

Li Zhao†, Ravi Iyer‡, Srihari Makineni‡, Laxmi Bhuyan†
†Computer Science Department

University of California, Riverside
{zhao, bhuyan}@cs.ucr.edu

‡Communications Technology Lab
Intel Corporation

{ravishankar.iyer, srihari.makineni}@intel.com

Abstract
A wide spectrum of e-commerce (B2B/B2C), banking,
financial trading and other business applications
require the exchange of data to be highly secure. The
Secure Sockets Layer (SSL) protocol provides the
essential ingredients of secure communications –
privacy, integrity and authentication. Though it is well-
understood that security always comes at the cost of
performance, these costs depend on the cryptographic
algorithms. In this paper, we present a detailed
description of the anatomy of a secure session. We
analyze the time spent on the various cryptographic
operations (symmetric, asymmetric and hashing) during
the session negotiation and data transfer. We then
analyze the most frequently used cryptographic
algorithms (RSA, AES, DES, 3DES, RC4, MD5 and
SHA-1). We determine the key components of these
algorithms (setting up key schedules, encryption
rounds, substitutions, permutations, etc) and determine
where most of the time is spent. We also provide an
architectural analysis of these algorithms, show the
frequently executed instructions and discuss the ISA /
hardware support that may be beneficial to improving
SSL performance. We believe that the performance data
presented in this paper will be useful to performance
analysts and processor architects to help accelerate
SSL performance in future processors.

1. Introduction

The World Wide Web, one of the most popular
Internet applications, provides an infrastructure for
exchanging data in a client-server environment. This
has boosted the rapidly expanding e-commerce and on-
line banking systems. One of the most important issues
in these systems is security. To address this problem,
the Secure Sockets Layer (SSL) [7], Transport Layer
Security (TLS) [5] protocol and the Internet Protocol
Security Protocol (IPSEC) [11] have been developed
and employed to provide secure communications
between two applications that run on public domains
such as Internet. Although SSL/TLS protocol and
IPSEC are situated in different layers (session and
network layer respectively), they have common
components for security issues. In this paper, we focus

on the SSL protocol and do an in-depth analysis of the
performance overhead and the execution characteristics.

As secure communications become more important,
researchers have been studying the overhead of secure
processing and proposing various architectural
optimizations for acceleration. In [10], K.Kant et al.
studied the performance and architectural impact of
SSL on web servers. They showed the overall
performance behavior of web server applications when
using HTTP versus HTTPS. While this showed the
overhead of SSL, it did not present a detailed
breakdown of the secure session to show where the
maximum performance overhead came from. Other
studies [2][12][20] have focused on cryptographic
algorithms and proposed optimizations for accelerating
these crypto operations. Recently, crypto units [8] have
been added to the IXP2850 network processors. The
scope of our paper is to profile SSL processing, show
how the crypto algorithms affect SSL performance and
point out architectural improvements that can be made.

We start by analyzing the overall effect of SSL
performance in a web server environment. We show
that SSL processing consumes about 70% of an HTTPS
transaction. We break the time spent into crypto and
non-crypto portions and show that the non-crypto SSL
processing takes a negligible fraction of the time. The
significant overhead by SSL is mainly due to its crypto
operations, which include asymmetric cryptography,
symmetric cryptography and hash functions. We then
present a detailed anatomy of SSL processing by
analyzing and measuring the two major phases –
session negotiation (or handshake) and bulk data
transfer. Having exposed the anatomy, we then focus
our time on examining the frequently used crypto
operations. We study their architectural characteristics
like CPI, path length and frequently used instructions.
For each cryptographic algorithm, we present which
underlying operations (substitutions, permutations,
encryption rounds, key schedule initialization, etc) take
a most amount of time. Based on our observations, we
present and discuss hardware support that may be
beneficial to improving crypto performance and SSL
performance in the future.

The rest of the paper is organized as follows. The
background is presented in section 2. The methodology

Anatomy and Performance of SSL Processing

for our experiments is described in section 3. Section 4
shows the measurement data for SSL processing and
crypto operations. We also present the anatomy of SSL
handshake and study each component in detail. In
section 5, the main crypto operations that contribute to
the SSL processing are analyzed. Section 6 studies the
architectural characteristics of the crypto operations and
discusses hardware support can be used to accelerate
SSL processing. The conclusions and future work are
described in section 7.

