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Abstract—With the advent of powerful network processors (NPs) in the market, many computation-intensive tasks such as routing

table lookup, classification, IPSec, and multimedia transcoding can now be accomplished more easily in a router. An NP consists of a

number of on-chip processors to carry out packet level parallel processing operations. Ensuring good load balancing among the

processors increases throughput. However, such multiprocessing also gives rise to increased out-of-order departure of processed

packets. In this paper, we first propose an Ordered Round-Robin (ORR) scheme to schedule packets in a heterogeneous NP

assuming that the workload is perfectly divisible. The processed loads from the processors are ordered perfectly. We analyze the

throughput and derive expressions for the batch size, scheduling time, and maximum number of schedulable processors. To effectively

schedule variable length packets in an NP, we propose a Packetized ORR (P-ORR) scheme by applying a combination of deficit

round-robin (DRR) and surplus round-robin (SRR) schemes. We extend the algorithm to handle multiple flows based on a fair

scheduling of flows depending on their reservations. Extensive sensitivity results are provided through analysis and simulation to show

that the proposed algorithms satisfy both the load balancing and in-order requirements for parallel packet processing.

Index Terms—Network processor, out of order, scheduling, round-robin.

Ç

1 INTRODUCTION

THE next generation Internet is being designed to serve
diverse content-aware applications instead of passively

carrying packets from one node to another. These services
demand service-differentiated and application-oriented
processing at network nodes with quality of service (QoS)
provision. Given the processing power limitation of single
processor and the inherent parallelism associated with
network traffic, parallel processing is becoming increasingly
attractive.

Application-oriented services often carry stringent per-

formance requirements, which are increasingly handled by

multicore processors. As such, several companies have

introduced powerful network processors (NPs) that can be

placed in routers to execute various tasks in the network.

These tasks can range from IP level table lookup algorithm to

application level multimedia transcoding applications. Such

an NP-based router permits sophisticated computations

within the network by allowing their users to inject

customized programs into the nodes of the network [1]. An

NP provides the speed of an ASIC and at the same time is

programmable. Each NP consists of a number of on-chip

processors that can provide high throughput for network
packet processing and application level tasks [2], [3], [4].

However, processing of packets belonging to the same
flow by different processors gives rise to out-of-order
departure of the packets from the NP and incurs high
delay jitter for the outgoing traffic. For TCP, it has been
proved that out-of-order transmission of packets is detri-
mental to the end-to-end performance [5]. Although TCP is
designed to handle reordering, this involves additional
processing at the TCP end points. TCP for Persistent
Reordering (TCP-PR) [6] is a variant of TCP that attempts
to improve TCP performance in the presence of persistent
reordering phenomena. TCP-PR is a software-based solu-
tion and thus is restricted only at the end hosts. For many
applications like multimedia transcoding and VoIP, it is
imperative to minimize this out-of-order effect because the
receiver may not be able to reorder them easily to tolerate
high delay jitter. Therefore, efficient packet scheduling is
necessary in order to guarantee both high throughput and
minimal out-of-order delivery of packets. However, these
two goals are contradictory to each other because schedul-
ing on more processors improves throughput but also
increases the out-of-order delivery of packets.

A plethora of scheduling schemes for multiprocessors has
been proposed in parallel processing community. Examples
of such schemes vary from simple static policies, such as
round-robin (RR) or random distribution policy [1], [7], [8] to
sophisticated adaptive load-sharing policies [9], [10], [11].
However, only simple policies such as RR are employed in
practice because adaptive schemes are difficult to implement
and involve considerable overhead. We have shown that
RR is simple and fast but provides no guarantee to the
playback quality of output streams of video signals because
it causes large out-of-order departure of the processed
media units [10]. Adaptive load-sharing scheme, which we
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implemented from the literature [9], achieves better unit
order in output streams but involves higher overhead to
map the media unit to an appropriate node.

Packet scheduling in an NP [9], [12], [13], [14] can be
considered as similar to link aggregation techniques that
employ multiple physical links from a source to the same
destination. In fact, if the time for packet processing on a
processor is replaced with an estimated transmission time
of a packet, the two problems are equivalent. A practical
link striping protocol, called surplus RR (SRR), is proposed
by Adiseshu et al. [15] to schedule variable length packets
over multiple links with different capacities. They also
demonstrate that striping is equivalent to the classic load-
balancing problem over multiple channels. They solve the
variable packet size problem by transforming a class of fair
queuing algorithms into load-sharing algorithms at the
sender. Although their solution is elegant and efficient, it
does not consider the transmission order among the packets
in different channels. Hence, the receiver needs to run a
resequencing algorithm to restore the packet order in the
original flow. A strict synchronization between the sender
and the receiver is difficult to implement. Cobb and Lin
considered several sorting techniques in their paper [16] to
avoid packet reordering that require access to upper layer
protocol headers and thus potentially incur significant
overhead. Moreover, the time to move packets between
the single input/output port of the sender/receiver and
different channels is assumed to be negligible in most of the
channel striping papers. There should at least be a time
overhead in executing the scheduler at the IP level
processing, which is appropriately modeled in our scheme.

The aim of this paper is to derive an efficient packet-
scheduling algorithm in an NP that comprises a number of
processors for packet processing. It should provide 1) load
balancing for processing variable length packets using a
group of heterogeneous processors and 2) in-order delivery
of packets without considering receiver’s rearranging cap-
ability. We derive an Ordered RR (ORR) algorithm that
considers a backlogged queue and can be adapted to
dynamic arrival of packets. Like other packet scheduling
algorithms such as RR/SRR, ORR is essentially a scheduler-
based algorithm. Most of the sequence control schemes [17],
[18] in the literature are based on maintaining extra sequence
number or pointers in the packets. Our goal, however, is to
minimize packet out of order without incurring extra
overhead and without throughput degradation. All the
control is at the scheduler and there is no extra mechanism or
information maintained to keep the sequence.

