum columns

are copied in as the negation of their value in the original

matrix. The negation is stored such that with a summation

reduction call, the value in the failed process will be the

negation of the value it should recover to without having to

do a second reduction against the checksum row. In the case

that it is a processor in the checksum row that has failed, then

the value in the failed process after the reduction is complete

will be the value it should have, and not its negation.

In the inline blocked version of the Cholesky factorization,

the L matrix expands by NB columns with each iteration,

and subsequently the B matrix shrinks by NB columns (and

thus NB rows as well since it is square). Keeping track of

the current section of the matrix that is in B versus L is vital,



Figure 8. The overall block ownership by processor in the global grid for the earlier figures. Each color represents a processor and each square represents
a block that belongs to the processor which it is colored. The labeled blocks show an example that each processor will only communicate at most with
one other processor when all is square. For those on the diagonal, it can be seen that they only communicate with them self, either on the diagonal, or
from one corner to another.

Figure 9. The actual blocks for the processors shown from the example. The labeled numbers correspond to the labeled blocks in the earlier figure. The
communicated data will have to be transposed block wise to fill the invalid data with valid data. Also, note that each processor must both send and receive
data, though one has more valid data to send than the other.

as the remainder should be ignored or zeroed. Additionally,

since the B section of the matrix is not symmetric in

ScaLAPACK, it is first necessary to get the transpose of this

section of the matrix, find its transpose (minus the diagonal),

and add it back to the temporary matrix.

In the second stage, a column-wise by process grid

communicator is established. If the column contains the

failed process, then a summation reduction is performed.

At this point the result matrix is retasked for the purpose of

storing the reduction result. The value in the reduction result

then needs to be processed and put into the original matrix.

In the case that the failed process is in the checksum row,

no processing is necessary and it can be simply be copied

in. If it is any other row, as discussed before, the negation of

the value in the result matrix must be put into the original

matrix. Upon completion of this step, the original matrix is

recovered.

IV. EVALUATION

The implementation was tested on square process grids

with process grid sides, P, of 4, 5, 6, 7, and 8. The

processors exist on nodes with 8 processors per node. The

processors are 2.66 GHz with 16GB of memory shared

by the processors on each node. As not all grid sizes fit

evenly on processors, the processors were selected so as to

minimize the number of nodes required. The work was done

on a dedicated cluster environment for high performance

computing so as to minimize the impact of other processes

on the evaluation of the algorithm. Each processor held a

local sub-matrix with 5000 by 5000 elements, using blocking

of 100 by 100. The initial symmetric positive definite matrix

was created by constructing a matrix on a sub-grid of size P-

1 by P-1 containing pseudo random double precision values

between zero and one, and then multiplying the transpose of

that matrix against itself. Thus, the initial matrix for the 4 by

4 grid would have a process grid of 3 by 3, and a total size of

15000 by 15000 double precision elements. This matrix size

was selected as it resulted in a maximum memory utilization

by node of about 80 percent. A sample memory utilization

graph is presented in figure 10.

Figure 10. Memory usage on single node from execution beginning.

The program run consisted of a test of twenty runs

of FTPDPOTRF on the full matrix and twenty runs of

PDPOTRF on the initial matrix. In the case of the FT-

PDPOTRF runs, one failure was simulated on each run and



Figure 11. Memory usage on single node showing execution finish.

the time taken in the recovery routine was captured. As

there was additional time required to capture the failure time

and verify the result, the total time for FTPDPOTRF was

exaggerated and thus the recovery time will be estimated by

the direct time for the recovery rather than the difference

between the whole run and that of PDPOTRF. However,

the overhead was calculated on these values regardless to

show a worst case comparison. In all programs, the first

run was discarded as the startup time was highly variable,

leaving results on the remaining nineteen. The result of the

runs by processor were averaged, as is noted on figure 15.

The 90 percent confidence intervals shown were calculated

assuming a normal distribution as it is estimating a mean

with several samples. The results suggest that the execution

of the FTPDPOTRF are slower, but on the same order of

time required to perform the standard function PDPOTRF

for the initial matrix.

Figure 12. Trend for Time for Initial Checksum vs. Process Grid Side
Size

Another question of overhead relates to the generation

of the checksum in the checksum row and column. In this

algorithm, this operation only needs to be performed once

and requires two reduce calls. A sample time by process size

to do this checksum using the default MPI Reduce function

is shown in figure 12. As can be seen, this amount is

increasing relative to the process grid size, but only requires

a small fraction of the processing of the routine in general.