2. Background

Secure communication between two systems (a client
and a server for instance) can be achieved if the
following three aspects are guaranteed: (1) Privacy -- to
ensure that the data exchanged cannot be viewed by a
third party, (2) Integrity -- to ensure that the data are not
modified along the way transferred and (3)
Authentication -- to ensure that the end systems are
indeed the systems that they say they are. The SSL
protocol, which sits in the session layer, accomplishes
this in two phases: (1) a session negotiation phase and
(2) bulk data transfer phase in encrypted form.

Figure 1. Description of the SSL protocol flow

Figure 1 presents the messages exchanged in these
two phases. In the session negotiation (handshake)
phase, the client starts the session by sending a “client
hello” message. All the subsequent messages
exchanged between the client and the server are used to
negotiate the cipher suite (what crypto algorithm will be
used), an session id (used to resume a previous session),
certificates (usually only the server is authenticated),
and secret keys for the bulk data transfer. The “finish”
messages are sent to finish the session negotiation
phase.

In the bulk data transfer phase, the data exchanged
between the client and the server is encrypted/decrypted

based on the chosen crypto algorithm with the
established private keys. Each message is also
appended with a message authentication code (MAC) to
ensure its integrity. The MAC calculation is based on
the secure hash function, a hash function performed on
the transferred data together with private keys.

The three main crypto operations used in SSL
protocol are: asymmetric encryption (public key
encryption), symmetric encryption (private key
encryption) and hashing. Asymmetric encryption
algorithms like RSA [13] and Diffie-Hellman [6] are
used in the handshake phase to exchange secret keys
between the server and the client. Symmetric
encryption algorithms like AES [14] and DES [13] are
used to encrypt/decrypt the data exchanged in the bulk
data transfer phase. One-way hash functions like MD5
[13] and SHA-1 [15] are used to guarantee the integrity
of the exchanged data. It is used in both the handshake
phase as well as the bulk data transfer phase.

For our evaluation in this paper, we choose the
following widely used crypto algorithms from each of
the above three categories. Below, we briefly introduce
these algorithms and discuss their basic concepts.

(1) Public key encryption: RSA is one of the most
commonly used public key encryption algorithms. The
basic idea is as follows. First two large prime numbers
p and q are chosen. Then e is chosen on the condition
that 1) e is less than pq and 2) e and (p-1)(q-1) have no
prime factors in common. Next d is computed in such a
way that (de-1) is evenly divisible by (p-1)(q-1). Now
the public key consists the pair (N, e) where N=pq, and
the private key consists the triplet (p,q,d). The
encryption and decryption functions are the following:

C = Te mod N ; T = Cd mod N
(C = cipher text, T = plain text)

(2) Private key encryption: Unlike public key
encryption, this class of encryption algorithms uses the
same key for both the encryption and decryption. There
are two types of private key encryption. One is stream
cipher encryption (e.g. RC4 [13]), where the plaintext is
encrypted in one bit or byte at a time. The input stream
is XORed with a random sequence which is generated
by a cryptographically-secure keyed pseudorandom
number generator. The other is block cipher encryption
(e.g. AES, DES/3DES), where encryption is performed
in larger units or blocks of data. Data in the block is
encrypted using methods like diffusion, substitution and
transposition. For the block cipher encryption, one of
the most popular modes is chaining-block-cipher (CBC)
mode. In this mode, the plain text is XORed with the
previous cipher block before it is encrypted. This
ensures a dependency between blocks of data within the
message and removes the potential for parallelism
across individual blocks of data.

(3) Hash Functions: MD5 and SHA-1 are the

TCP Connection

 Client

Session
 Negotiation

Bulk data
Transfer

Server Hello
Server Certificate

Server Key Exchange
Server Hello Done

Client Key Exchange
Change Cipher Spec

Client Finished

Change Cipher Spec
Server Finished

Client Hello

Encrypted Data

End Session

 Server

widely used hash functions in SSL. These algorithms
take a variable length input data and generate a message
digest (128 bits for MD5 and 160 bits for SHA-1).

In this paper, we will present a detailed analysis of
the time spent in each of these cryptographic operations
for SSL sessions. In addition, we will also present a
detailed analysis of where the majority of the time is
spent within these cryptographic operations.