The Divisible Load Theory (DLT) [19], [20] develops
scheduling assuming that the workload is perfectly divi-
sible for such distribution among the processors, so that all
processors finish at the same time. It considers hetero-
geneous processors and different communication times to
send data to those processors. DLT is particularly suitable
for data parallel operations, where the volume of data can
be perfectly distributed without causing any error. DLT is
highly applicable in parallel processing of many applica-
tions [21]. In this paper, we demonstrate its possible use in
an NP. As required for packet processing over multiple
processors, DLT has to be tuned to consider sequential

ordering of the packet transmission times. Our algorithm
schedules the packets in batches by computing the minimal
batch size, scheduling time, and number of schedulable
processors given the maximum packet size and processing
rates. A batch is similar to the concept of time epochs when
scheduling is done. Several interesting results are derived
regarding scalability of our algorithm.

Expressions for load distribution in heterogeneous
processors are derived first by assuming that the schedul-
able workload is perfectly divisible in bytes. Since the
arriving packets cannot be distributed to different proces-
sors in bytes, we derive a packetized version of the ORR
algorithm by applying a combined version of deficit RR
(DRR) and SRR algorithms [22], [15]. The Packetized ORR
(P-ORR) algorithm produces better results in terms of
throughput and out-of-order rate compared to RR and pure
SRR schemes. To completely eliminate packet out of order,
we propose a complement method to be used along with
the P-ORR main algorithm. We then extend the P-ORR
algorithm to handle multiple flows having reservations to
satisfy both load balancing and fair scheduling require-
ments. We revise expressions of the batch size and packet
dispatching condition to reflect the new requirement.
Finally, we perform a number of simulations and sensitivity
studies to verify the accuracy of our theory and obtain
performance over wide-ranging input parameters.

The rest of this paper is organized as follows: In Section 2,
we present the preliminaries and certain design issues in an
NP. In Section 3, we design the ORR algorithm by giving
theoretical derivation and analysis. In Section 4, we propose
and design a packetized version of the ORR algorithm
named Packetized-ORR (P-ORR) to deal with variable
length packets. In Section 5, we present how to achieve
fairness among multiple network flows using P-ORR.
Simulation results are presented in Section 6 in comparison
with several other schemes. Finally, in Section 7, we
conclude this paper with future possible extensions related
to this paper.

2 FIFO PACKET SCHEDULING FORMULATION

Fig. 1 illustrates the multiprocessor architecture model of a
router using an NP. The NP consists of one dispatching
processor pd, a few worker processors, p1 through pM , and a
transmitting processor pt. Intel IXP NP divides its set of
microengines this way for packet processing [2]. The
dispatching and transmitting processors communicate with
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the I/O ports sequentially. The dispatching processor pd
implements the scheduling algorithm to split incoming
traffic among the M worker processors for parallel packet
processing. The transmitting processor pt simply receives
packets from processors p1 to pM on a First-Come-First-
Serve (FCFS) basis and combines the traffic back into a
single stream onto the output port. The aim of the packet
scheduling algorithm is twofold: 1) the input load is
balanced among the processors p1 through pM and 2) the
flow order is maintained when the packets are transmitted
to the transmitting processor pt. In this paper, it is
assumed that the packet processing time is proportional
to the packet length. There are many scenarios, such as
multimedia transcoding and crypto-based processing,
which fall into this category. For others where the packet
processing time is not directly related with packet size,
some researchers have proposed processing time estimation
or prediction mechanisms [23].

A similar problem called channel striping has been
addressed in the literature by Adiseshu et al. [15]. There are
N channels between the sender and the receiver. The sender
implements the striping algorithm SRR to stripe incoming
traffic across the N channels, and the receiver implements a
resequencing algorithm to combine the traffic into a single
stream. The striping algorithm aims to provide load sharing
among multiple channels. It does not consider the transmis-
sion order among the packets in different channels. Hence,
the receiver needs to run a resequencing algorithm to
restore the packet order in the original flow. A strict
synchronization between the sender and the receiver is
difficult to implement.

Although the packet scheduling problem looks different
from the channel striping problem, there are many simila-
rities. First, in channel striping, the packets are transmitted
in the channels. In NPs, the packets are processed on the
worker processors. These two times are equivalent and
proportional to the load size in bytes. Second, in channel
striping, the time to move packets from the single input port
to different channels is assumed to be negligible in [15].
Actually, there should be a time overhead in executing SRR
at the IP level processing. As for packet scheduling in an NP,
the time to move packets from the dispatching processor to a
worker processor cannot be ignored because of the time
taken by the dispatching processor and the transmission
between the two processors. Finally, the transmitting
processor in an NP removes the packets from the worker
processors on an FCFS basis, whereas the receiving
processor in the striping model executes a resequencing
algorithm. Hence, the models developed in this paper are

applicable both to packet processing in an NP or packet
transmission over multiple channels.

For the rest of this paper, we will explain our models/
algorithms just in terms of NPs without loss of generality.
To describe the whole procedure experienced by one
packet when it is processed in an NP, there are three steps:
1) D-step: the dispatching processor dispatches the packet
to a worker processor, 2) P-step: the worker processor
processes the packet, and 3) T-step: the worker processor
sends the packet to the transmitting processor. Corre-
spondingly, in the channel striping problem, only one step,
namely P-step, is modeled, if we consider transmission of
a packet as a type of processing. Hence, the packet
scheduling problem in an NP is more complicated.

We start by exploring how DLT works for scheduling the
traffic. As suggested by the DLT literature [20], in order to
obtain minimal processing time, it is necessary and sufficient
that all the participating processors finish processing at the
same time instant. This condition is referred to as an
optimality principle and serves as a baseline of the load
distribution strategies. In this way, the traffic is well
balanced across the processors and the communication
bandwidth is fully utilized. However, if we take a look at
how such a scheme works by observing the packets at the
output port, some problems are evident. As shown in Fig. 2,
all processors complete processing at the same time and
thus intend to deliver packets to the transmitting processor
simultaneously. Such a simultaneous completion pattern
causes concurrent data delivery at the output port. As a
result, uncontrollable interleaving among packets is in-
curred and the problem deteriorates as the number of
worker processors grows.