Thus, while it does contribute to the initial overhead, it does

not change order of the overall execution time. Depending

on the matrix and network characteristics, this could be

improved using a different reduce function implementation.

Figure 13. Average Recovery Time in Algorithm vs. Process Grid Side
Size

An additional concern was the time required to recover

from a failure. Figure 13 shows the recovery times based on

process grid side size for FTPDPOTRF. Since the recovery

time is much less than the time to re-perform the entire

function, this method indeed shows promise to improve ex-

pected execution times. It should be noted that the sum of all

the additional overhead does not quite equal the difference

in running time between FTPDPOTRF and PDPOTRF in

figure 15. This is due to additional result validation steps

that explore the accuracy of the recovery algorithm when a

failure occurs, but for actual use this validation should be

removed. Regardless, even with this additional validation,

FTPDPOTRF is on the same order as PDPOTRF. As the time

spent in overhead is increasing linearly while the algorithm

is increasing more than quadratically, the overhead as a

percent of total runtime is trending to reduce as the matrix

grows, as can begin to be seen in figure 14.

The accuracy of the recovery routine was verified by

comparing the resulting matrix with a copy of the matrix

saved before the fault is simulated. During the simulation of

the fault, all entries in the local submatrix of the simulated

failed processor are set to zero. After the routine completes,

the one norm of the residual was taken and divided by

the one norm of the initial matrix. For all process grid

sizes, this value was much less than one and decreasing as

shown in table I. As such, this is a sign that the method is

numerically stable, though future tests with increasing scales

will continue to be monitored to verify this. Additionally, an

element by element comparison was done on a small scale

problem to verify the accuracy.



Figure 14. Trend of Average Overhead as a Fraction of Total Function
Runtime vs. Process Grid Side Size

Figure 15. Average Total Runtime of FTPDPOTRF (on P by P) compared
with PDPOTRF (on P-1 by P-1) vs. Process Grid Side Size (P)

V. CONCLUSION

The results indicate that this method of algorithmic re-

covery executes on the same order as the existing non-

fault tolerant PDPOTRF. The overhead scales well in that

it will grow linearly in relation to the size of the side of the

process grid, whereas the process grid grows quadratically.

Thus, the overhead will reduce with respect to execution

time for increasing process grid sizes. The runtime of the

Process Grid Side Accuracy
4 0.164
5 0.031
6 0.020
7 0.014
8 0.010

Table I
NORM OF RESIDUAL MATRIX AFTER RECOVERY DIVIDED BY NORM OF

ORIGINAL MATRIX.

recovery algorithm is significantly smaller than the time

to re-perform the entire factorization. Furthermore, as the

recovery algorithm never accesses more than a constant

factor of processors in respect to the process grid side size,

the recovery time should not grow as fast as the process

grid.

Future research will explore a full analytical approach to

the analysis of the runtime of this algorithm to verify this.

Additional research will also study the effect of process

grid size on the overhead and recovery time of this algo-

rithm. Another avenue to be explored will be to simulate

a more appropriate failure model, such as an assumption

of a constant failure rate. The performance could then be

compared to the expected to existing diskless checkpointing

schemes and previous algorithmic approaches to ascertain

under what parameters each performs best. Another potential

area of research is the development of this method for

multiple failures, as other research demonstrates is possible.

Expanding this technique to QR and other commonly used

factorizations needs to be researched. Finally, as this has

already been implemented for ScaLAPACK for certain ideal

circumstances, development of a more robust implemen-

tation as well as use of MPI implementations with fault

tolerant capabilities should be utilized to form a functioning

system.

ACKNOWLEDGMENT

The authors would like to thank the anonymous peer

reviewers for their suggestions that aided in improving this

paper.

REFERENCES

[1] A. A. Al-Yamani, N. Oh, and E. J. McCluskey, “Perfor-
mance evaluation of checksum-based abft,” Defect and Fault-
Tolerance in VLSI Systems, IEEE International Symposium
on, vol. 0, p. 0461, 2001.

[2] J. Anfinson and F. T. Luk, “A linear algebraic model
of algorithm-based fault tolerance,” IEEE Trans. Comput.,
vol. 37, no. 12, pp. 1599–1604, 1988.