3. Methodology

In this section, we discuss the methodology we use
for evaluating the SSL processing and the crypto
operations. The purpose of our experiments is the
following: 1) Isolate the overhead of SSL processing
from the HTTPS web server transaction. 2) Within SSL
processing, isolate the overhead of handshake phase
from the bulk data transfer phase and study the major
components in each phase. 3) Analyze the crypto
operations in the SSL processing in terms of their
architectural characteristics like path length, cycles per
instruction and frequently used instructions.

To achieve these three major goals, we have the
following three setups for our experiments.

3.1. SSL Analysis in Web Servers

The web server we use is a 2.26GHz Intel®
Pentium® IV based workstation with 512MB of
memory. The client machine is a DP system with
Intel® XeonTM processor running at 2.6GHz and with
1GB of memory. Both machines run Linux 2.6.6. The
Apache 2.0 [1] server together with mod_ssl (which is
an interface to the OpenSSL library) is used as the web
server. The client software based on curl [4] generates
multiple secure HTTP requests. Both the server and the
client machine are installed with OpenSSL 0.9.7d [16]
as the SSL library, which is compiled using the
optimizations for Pentium processor. The client makes
HTTP requests as fast as the server can handle them.
During our experiments, the server load is always
maintained at more than 90%. The tools we use to
perform the measurements are Oprofile [17], which is a
system-wide profiler for Linux systems. By profiling all
the running code at a low cost, Oprofile enables us to
identify the time spent in various modules and
functions.

OpenSSL supports SSL v2/v3 and TLS v1 protocols
as well as a cryptography library. Our experiments
employ the widely used SSL v3. The cipher suite we
use is DES-CBC3-SHA, where (1) the RSA algorithm
is used for signing as well as the public key encryption,
(2) 3DES in CBC mode is used as the private key
encryption, and (3) SHA-1 is used as the hashing
function for MAC calculation. MD5 is also used in the

handshake phase for calculation of hash values in the
finish messages.

3.2. Standalone SSL Setup for Detailed Analysis

To focus on the SSL processing itself without
including any networking or IO overhead, we use a
standalone program running on the same server
machine as the second setup. We modify the program
ssltest for this purpose. This program creates a server
context as well as a client context, and relays messages
between these two through some memory buffers. Our
measurements are taken on the server side. The same
OpenSSL library and the same cipher suite are used as
well. To get the latency on those components that we
are interested in, we use the read timestamp instruction.

3.3. Standalone Crypto Benchmark

The crypto operations are the main components in
the SSL protocol processing. To study these operations,
we developed a crypto benchmark, which essentially
makes various function calls into the crypto library that
comes with the SSL library. We use Vtune [9] and
SoftSDV [19] to do profiling and tracing the
instructions executed respectively. The Vtune analyzer
allows time-based sampling as well as event-based
sampling at various levels – from processes to modules
to functions. SoftSDV is a full system simulation
environment. It provides a virtual platform that consists
of a simulated CPU and other platform components.
SoftSDV allows an actual Operating system to be
loaded so that the crypto benchmark can be executed
within it. The instruction traces collected from SoftSDV
are then analyzed through various simulation tools to
understand the execution profile.

4. Analysis of SSL Processing

In this section, we focus on studying the anatomy of
the important SSL phase(s). We first look at the
execution time breakdown in SSL processing in a web
server. We then study in detail how the SSL handshake
is performed on the server side and how the execution
time is distributed across the various steps.

4.1 Execution Time Breakdown in SSL

Table 1 shows the execution time breakdown on
various components when the web server processes a
1KB web page. Similar results can be obtained when
we increase the request file size. We can see that the
SSL processing (libssl and libcrypto) takes 71.6% of
the total processing time, which is mostly due to the
crypto operations (libcrypto). We further breakdown
the crypto operations into four components: public key
encryption, private key encryption, hashing and other

operations (including random number generation, etc).
Figure 2 shows the execution time breakdown in the
crypto library as we vary the request file size. It can be
seen that the public key encryption takes a very large
portion: about 90% when the request file size is 1k
bytes. This portion reduces as we increase the file size.
Since the public key encryption is one of the main
operations in the SSL handshake, it makes the
handshake quite expensive. Session re-negotiation
using the previously setup keys can avoid the public
key encryption, therefore greatly reduces the handshake
overhead. On the other hand, the portion of the private
key encryption and hashing are increasing as we
increase the request file size. This is obvious since the
cost of encryption and hashing is proportional to the
request file size. The private key encryption portion is
negligible with a small file size. It is only 2.4% when
the file size is 1K bytes. However, as this part is the
main contributor to the bulk data transfer, it can become
significant at very large file size. Therefore for
workloads that have large request file size or long
sessions of data exchange (e.g. B2B sessions),
optimizations should be concentrated on both private
key encryption and public key encryption.