Thus, instead of letting all the processors complete
processing simultaneously, we propose a sequential comple-
tion pattern for packet transmission to ensure in-order data
delivery at the output port, as illustrated in Fig. 3. Let there be
M worker processors, each processor pi, 8i, first receives
some packets from the dispatching processor pd (D-step),
then processes these packets (P-step), and finally sends the
packets to the transmitting processor pt (T-step) sequen-
tially. We propose to let the dispatching processor dis-
tribute the packets among the M worker processors from p1

to pM in such a way that each processor completes
processing sequentially. In another word, the worker
processor pi for i ¼ 2 � M starts delivering the packets to
the pt immediately after pi�1 completes its T-step. Note that
such a sequential completion pattern for packet processing
ensures in-order packet delivery at the output port;
however, the actual processing on different processings is
essentially in parallel. In this way, packet sequence is
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maintained at the output port, as well as the load is
balanced among multiple processors. We name this
scheduling algorithm ORR as it dispatches the packets in
an RR manner while ensuring packet order. A nice property
of the above model is that sequential data delivery is
achieved without any additional control. Simply by arran-
ging the dispatching and processing phases, a scheduling
algorithm is obtained.

To design a practical algorithm, a number of issues need
to be addressed. First, how many packets should be
dispatched to each processor to produce the desired
pattern? Second, what if the packets are of variable lengths?
Third, given any NP configuration and packet arrival
pattern, can we always find a way to schedule packets in
such a sequential delivery pattern? Fourth, how can we
ensure fair scheduling among multiple flows having
different reservations? The rest of this paper attempt to
analyze the situations and provide answers to the above
questions.

Table 1 defines the notations that are used in this
paper. First, we devise an ORR algorithm assuming that
the workload is perfectly divisible. In the theoretical
approach, a load distribution is first determined to
produce the sequential scheduling pattern in one schedul-
ing round. To further enable dynamic scheduling, we
derive expressions for the minimal batch size and the batch
size based on the maximal possible packet length. Then,
the complete ORR algorithm is designed to schedule
packets over multiple scheduling rounds taking extra care
to ensure the sequential delivery of multiple batches of
data. The scalability of the ORR algorithm is analyzed
and important conclusions are reached. To schedule
variable length packets, a packetized version of the ORR
algorithm (P-ORR) is devised based on the combination of
DRR and SRR. In this way, we always minimize the
absolute difference between the actual load distribution
and the ideal load distribution. Finally, the P-ORR
algorithm is extended to handle multiple flows having
reservations.

3 ORDERED ROUND ROBIN

In this section, we formulate a theoretical model for the
general packet scheduling problem in an NP and develop
a load scheduling algorithm ORR to produce a scheduling
pattern described in Fig. 3. There are two design goals for
ORR. The first is to ensure load balancing for a group of
heterogeneous processors. The second is to ensure strict in-
order delivery of packets. In the following derivation, we
assume that the input load is divisible at the granularity of
1 byte.

3.1 Optimal Load Distribution for a Single Round

For an NP, we set up the following mathematical model
for ease of theoretical analysis. As shown in Fig. 4, there are
ðM þ 2Þ processors and 2M links inside the router. The
worker processors p1; p2; . . . ; pM are connected to the dis-
patching processor pd via links lr;1; lr;2; . . . ; lr;M . Meanwhile,
each worker processor has a direct link ls;i to the transmitting
processor pt. The dispatching processor pd receives packets
from the input link, divides the input load into M parts, and
then distributes these load fractions to the corresponding
worker processor. Each worker processor pi, upon receiving
its load fraction �i, starts processing immediately and
continues to do so until this fraction is finished. Finally,
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pi sends the processed fraction to the transmitting
processor pt via link ls;i. Note that �i is the fraction of load
assigned to pi such that 0 � �i � 1 and

PM
i¼1 �i ¼ 1. For

simplicity of the equations, all the above rates are defined
with a dimension of seconds per byte, which is the inverse of
the actual communication/processing bandwidth.

As illustrated in Fig. 5, the load is partitioned among
processors such that all the worker processors stop
processing sequentially and, therefore, deliver the pro-
cessed fractions to the transmitting processor sequentially.
That is, worker processor piþ1 starts delivering the packets
to the output port only after and right after pi completes its
delivery. All the packets are processed in parallel and are
sent to the output port in order without any break. In this
way, we eliminate the out-of-order packet delivery. To
achieve such a sequential delivery pattern, we obtain the
following recursive equations for i ¼ 1; . . . ;M � 1 from the
timing diagram:

Pi þ Ti ¼ Diþ1 þ Piþ1: ð1Þ

As defined in Table 1, Di, Pi, and Ti are time durations
for pd to dispatch Qi onto pi, for pi to process Qi, and for pi
to send Qi to pt, respectively. That is, Di ¼ �iBzr;i,
Pi ¼ �iBwi, and Ti ¼ �iBzs;i assuming a batch size B. These
recursive equations can be solved by expressing all the
�i ði ¼ 1; . . . ;M � 1Þ in terms of �M and using the normal-
izing equation

PM
i¼1 �i ¼ 1, i.e.,

�i ¼ �M
YM�1

v¼i
�v; i ¼ 1; . . . ;M; ð2Þ

where

�M ¼
1

1þ
PM�1

u¼1

QM�1

v¼u
�v

; �v ¼
zr;vþ1 þ wvþ1

wv þ zs;v
: ð3Þ

3.2 Batch Size Determination

As presented in Section 3.1, we can establish a partition of
any given load S, calculated as ðQ1; Q2; . . . ; QMÞ and
Qi ¼ �iS ði ¼ 1; 2; . . . ;MÞ, to ensure both load balancing
and sequential data delivery in a single scheduling round.
In this section, we design a dynamic packet scheduling
algorithm for NPs based on this observation. For an NP to
schedule packets, it repeats the sequential scheduling

pattern over time while packets arrive dynamically, as
illustrated in Fig. 6. Within each round, load balancing and
sequential delivery are ensured for a batch of packets. To
design such a scheduling algorithm, we first need to
determine a feasible batch size for each scheduling round,
i.e., the number of packets to be scheduled in each round.