[3] R. Banerjee and J. A. Abraham, “Bounds on algorithm-based
fault tolerance in multiple processor systems,” IEEE Trans.
Comput., vol. 35, no. 4, pp. 296–306, 1986.

[4] P. Banerjee, J. T. Rahmeh, C. Stunkel, V. S. Nair, K. Roy,
V. Balasubramanian, and J. A. Abraham, “Algorithm-based
fault tolerance on a hypercube multiprocessor,” IEEE Trans.
Comput., vol. 39, no. 9, pp. 1132–1145, 1990.

[5] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou,
“Algorithm-based fault tolerance applied to high performance
computing,” Journal of Parallel and Distributed Computing,
vol. 69, no. 4, pp. 410 – 416, 2009. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/B6WKJ-
4V8GB44-2/2/2658d9756341bece20e06d1485456678



[6] Z. Chen and J. Dongarra, “Algorithm-based checkpoint-free
fault tolerance for parallel matrix computations on volatile
resources,” Parallel and Distributed Processing Symposium,
International, vol. 0, p. 76, 2006.

[7] Z. Chen and J. Dongarra, “Algorithm-based fault tolerance
for fail-stop failures,” IEEE Transactions on Parallel and
Distributed Systems, vol. 19, no. 12, pp. 1628–1641, 2008.

[8] Z. Chen, “Optimal real number codes for fault tolerant
matrix operations.” in Proceedings of the ACM/IEEE SC09
Conference. ACM Press, 2009.

[9] J. Choi, J. J. Dongarra, L. S. Ostrouchov, A. P. Petitet, D. W.
Walker, and R. C. Whaley, “Design and implementation of
the scalapack lu, qr, and cholesky factorization routines,” Sci.
Program., vol. 5, no. 3, pp. 173–184, 1996.

[10] E. N. Elnozahy and J. S. Plank, “Checkpointing for peta-scale
systems: A look into the future of practical rollback-recovery,”
IEEE Trans. Dependable Secur. Comput., vol. 1, no. 2, pp.
97–108, 2004

[11] G. E. Fagg, E. Gabriel, Z. Chen, T. Angskun, G. Bosilca,
J. Pjesivac-grbovic, and J. J. Dongarra, “Process fault toler-
ance: semantics, design and applications for high performance
computing,” in International Journal for High Performance
Applications and Supercomputing, 2004, p. 2005.

[12] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Don-
garra, J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett,
A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Graham,
and T. S. Woodall, “Open mpi: Goals, concept, and design
of a next generation mpi implementation,” in In Proceedings,
11th European PVM/MPI Users Group Meeting, 2004, pp.
97–104.

[13] D. Hakkarinen and Z. Chen, “N-level diskless checkpointing,”
High Performance Computing and Communications, 10th
IEEE International Conference on, vol. 0, pp. 384–391, 2009.

[14] K.-H. Huang and J. A. Abraham, “Algorithm-based fault
tolerance for matrix operations,” IEEE Transactions on Com-
puters, vol. C-33, no. 6, pp. 518–528, June 1984. [Online].
Available: http://dx.doi.org/10.1109/TC.1984.1676475

[15] Y. Kim, J. S. Plank, and J. Dongarra, “Fault tolerant matrix
operations using checksum and reverse computation,” in 6th
Symposium on the Frontiers of Massively Parallel Computa-
tion, Annapolis, MD, October 1996, pp. 70–77.

[16] J. Plank, K. Li, and M. Puening, “Diskless checkpointing,”
Parallel and Distributed Systems, IEEE Transactions on,
vol. 9, no. 10, pp. 972–986, Oct 1998.

[17] D. Tao, C. Hartmann, and Y. S. S. Han, “New encod-
ing/decoding methods for designing fault-tolerant matrix op-
erations,” IEEE Transactions on Parallel and Distributed
Systems, vol. 7, no. 9, pp. 931–938, 1996.

[18] L. N. Trefethen and D. Bau, Numerical Linear
Algebra. SIAM: Society for Industrial and
Applied Mathematics, June 1997. [Online]. Available:
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-
20&path=ASIN/0898713617

[19] N. H. Vaidya, “A case for two-level distributed recovery
schemes,” in In ACM SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systems, 1995, pp. 64–73.

[20] N. H. Vaidya, “Another two-level failure recovery scheme,”
College Station, TX, USA, Tech. Rep., 1994.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