Table 1. Execution time breakdown in web server
Components Functionality %

libcrypto Crypto library, including all
the cryptography functions 70.83

libssl SSL functions 0.82
httpd Apache web server 1.84

vmlinux Linux kernel, including TCP
stack processing 17.51

other Other library, including c,
thread library, etc. 9.00

0%

20%

40%

60%

80%

100%

1 2 4 8 16 32

request f ile size (KB)

public
private
hash
other

Figure 2. Time breakdown in crypto library

4.2 Anatomy of SSL Handshake

The SSL handshake on the server side can be
partitioned into 10 steps based on its functionality. For
each step, we measure the total processing time as well
as the time spent on the crypto operations. Table 2
shows the results in complete detail.

The server receives and processes the client hello
message in step 1 after its initialization for internal data
structures. In step 2, the server generates a random
number, session id, etc. and sends out the server hello
message. Then the server’s certificate followed by a
server done message are sent in step 3 and 4
respectively. In the cipher suite we use for the
experiments, the certificate contains the RSA public
key for key exchange, therefore the server key
exchange message is skipped.

In step 5, the server receives the client key exchange
message that contains a 48-byte key called pre-master.
It is encrypted using the server’s RSA public key in the
client side. The server decrypts this pre-master using its
private key. This pre-master is used to generate another
key called master through a series of hash functions
(both MD5 and SHA-1 are used).

In step 6, the server receives the change cipher spec
message from the client, which indicates that the
subsequent message will be encrypted by the finally
generated private keys. At this moment, the server
calculates the key blocks using the master key
generated in the previous step. This calculation is also a
series of hash functions that are similar to the master
key generation. These keys are used for private key
encryption as well as MAC calculation, which are
performed in the bulk data transfer. Upon this point, the
server has received all the handshake messages from
the client, and also transmitted its own handshake
messages to the client. (Handshake messages include all
the received and transmitted messages except change
cipher spec message.) The server then calculates two
finish hash values (MD5 and SHA-1 respectively) over
these handshake messages for the client side using
‘CLNT’ padding. After this is done, it reads the client
finished message. Note that this is the first message that
uses the private key encryption. Therefore, the server
decrypts this message using the private key. The MAC
together with this message is also calculated to ensure
its integrity. After retrieving the two finish hash values
inside the finish message, the server verifies that they
are same as the ones that are just calculated.

In step 7, the server sends out its own change spec
cipher message. Finally in step 8, the server calculates
the two finish hash values with ‘SRVR’ padding. These
two values together with the MAC value for this
message are encrypted using the private keys, and are
sent out as the server finish message. Then the server
flushes its internal memory and cleans data structures
that will not be used (like the pre-master and master
keys). All the subsequent messages will be
en/decrypted using the private keys.

Since the finish hash values are calculated based on
all the handshake messages that are received as well as
transmitted, and because the hash value is calculated

Table 2. Execution time breakdown in SSL handshake

based on a block of 64 bytes, in OpenSSL’s
implementation, the two hash values are calculated
whenever a handshake message is received or
transmitted. They are finalized when the last handshake
message is received. This is why the hashing functions
are called in most of the steps.

Table 3. Crypto operations during SSL handshake

Functionality Latency (Cycles) %
Public key encryption 18562720 90.4
Private key encryption 27260 0.1
Hash functions 569948 2.8
Other functions 346354 1.7
Total crypto operations 19506282 95.0
Total SSL processing 20540392 100

We can see from Table 2 that the main crypto
operations used in SSL handshake are public key
encryption, hashing and private key encryption. Table 3
summarizes the total time spent on these crypto

operations during the handshake process. Public key
encryption takes about 90.4% and hashing takes 2.8%.
Since the private key encryption is performed on only
two messages, this part is almost ignorable. Other
functions include random number generation, X509
functions for server certificate, etc., which also take a
very small portion. In total, the crypto operations take
about 95.0% of the SSL handshake.