To find a feasible batch size, we note that at least one
packet should be dispatched to each processor in a
scheduling round. Therefore, we define an important
system parameter minimal schedulable batch size I as the
total bytes that should be scheduled in one scheduling
round. Suppose the maximal possible length of a packet (in
terms of bytes) that may arrive at the NP is L, the minimal
schedulable batch size I is defined to be

I ¼ CL; ð4Þ

where C is the minimal positive integer such that at least
one packet fits into the load fraction that can be dispatched
to a worker processor, i.e.,

C ¼ 1

min
i
ð�iÞ

2
666

3
777: ð5Þ

Hence, CL constitutes a minimal batch size that should
be guaranteed for one scheduling round. Given I as the
minimal batch size, the batch size B is set to be a multiple of
I as follows:

B ¼ mI; ð6Þ

where m is a positive integer referred to as batch granularity.
In the following section, we will see how the batch
granularity m affects the system throughput given the
minimal schedulable batch size I.

Now, we can do dynamic scheduling as follows: The
load fraction Qi that should be dispatched to the ith worker
processor pi is calculated as Qi ¼ �iB. During any back-
logged interval, the scheduling and the desired delivery
pattern will not be interrupted. So long as the packets arrive
at a rate such that there are always Qi bytes to be scheduled
to the current chosen processor pi, the scheduling can run
smoothly. In the following discussion, we assume a
continuously backlogged system for ease of discussion.

3.3 Scheduling Time Determination

In this section, we determine the best scheduling time of each
round. There are two questions to be answered. First, is there
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any resource conflict between two adjacent scheduling
rounds if we schedule multiple rounds continuously?
Second, how can we resolve the potential resource conflict
if it arises?

3.3.1 Optimality Analysis

For an optimal solution, we shall partition the load such
that there is no idle time for any of the processors in the
router while still maintaining a continuous sequential
delivery pattern for the passing streams. To illustrate these
ideas, we show the desired timing diagram in Fig. 6 for a
load distribution of M worker processors and R rounds. As
can be observed from the diagram, multiple batches have
been joined together seamlessly to carry out the entire
transcoding task. There is no idle time on both receiving
processor and any of the worker processors at any time
instant. The entire load is therefore divided into ðM �RÞ
parts such that the ðjþ 1Þth batch arrives at a worker
processor right after it finishes delivering the current batch
to the output port. In this way, all the processed packets are
timely and sequentially sent to the output link, and none of
the processors is idle. To determine such an optimal load
distribution, we can observe the following recursive
equations from the timing diagram:

for ði ¼ 1 �M � 1; j ¼ 1 � RÞ

�i;jwi þ �i;jzs;i ¼ �iþ1;jzr;i þ �iþ1;jwiþ1 ð1-1Þ

for ðj ¼ 1 � R� 1Þ

�M;jwM þ �M;jzs;M ¼ �1;jþ1zr;1 þ �1;jþ1w1 ð1-2Þ

for ði ¼ 2 �M; j ¼ 1 � R� 1Þ

�i;jzs;i ¼ �i�1;jþ1zr;i�1 ð2-1Þ

for ðj ¼ 1 � RÞ

�1;jzs;1 ¼ �M;jzr;M: ð2-2Þ

The above two sets of equations are independent and can

be solved uniquely by expressing all the �i;j in terms of �M;R

and using the normalizing equation
PR

j¼1

PM
i¼1 �i;j ¼ 1.

Thus, it is unlikely to obtain an � satisfying both the

equations unless the system parameters are constrained by

certain relationship. For a homogeneous network with

wi ¼ w, zr;i ¼ zr, and zs;i ¼ zs, we derive the following

constraint for the optimal solution:

zr
zs
¼ zr þ w

wþ zs

� �M�1

; ð7Þ

which holds true if zr ¼ zs.
We found that the practical implementation may not

necessarily satisfy the optimality requirement of (7). Thus,
there is no general optimal solution for a generic router
configuration. The nonexistence of such a general optimal
solution is due to the fact that we want to maintain the flow
order of the incoming packets to eliminate the out-of-order
problem and at the same time best utilize the computing
power of the processors. This incurs two sets of indepen-
dent equations when we are to determine �, thus inevitably
adding constraints on the system parameters to satisfy both
of the design goals. Therefore, to achieve a feasible solution

for a general NP setting, somehow we need to relax one of

these constraints in our equations. Based on this observa-

tion, we propose a relaxed solution with scheduling gaps

introduced as follows.

3.3.2 Gapped Solution

Note that the basic requirement of a sequential delivery

pattern that consists of multiple rounds is that the

scheduling of two adjacent batches cannot be overlapped

to avoid resource conflict. For each processor, the D-step

cannot be started before the T -step of the previous round

completes. For example, as shown in Fig. 7, D4 completes

while processor p1 is still in its T1 phase; therefore, D1

for the second round cannot be started and an idle period

Gapd is introduced on pd to avoid resource conflict on

processor p1. Similarly, the transmitting processor pt may

also see a gap, Gapt, if the receiving of T1 does not follow

the receiving of T4 in the previous round immediately, as

shown in Fig. 7. In addition, gaps may be observed between

the processing of two adjacent batches on a worker

processor, because the processor needs to wait for pd to

start the dispatching of the next round. We denote this gap

on the ith processor pi as Gapi.
Note that the FIFO queues at each processor are used for

rate adaptation from/to the dispatching and transmitting

processor. The FIFO is assumed to have limited depth, e.g.,

one batch size of a certain processor. The existence of such

FIFOs does not eliminate the requirement that gaps may be

introduced between adjacent scheduling round, because in

a situation when all processors’ aggregated processing

capacity cannot keep up with the dispatching/transmitting

data rate, the FIFOs will overflow eventually if no gap

exists. Assume that the batch size is uniform over all

scheduling rounds, from the timing diagram, the following

equations are obtained for a heterogeneous system:

Gapi¼ �M
k¼1Dk þGaps þ �i�1

k¼1Dk

� �
� �i

k¼1Dk þ Pi þ Ti
� �

¼�M
k¼1Dk þGaps � ðDi þ Pi þ TiÞ;