5. Anatomy of Crypto Operations in SSL

We have shown that crypto operations are the main
bottleneck in SSL processing. In this section, we look
in detail at these operations.

5.1. Symmetric Key Encryption

We study two block ciphers -- AES and DES/3DES,
and a stream cipher -- RC4. Since the symmetric key
cryptography has a similar process for both encryption
and decryption, we only talk about encryption here. The

Step Functionality Descriptions Latency
(1000s of cycles)

Crypto Functions
Called

Latency
(1000s of cycles)

0 Init Initialize states and variables 348 init_finished_mac 29

1 get_client_hello

check version, get client random,
session-id and generate new session id
check if compression is needed, choose
a cipher from the cipher list

198 rand_pseudo_bytes
finish_mac

68
1.4

2 send_server_hello

generate server random, send server
hello message 61 rand_pseudo_bytes

finish_mac
40
5.8

send_server_cert Send server certificate 239 X509 functions
finish_mac

232
16

skip server_kx 0.6 3

skip cert_req 0.1
send_server_done Send server done message 3.8 finish_mac 1.65

4 server_flush Internal buffer control 3.4 BIO_ctrl, BIO_flush 3.4
check_client_hello Read client_kx message 12 finish_mac 5.6

5 get_client_kx

get pre-master using rsa-private-
decryption, generate master key from it 18941

rsa_private_decryption
, gen_master_secret,
cert_verify_mac

18563
148
61

get_cert_verify

a. read client change cipher spec,
generate key block from master key,
calculate hash values for finish message
b. read client finished message, decrypt
it, calculate mac

293

a. gen_key_block
final_finish_mac
b. pri_decryption
mac
finish_mac

106
62
16
33
3.1 6

get_finished

compare the finish hash values in the
client finished message with the
previously computed one

0.74

7 send_cipher_spec Send server change cipher spec
message 38

8 send_finished
calculate server finish hash values for
finish message ,
Calculate mac, encrypt it

114
finial_finish_mac
mac
pri_encrytpion,
finish_mac

64
31
11.5
3.5

server_flush Internal buffer control 2.5 BIO_ctrl, BIO_flush 2.5
9

check state; end 287
 Total 20540 19506

encryption process consists of two phases: a key setup
followed by an encryption kernel. The key setup is to
initialize a key schedule (for block ciphers) or a state
table (for stream ciphers) based on the input private
key. Both the key schedule and the state table are in the
form of an array. Data in this array are accessed during
the encryption kernel. Figure 3 shows the portion of key
setup in the encryption process as we vary the
encryption data size. While this portion is quite small
for the block ciphers (only 1.0% ~ 3.6% even when the
transferred data size is 1Kbytes), it is much higher for
RC4 (28.5% for a 1Kbytes of data). This is because
RC4 has a much simpler encryption kernel than AES
and DES/3DES, and because the key setup for RC4 is
to initialize a bigger table which has 256 entries. AES
and DES/3DES use a smaller sized key schedule. In any
case, however, the key setup portion is decreasing as
we increase the data size. When the data size is
increased to 8K bytes, this portion becomes less than
0.5% and 5% for AES/DES/3DES and RC4
respectively. At an even larger data size, this portion is
almost negligible.

0

5
10

15
20
25
30

1 2 4 8 16 32
transferred data size (Kbytes)

Pe
rc

en
ta

ge
 (%

)

AES
DES
3DES
RC4

Figure 3. Key setup during encryption

Table 4. Important data structures and characteristics
 (* key size for AES can be 192 or 256 bits)

 AES DES 3DES RC4

Block Size 128b 64b 64b 8b
Key Size 128b* 56b 3x56b 128b
Key Schedule 44,32b 32,32b 3x(32,32b) n/a
Tables 4,256,32b 8,64,32b 8,64,32b 1,256,8b
Rounds 10 16 3x16 1
Table Lookup 16 8 8 3