ð8Þ

Gapr¼ �M
k¼1Dk þGaps þD1 þ T1

� �
� �M

k¼1Tk þ TM þRM

� �
¼�M

k¼1Dk þGaps � �M
k¼1Rk:

ð9Þ
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For a feasible scheduling pattern, none of Gapd, Gapt,
and Gapi ði ¼ 1; 2; . . . ;MÞ can be negative to avoid
resource conflicts. Essentially, our goal is to find out the
minimum Gapd such that Gapt and Gapi are nonnegative.
Based on this rationale, we can derive the following
constraints:

Gapi � 0,�M
k¼1Dk þGapd � ðDi þ Pi þ TiÞ � 0

,Gapd � maxiðDi þ Pi þ TiÞ � �M
k¼1Dk;

ð10Þ

Gapt � 0,�M
k¼1Dk þGapd � �M

k¼1Tk � 0

,Gapd � PM þ TM �D1 � P1:
ð11Þ

Thus, from (10) and (11), we have

Gapmind ¼

max ðmax
i
ðDi þ Pi þ TiÞ � �M

k¼1DkÞ; ðPM þ TM�D1 �P1Þ
� �

;

ð12Þ

Gapmini ¼ Gapmind þ �M
k¼1Dk � ðDi þ Pi þ TiÞ; ð13Þ

Gapmint ¼ Gapmind þ �M
k¼1Dk � �M

k¼1Tk: ð14Þ

Hence, in a heterogeneous system, as long as the
dispatching processor maintains a gap Gapmind between
two adjacent batches, a scheduling algorithm that ensures
both sequential delivery and load balancing is obtained.

In a homogeneous system, we denote zr;i ¼ zs;i ¼ z
and wi ¼ w for i ¼ 1; 2; . . . ;M. According to (2) and (3),
�i ¼ 1=M for i ¼ 1; 2; . . . ;M in a homogeneous system.
According to (4) and (5), the minimal schedulable batch
size is calculated to be I ¼ML. The batch size B is then
set to be B ¼ mI ¼ mML, where m is a positive integer.
Hence, the load dispatched to a processor in a single
batch can be uniformly denoted as B=M ¼ mL. Therefore,
for a homogeneous system, (12), (13), and (14) can be
simplified as

Gapmind ¼ max ðwþ 2z� zMÞmL; 0ð Þ; ð15Þ

Gapmini ¼ max Gapmind þ ðzM � w� 2zÞmL; 0
� �

; ð16Þ

Gapmint ¼ Gapmind : ð17Þ

Equations (15), (16), and (17) suggest that

Gapd ¼Gapt ¼
ðwþ 2z� zMÞmL; M < Msaturate;

0; M �Msaturate;

(

Gapi ¼
ðzM � w� 2zÞmL; M > Msaturate;

0; M �Msaturate;

(

where Msaturate is

Msaturate ¼ dw=zþ 2e: ð18Þ

Hence, it can be concluded that Msaturate is solely
determined by the processing rate w and the packet
dispatching/transmitting rate z at pd=pt. All gaps are
eliminated when Msaturate worker processors are adopted,
hence the maximum throughput.

3.4 Scalability Analysis

Consider a homogeneous system with M identical
processors. According to the analysis presented in the
above section, the best scheduling time is determined by
the number of worker processors M, the maximal packet
length L, and the batch granularity m. Msaturate is
calculated according to the system parameters ðw; zÞ as
Msaturate ¼ w=zþ 2. Msaturate actually represents the opti-
mal number of worker processors that the dispatching
and transmitting processor can support. Fig. 8 demon-
strates such a scheduling example, where w ¼ 6 �s=byte
and z ¼ 1 �s=byte, and hence, Msaturate ¼ 8.

Very interesting conclusions about the system scal-
ability have thus been reached. 1) If M < Msaturate, as
shown in Fig. 8a, a gap should be introduced between
the initiation of two adjacent batches at the dispatching
processor pd. The length of this gap is defined as Gapd
in (15). In this case, the processing rate of worker
processors cannot match the dispatching and transmitting
rate and thus causes pd and pt to wait for the worker
processors to complete processing. 2) If M is equal to
Msaturate, adjacent scheduling rounds are initiated con-
tinuously without introducing gaps in between, as shown
in Fig. 8b. All processors are fully utilized and there is
no break between the delivery of adjacent batches. In this
case, the dispatching/transmitting rate and the proces-
sing rate match perfectly to give the best performance.
3) If M > Msaturate, no gap should be introduced at pd
between two adjacent scheduling rounds although idle
time Gapi starts to appear on individual processors pi, as
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Fig. 8. Scheduling time determination in a homogeneous system. (a) M ¼ 4; Gapd ¼ Gapt > 0, Gapi ¼ 0. (b) M ¼ 8; Gapd ¼ Gapt ¼ Gapi ¼ 0.

(c) M ¼ 10; Gapi > 0, Gapd ¼ Gapt ¼ 0.



shown in Fig. 8c. In this case, the dispatching and
transmitting rate of pd and pt cannot cope with the
processing rate of the processors. The processing power
of the processors is underutilized because the commu-
nication overhead at the dispatching/transmitting pro-
cessor becomes the bottleneck.

Note that Msaturate is determined only by the ratio of w=z
and, therefore, independent of the batch size, where w is the
processing rate of a processor and z is the packet
dispatching/transmitting rate at pd=pt. Hence, for a given
NP system with configuration parameters defined as ðw; zÞ
and assuming that processing always consumes greater
time than the dispatching and transmitting, i.e., w > z,
there always exists an optimal number of worker processors
that one pair of dispatching/transmitting processor can
support.

Fig. 9 presents the gaps and throughput for different
values of m (batch granularity) as a function of the
number of processors. In addition to the parameters
mentioned earlier, the maximal packet length is now fixed
as L ¼ 5 Kbytes. For the homogeneous case, Gapd ¼ Gapt
and Gapi are same for all worker processors. Fig. 9a
shows that Gapd and Gapt decrease linearly as the
number of processors increases until M ¼ 8. For a given
number of processors, Gapd and Gapt increase linearly
with increasing batch granularity m. After the system
saturates at M ¼ 8, the dispatching/transmitting processor
hits the bottleneck point where Gapd ¼ Gapt ¼ 0, thus it
cannot supply any more packets to the processors even if
they are free.

Fig. 9b shows that the worker processors are all busy
until M ¼ 8. Then, gaps appear and they become idle for
certain time depending on the batch granularity m, where
they become underutilized because the dispatching proces-
sor has reached the bottleneck point. Also, note that as we
increase batch granularity m, the idle period on worker
processors ðGapiÞ increases. Clearly, all gaps are minimized
when the minimal batch size I is adopted, i.e., m ¼ 1.

Fig. 9c shows the variation in system throughput (in
terms of kilobytes per second) as a function of the number
of worker processors M and batch granularity m. Msaturate

represents the saturating point of the system throughput.
The system throughput is flat after the number of worker
processors exceeds Msaturate. This is a result of under-
utilization of the processors, as illustrated in Fig. 9b. In
addition, the system throughput is independent of the batch

granularity m. After the number of worker processors
reaches the saturation point Msaturate, the dispatching
processor achieves zero idle time and keeps pumping
traffic into the system, and therefore, the throughput stays
at pd’s dispatching rate.

4 PACKETIZED ORDERED ROUND ROBIN

In the previous section, a dynamic scheduling algorithm
ORR has been designed for an NP system to ensure both
load balancing and in-order delivery assuming that the load
is divisible at a granularity of 1 byte. In practice, we have to
schedule workload at the granularity of one packet, which
may be of variable length. To schedule variable length
packets, we design a packetized version of ORR (P-ORR) in
this section.

According to the ORR algorithm, given a batch size B,
the ideal load distribution among multiple processors in
any scheduling round is calculated as ðQ1; Q2; . . . ; QMÞ,
where Qi ¼ �iB for i ¼ 1; 2; . . . ;M. Because the workload
contains variable length packets, the actual load distribution
ð ~Q1; ~Q2; . . . ; ~QMÞ may deviate from its ideal amount. To
guarantee the desired sequential delivery pattern, the actual
load distribution should match the theoretical value as close
as possible. Therefore, the design goal of the P-ORR algorithm is
to minimize the discrepancy

PM
i¼1ð ~Qi �QiÞ2.

The proposed P-ORR algorithm is based on a combina-
tion of the SRR [15] and DRR [22] schemes. The packet
scheduler at the dispatching processor first calculates
ðQ1; Q2; . . . ; QMÞ to determine the ideal number of bytes
that should be dispatched on each worker processor in a
scheduling round. It also uses a pointer, denoted as which,
to point to the processor that actively receives packets. So,
Qwhich represents the ideal number of bytes that should be
dispatched to the processor pwhich. As the scheduling
proceeds, the size of the packets that have been dispatched
to pwhich is deducted from Qwhich. The remaining load is
recorded in a variable Balancewhich. Ideally, the packet
scheduler will dispatch a maximum of Balancewhich bytes to
the processor pwhich before it changes the pointer which to
point to the next processor. However, because of the
variable packet length, it may not be possible for a packet
to exactly fit into Balancewhich. If a packet size exceeds
Balancewhich, the scheduler must decide as to dispatch the
packet or not. The dispatching decision is made as follows:
Let the packet size be PSize, if PSize < Balancewhich, the
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Fig. 9. Scalability analysis. (a) Gapd and Gapt between two adjacent scheduling rounds. (b) Gapi on each worker processor. (c) Scalability of the

throughput.



packet is scheduled to the processor pwhich. Otherwise, it is
scheduled only if

ðPSize�BalancewhichÞ � Balancewhich: ð19Þ

The rationale behind the algorithm is that: in (19), the
left-hand side represents the absolute value of jBalancewhichj
when the packet is scheduled; and the right-hand side
represents the absolute value of jBalancewhichj when the
packet is not scheduled. We always make a decision to
minimize the absolute value of Balancewhich. This is because
jBalancewhichj ¼ j ~Qi �Qij, the absolute difference between
the actual scheduled load and the ideal load, measured asPM

i¼1ð ~Qi �QiÞ2, is also minimized. Note that (19) can be
simplified as Balancei � PSize=2.

While comparing with SRR [15] and DRR [22], our
scheme improves over both by taking their combination. In
each scheduling round, the absolute difference between the
actual scheduled load and the ideal load, denoted as
j ~Qi �Qij, is bounded by the maximal packet length L in
either DRR or SRR scheme; while in our proposed scheme,
it is bounded by half of the maximal packet length L=2.

In the above scheme, we have minimized
PM

i¼1ð ~Qi �
QiÞ2 for a single scheduling round. Over multiple schedul-
ing rounds, the deviation of the actual load from the ideal
load may be accumulated to be bigger and bigger. To
avoid this, the ideal load Qwhich for the next scheduling
round is always adjusted as Qwhich ¼ Qwhich þBalancewhich
at the end of each scheduling round. The proposed P-ORR
algorithm is presented in Fig. 10. It not only achieves load
balancing in the presence of variable length packets but
also ensures the minimal out-of-order transmission of the
packets.

Under the observation that P-ORR always schedule
packets sequentially from processor p1 to processor pM
within a single round, we propose a simple but effective
sequence control scheme to complement the P-ORR algo-
rithm to reinforce packet ordering. The scheme requires
that the dispatching processor pd maintains an N-bit round
ID, initially set to 0, and after each round of scheduling, the
round ID is incremented by 1 (modulo 2N ). Each packet
scheduled at pd should have the round ID attached to it.
Another round ID is maintained on the transmitting
processor pt side and set to 0 at system initialization. Upon
the beginning of each round, pt starts retrieving packets
from processor p1’s FIFO that have the same round ID
attached as the pt’s round ID. Once a mismatch happens, pt
will turn to processor p2 and repeat the same process until
processor pM ’s packets are collected. The transmitting
processor round ID will then be incremented by 1 (modulo
2N ) and starts the next round. Compared with the logical
reception method, even with a single bit round ID ðN ¼ 1Þ,
our scheme is immune to single packet loss if we set the
batch size greater than 2 �MaxðPsizeÞ. Actually, our
scheme can tolerate ð2N � 2Þ consecutive batches of packet
loss without losing the packet order at the transmitting
processor. There are other sequence number-based
schemes, e.g., total order sequencing and SCIMAþAFR
schemes as evaluated in [18]. The total order sequencing
method attaches a distinct and incremental sequence
number to each packet across all processors, and

SCIMAþAFR scheme attaches an incremental sequence
number per processor and a next-processor pointer to each
packet for packet loss detection and reordering purpose.
Given the same packet loss tolerance requirement, our
scheme has a lower cost (size of N) because the same round
ID is attached to all packets in the same round. Further-
more, using larger batch size also enhances packet loss
resilience.