After initialization, the encryption kernel consists of
a series of block operations depending on the input data
size. Since RC4 is not a block cipher, its encryption is
performed on a unit of one byte. So when we talk about
block operations in general, it is referring to a one byte
operation for RC4. Table 4 shows the main data
structure and characteristics for each block operation.
All the tables except for RC4 contain constant values
that are initialized as static data structures. For AES and
DES/3DES, each block operation consists of several
iterations (rounds) of basic operations, which are
essentially logical operations and table lookups. The

number of table lookups (not including accessing the
key schedule array) for each round is listed in the table
as well. For RC4, the generation of pseudo-number also
includes 3 table lookups. In the subsequent subsections,
we will look at how these block operations are
performed and what are their architectural
characteristics.

1) AES Performance Breakdown
The block operation on AES can be divided into the

following 3 parts: 1) Map byte array block to cipher
state and add initial round key. Its main operations are
shift and XOR. 2) Main rounds (9 for 128 bit key and
13 for 256 bit key) of byte substitution, row shift
transformation, column transformation and round key
addition are performed. The main operations are table
lookup, shift and XOR. 3) The last round and map the
cipher state to byte array. Its main operations are same
as those in step 2. Table 5 list the latency for each part
on the block operations with a 128 bit key and a 256 bit
key. We can see that the main rounds take a large
portion. It is about 70.64% and 77.91% for a 128-bit
key and 256-bit key respectively. Larger key size only
affects the second part since the first and the last parts
are fixed.

Table 5. AES execution time breakdown
128 bit key 256 bit key

Step Functionality
Cycles % Cycles %

1
Map byte array block to
cipher state, add initial
round key

69 12 69 9

2 Main rounds 397 71 582 78

3 Last round and Map cipher
state to byte array 96 17 96 13

 Total 562 100 747 100

One round consists of four basic operations. Each
basic operation takes four 32-bit inputs and generates
one 32-bit output. One byte is taken from each of the
four inputs, and is indexed to one of the four tables. The
four values from the tables are XORed together with
the corresponding key value from the key schedule to
generate one output. Each basic operation takes a
different byte from the input and index to different
tables. The byte used to index the table is taken in the
order of left rotate within one input. Four such
operations generate four outputs in one round. The four
outputs become the four inputs for the next round.

2) DES / 3DES Performance Breakdown
The block operation on DES/3DES can be divided

into the following 3 parts:
(1) Initial permutation -- Its main operations are shift,

AND, XOR, and rotate.
(2) Substitution -- This part consists of one and three

sets of 16 rounds for DES and 3DES respectively. The
main operations are XOR, rotate, AND, shift and table

lookup.
(3) Final Permutation -- This part has similar

operations as the first part.

Table 6. DES/3DES execution time breakdown
DES 3DES

Step Functionality
Cycles % Cycles %

1 IP 50 13.15 55 5.3
2 Substitution 286 74.74 915 89.1
3 FP 46 12.11 57 5.6
Total 382 100 1027 100

We measured the latency spent on each part for DES
and 3DES. As shown in Table 6, the second part is the
main bottleneck. It is 74.7% and 89.1% for DES and
3DES respectively. In each round of the substitution
part, it takes two 32-bit inputs and generates two
outputs. The basic operation is also table lookups. First
two 32-bit temporal data are obtained by XOR
operations between one of the inputs and its
corresponding key value from the key schedule. Then
all the eight bytes from these two temporal data are
indexed to the eight tables. Each byte is shifted 2 bit
right so that only six bits are used as the index. Finally
the eight values from the eight tables are XORed with
another input and write it back. The two outputs are
exchanged as inputs for the next round.

3) RC4 Performance Summary
RC4 is fairly simple compared to the previous crypto

operations. Essentially it uses a pseudo-random
generation algorithm to generate a byte stream, which is
XORed with the input stream. We did not breakdown
the execution time further because the encryption
routine itself is a single step. During the generation for
each of the pseudo-random numbers, the state table
with 256 entries is read 3 times and updated twice. The
main operations are AND, ADD and XOR.

5.2. Asymmetric Key Encryption

As the web server performs RSA decryption on the
client key exchange message, we focus on the RSA
decryption process. RSA decryption can be partitioned
into six parts:

(1) Initialization -- The internal data structures and
memory buffers are initialized.