5 FAIR SCHEDULING AMONG MULTIPLE FLOWS

In Section 4, a P-ORR algorithm is developed to schedule
incoming packets among multiple processors. In the above
discussion, we have assumed that the incoming packets are
all treated equally. However, in practice, packets may
belong to different network flows that have made different
reservations. In this section, we extend the P-ORR algorithm
to provide fair scheduling among multiple flows. We
assume that all flows are continuously backlogged.

Let there be N flows, flow fj has made a reservation rj
and the equation

PN
j¼1 rj � 1 holds. We aim to service the

packets of different flows at a rate that is proportional to
their reservations. As an example shown in Fig. 11, the
incoming packets belong to two different flows, with their
reservations defined as ðr1; r2Þ ¼ ð0:75; 0:25Þ. To guarantee
that flow 1 is serviced three times faster than flow 2, we
need to schedule the packets as follows: in each scheduling
round, the total number of bytes that are processed for
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Fig. 10. P-ORR.



flow 1 is three times that of the flow 2. Note that the P-ORR
algorithm has the property that the scheduling order of the
packets at the dispatching processor is maintained at the
transmitting processor. Therefore, as long as the packets of
different flows are scheduled for processing proportionally
to their reservations, the packets are delivered orderly and
proportionally, as illustrated in Fig. 11.

To extend the P-ORR algorithm to handle multiple
flows, the basic idea is given as follows: Given the batch
size B and the flow reservations ðr1; r2; . . . ; rNÞ, the
number of bytes that are scheduled in each round for
flow fj ðj ¼ 1; 2; . . . ; NÞ, denoted as Fj, is

Fj ¼ rj �B: ð20Þ

To perform a practical scheduling, we must guarantee
that at least one packet is dispatched from any individual
flow. Hence, another constraint must be set for the minimal
schedulable batch size I as follows:

min
j
ðrj � IÞ � L: ð21Þ

Therefore, I should be redefined as I ¼ CL, where

C ¼ 1

minðmin
i
ð�iÞ;min

j
ðrjÞÞ

2
666

3
777: ð22Þ

Once I is determined, B is set as a multiple of I. Fj
denotes the bytes that should be scheduled from a flow
in a scheduling round. But, the packets may not fit into
Fj due to their variable lengths. Hence, we adopt the
packet management policy described in the above section
to deal with variable length packets. Let FBalancej be the
remaining number of bytes that should be dispatched to
flow fj, a packet with the size PSize is dispatched only if
FBalancej � PSize=2.

Let the load distribution among N flows be
ðF1; F2; . . . ; FNÞ and the load distribution among M servers
be ðQ1; Q2; . . . ; QMÞ. When the packet scheduler operates, it
keeps two pointers: one pointer, i, points to the processor
that is currently receiving packets; the other pointer,
j, points to the flow that is currently being serviced. The
scheduler also keeps two balance counters: one counter,
Balancei, records the remaining number of bytes that
should be dispatched to the processor pi; the other counter,

FBalancej, records the remaining number of bytes that

should be serviced for the flow fj. When the packet

scheduler looks at the head-of-line packet of flow fj, it

compares PSize to both Balancei and FBalancej. The

packet is scheduled only if

minðBalancei; FBalancejÞ � PSize=2: ð23Þ

The algorithm to handle multiple flows using P-ORR is

illustrated in Fig. 12. The algorithm achieves both load

balancing among processors and fair scheduling among

flows.

6 SIMULATION RESULTS AND DISCUSSION

In this section, we verify the analytical results, given in the

earlier sections, through rigorous simulations. First, we

study performance of P-ORR and highlight certain intrinsic
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Fig. 11. Fair scheduling among multiple flows.

Fig. 12. Fair scheduling of multiple flows using P-ORR.



advantages of it. Next, we compare P-ORR with several
other strategies in the literature to explicitly show the
performance gain expected by P-ORR. Last, we demonstrate
the effectiveness of P-ORR to handle multiple incoming
flows with different reservations.

We developed a software simulator to model a hetero-
geneous NP system with one dispatching processor,
multiple worker processors, and one transmitting proces-
sor. The simulator is designed to generate and process
packets with variable size, which is confined in between 20
and 1,500 bytes. Three packet size models are used in our
simulation study: 1) exponential distribution with three
mean packet size, 256 bytes, 512 bytes, and 1,280 bytes;
2) uniform distribution; and 3) real packet trace obtained
from [24].

Both homogeneous and heterogeneous backlogged
systems are studied here. The homogeneous system is
configured to be consistent with previous theoretical
analysis, where zr ¼ zs ¼ 1 �s=byte, wi ¼ 6 �s=byte, 8i.
The heterogeneous system is configured with zr ¼ zs ¼
1 �s=byte, wi¼4�s=byte, 8i, imod 4 ¼ 1, wi ¼ 6 �s=byte, 8i,

imod 4 ¼ 2, wi ¼ 8 �s=byte, 8i, imod 4 ¼ 3, wi ¼ 10 �s=byte,

8i, imod 4 ¼ 0. The number of worker processors M is

varied from 1 to 20 to observe the performance.

6.1 Performance of the Packetized ORR Algorithm

To observe the performance of P-ORR for processing

variable length packets in a realistic system, we conduct

the simulation with all three packet length distribution

models mentioned above. The simulation results are

compared with the analytical results obtained in Section 3.4.