(2) String to Big Number conversion -- The input of
the RSA decryption in SSL implementation is an octet
string, which needs to be converted into a multi-
precision integer.

(3) Blinding -- This is used to avoid a time attack [3].
(4) RSA computation -- This is where the real

computation is performed using the private key. The
main operations in this part as well as the previous part
are exponentiation and modulus. The output for this

part is also a multi-precision integer.
(5) Big number to octet string conversion -- This is

the reverse of step 2.
(6) Block parsing -- This part is required because

before the client uses the server’s public key to encrypt
the plaintext, the plaintext is first padded into a string
that has some format and length defined in PKCS #1
[18]. Therefore, to recover the plaintext, the reverse
operation is performed.

Table 7. Execution time breakdown for RSA
512b 1024b Step Functionality

Cycles % Cycles %
1 Init 866 0.07 936 0.02
2 data_to_bn 783 0.07 1189 0.02
3 blinding 14319 1.20 39783 0.66
4 computation 1159628 97.01 5972288 98.85
5 bn_to_data 587 0.05 1053 0.02
6 block_parsing 19107 1.60 26104 0.43
Total 1195290 100 6041353 100

Table 7 lists the time breakdown for each step with a
512-bit key and a 1024-bit key respectively. As
expected, the RSA computation is the main bottleneck.
It takes about 97.0% and 98.8% of the total processing
for the two keys. The main reason is due to the
extensive computation for multi-precision integer
operations such as multiplication and addition.

Table 8. Top Ten Functions in
RSA

Table 9. Instructions in
bn_mul_add_words()

Function %
bn_mul_add_words 47.04
bn_sub_words 22.61
BN_from_montgomery 9.47
bn_add_words 4.92
BN_usub 3.24
BN_copy 1.50
ERR_load_BN_strings 1.77
OPENSSL_cleanse 1.59
BN_sqr 1.04
BN_CTX_start 0.77

movl 0x8(%ebx), %eax
mull %ebp
addl %esi, %eax
movl 0x8(%edi), %esi
adcl $0x0, %edx
addl %esi, %eax
adcl $0x0, %edx
movl %eax, 0x8(%edi)
movl %edx, %esi

There are many function calls in RSA decryption
process. We list the top ten functions in Table 8 based
on the total time spent on them. This data is collected
with a 1024 bits key. We can see that the function
bn_mul_add_words() is most time-consuming. It takes
about 47.0% of all the processing time. This function is
in fact very small and simple. Its basic operation is to
do a multiplication followed by two additions. Table 9
lists its corresponding instructions that are executed. It
can be seen that MULL, ADDL, ADCL (add with
carry) are the main instructions used.

5.3. Hash Functions

Both MD5 and SHA-1 add padding to ensure that the
padded message is a multiple of 512 bits. Then the
message is parsed using a sequence of logical functions
at a block size of 64 bytes. The hashing processes can
be partitioned into 3 parts:

(1) Initialization -- The internal states are initialized.
SHA-1 has more states than MD5.

(2) Update -- The hashing functions are performed
on the input data in a block size of 64 bytes. The block
operation and the number of block operations are
different for MD5 and SHA-1, with SHA-1 more
compute intensive.

(3) Final -- One or two block operations are
performed on what is left from the previous step (some
padding are added), and generates the final signature.

Table 10. Execution time breakdown for MD5 and SHA-1
MD5 SHA-1

Step Functionality
Cycles % Cycles %

1 Init 59 0.88 66 0.62
2 Update 6070 90.88 9871 92.05
3 Final 550 8.24 786 7.33
Total 6679 100 10723 100

We take 1024 bytes data as the input, and measure
how much latency spent on each part. As shown in
Table 10, the second part is most time-consuming. This
is obvious because the main block operations are
performed in this part. The block operation essentially
contains a lot of logical operations such as XOR, and
shift operations.

6. Architectural Characteristics and
Optimizations

In this section, we summarize the crypto operations
by showing their architectural characteristics like
instruction distribution, CPI and throughput they can
achieve. We then talk about some optimizations and
inferences that can improve the performance of crypto
operations, which in turn improve the SSL processing.