Figs. 13 and 14 show the variation of the throughput and

out-of-order rate as a function of the number of worker

processors on the abovementioned homogeneous and

heterogeneous systems, respectively. Note that the theore-

tically expected throughput in Fig. 13a is originally

illustrated in Fig. 9c in Section 3.4. The throughput of

variable packet sizes closely matches the analytical result.

But, the saturation throughput achieved is slightly lower

than the theoretical expectation. This is because, in our

simulation, the scheduler guarantees that there is no

overlapped processing on any processor, which may cause
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Fig. 13. Experimental verification of P-ORR on homogeneous systems. (a) Throughput verification of P-ORR. (b) Out-of-order rate verification of

P-ORR.

Fig. 14. Experimental verification of P-ORR on heterogeneous systems. (a) Throughput verification of P-ORR. (b) Out-of-order rate verification of

P-ORR.



pd to have a longer gap time than the calculated one under
variable packet length situation. The out-of-order rate is
higher than theory, which is zero. This discrepancy is
reasonable because the theoretical load distribution cannot
be strictly guaranteed in the presence of variable length
packets. We also note that the out-of-order rate increases
with the number of processors as expected.

In all four figures, the curves of different packet size
distributions overlap with each other, indicating the
adaptation capability of P-ORR. The similarity between
the homogeneous and heterogeneous system results
shows that P-ORR is capable of dealing with various
processor configurations. It is also interesting to note that
the saturating point of throughput occurs when there are
nine worker processors in the realistic system, while the
theoretically proved saturating point is 8. This discre-
pancy is again caused by variable packet lengths that lead
to deviation of the actual load distribution from the ideal
load distribution. After the saturating point, when more
processors are used, no more throughput gain is observed
and the out-of-order rate tends to increase. Therefore, we
need to select a proper number of processors that
guarantees high throughput and incurs tolerable out-of-
order rate.

6.2 Performance Comparison with Other Schemes

Now, let us compare P-ORR with several other load-sharing
schemes like SRR [15] and ordinary RR. The homogeneous
configuration is used in this study. The ideas of SRR and RR
are implemented as specified in the literature. With the RR
scheme, one packet is dispatched to each processor in each
round without considering the variety of packet size. With
the SRR scheme, the total number of bytes dispatched to
each processor is proportional to their communication
bandwidths. SRR and RR do not consider any communica-
tion overhead between the dispatching/transmitting and
worker processors in their design. To obtain a fair
comparison, we introduce the same communication delay
zr ¼ zs ¼ 1 �s=byte for each scheme as modeled in P-ORR.
Also, we can design a combined strategy of SRR and ORR
called SRR-ORR. In this scheme, we distribute the load

among worker processors according to our ORR algorithm
but apply SRR to deal with variable length packets. In other
words, P-ORR and SRR-ORR are two different packetized
versions of ORR.

As shown in Figs. 15a and 15b, P-ORR achieves the
highest throughput and the smallest out-of-order rate
among all the schemes. RR offers the worst throughput
due to the potential load imbalance incurred by blindly
dispatching packets. By adapting the load distribution to
accommodate variable packet length, P-ORR, SRR-ORR,
and SRR achieve comparable throughput because good load
balancing is ensured. On the other hand, P-ORR and SRR-
ORR greatly reduce the out-of-order rate over SRR and RR
because ORR maintains an in-order delivery pattern while
balancing the load, whereas SRR and RR do not consider in-
order delivery at all. The advantage of P-ORR over SRR-
ORR can be observed by the relatively lower out-of-order
rate. In conclusion, P-ORR outperforms all other schemes in
both load balancing and sequential delivery. While taking
extra care to minimize the out-of-order rate, P-ORR still
produces the highest throughput.

6.3 Fair Scheduling of Multiple Flows Using P-ORR

Let there be six flows and each flow makes a different
reservation, defined as (0.3, 0.3, 0.1, 0.1, 0.1, 0.1). To evaluate
the effectiveness of P-ORR algorithm to provide fair
scheduling among multiple flows, we generate different
flows at the same arrival rate and observe if the service rate
of each flow is controlled by its reservation. Again, the
study is conducted on the homogeneous system configura-
tion. Fig. 16a shows the total throughput and each flow’s
individual throughput as a function of the number of
processors. Clearly, the total throughput is fairly shared
among the flows. All the six flows are serviced at a rate
proportional to their reservations even though they arrive at
the same rate. Hence, a fair scheduling among flows is
successfully achieved by our algorithm. Note that, while
scheduling among multiple flows, the system still produces
comparable total throughput as that presented in Fig. 13a,
indicating good scalability under heavy workload. Fig. 16b
demonstrates each flow’s out-of-order rate as a function of
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Fig. 15. Experimental comparison among different scheduling schemes. (a) Throughput of different scheduling schemes. (b) Out-of-order rate of

different scheduling schemes.



the number of processors. The out-of-order rate per flow
slightly increases as the number of processors increases.
The flow with higher reservation tends to have higher out-
of-order rate because larger portion of its packets are
serviced and involved in the out-of-order delivery. Overall,
the out-of-order rate falls into a small range, which is
similar to the out-of-order rate presented in Fig. 13b.

7 CONCLUSION

In this paper, we have proposed an efficient packet
scheduling algorithm, P-ORR, that is capable of scheduling
variable length packets among a group of heterogeneous
processors to ensure both load balancing and minimal out-
of-order packet delivery. P-ORR is based on the ORR
algorithm, which we developed from rigorous theoretical
derivation by assuming that the workload is perfectly
divisible. Several important theoretical results for ORR were
presented in this paper. We also provided extensive
sensitivity results through analysis and simulation to show
that the proposed algorithms satisfy both the load balancing
and in-order requirements for packet transmission. For
multiple flows, we extend P-ORR to service packets
according to each flow’s reservation. Simulation results
have verified that fair scheduling among multiple flows is
successfully achieved.

Future work includes the design of an optimal mapping
between multiple flows and processors and the derivation
of fairness bounds. In order to minimize the performance
discrepancy between ORR and P-ORR, we are also working
on a new packetized technique to better address the
problem of variable packet length.
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