6.1. Architectural characteristics

Table 11 shows the CPI, path length and throughput
for these crypto operations. Since all of these crypto
operations are compute intensive, their CPI is very low
(0.52 to 0.77). RSA has the highest CPI due to its
multiplication operations. From the path length
(instructions per byte), we can see the complexity of
these crypto operations. RSA has the longest path
length. MD5 and SHA-1 have the shortest one. And the
path length for private key encryption is between the
previous two. In private key encryption, 3DES is the
most complex one. The throughput is mostly

determined by the path length since they have the
similar CPI. Again, RSA can achieve the throughput at
only 0.036 Mbytes/s. Hashing functions are much
faster, with MD5 even faster than SHA-1. For the
private key encryption, it can achieve a throughput of
about 13.32 to 211.34 Mbytes/s (which corresponds to
106 Mbps to 1.7 Gbps), with 3DES and RC4 the lowest
and the highest respectively. Although AES is faster
than 3DES, it is still incapable of saturating a network
link running at 1Gbps.

Table 11. Characteristics for crypto operations
Crypto

Operations Private key Public
key Hashing

 AES DES 3DES RC4 RSA MD5 SHA-1

CPI 0.66 0.67 0.66 0.57 0.77 0.72 0.52

Path length
(Instructions

per byte)
50 69 194 14 61457 12 24

Throughput
(MB/s) 51.19 36.95 13.32 211.34 0.036 197.86 135.30

Table 12 shows the top ten instructions that are
frequently used for these crypto operations. These
instructions take 89.78% to 98.53% of the total
instructions that are executed. We can see that the move
instruction, which load/store data from/to the memory,
is the top one instruction for all these operations except
DES/3DES. This is because there is very limited
number of registers in Intel’s x86 architecture. Since all
these crypto operations are compute intensive, most of
these move instructions are hits in the L1 cache.
However, adding more general purpose registers to the
CPU may help reduce the number of these move
instructions, which in turn will reduce the execution
time. For private key encryption and hashing functions,
logical operations like XOR and AND are the
frequently used instructions as expected. Shifts or
rotates also take a large portion (except for RC4). For
RSA, the compute instruction like ADD and ADC (add
with carry) is very frequently used, followed by the
multiply instruction. These instructions are mostly used
in the exponentiation and modulus operations.

6.2 Optimizations and Inferences

To accelerate the SSL processing, many techniques
can be employed to improve the crypto operations. We
classify the potential techniques into three categories:
1) ISA support, 2) Hardware units and 3) crypto
engines. It should be noted that a detailed evaluation of
these optimizations is not within the scope of this paper.
However, based on our characterization, we believe that
the following are the important types of optimizations
in above mentioned categories:

(1) ISA support for secure processing includes adding

Table 12. Top ten instructions for crypto operations
Private key Public key Hashing

AES DES 3DES RC4 RSA MD5 SHA-1
movl 37.75 xorl 41.11 xorl 39.80 movl 38.06 movl 37.17 Movl 22.11 movl 27.81
xorl 25.09 movb 17.54 movb 18.76 andl 18.15 addl 16.25 Addl 19.12 xorl 22.40
movb 11.52 movl 13.54 movl 13.49 addl 13.61 adcl 16.18 Xorl 18.58 addl 12.04
andl 7.40 andl 13.52 andl 13.16 movb 6.35 mull 6.10 Leal 9.15 roll 10.14
shrl 4.11 shrl 5.85 shrl 6.25 incl 6.18 pushl 4.81 Roll 8.88 leal 5.77
decl 2.26 rorl 3.29 Rorl 3.71 nop 5.96 popl 2.44 Andl 4.75 rorl 5.64
jnz 2.16 roll 1.83 Roll 1.11 xorl 1.82 jnz 2.24 Movb 4.24 andl 4.39
incl 1.65 pushl 0.75 pushl 1.05 cmpl 1.43 subl 1.95 Orl 2.31 orl 2.86
xorb 1.65 popl 0.74 popl 1.04 popl 1.13 xorl 1.34 Addb 1.57 movb 2.25
pushl 0.93 addl 0.37 Ret 0.26 pushl 1.08 cmpl 1.29 Pushl 1.21 bswap 1.06
Total 94.52 98.53 98.63 93.75 89.78 91.91 94.36

new instructions to replace a series of instructions for a
basic operation. For instance, MD5 and SHA-1 use a lot
of logical operations, which take three inputs and
generate one output. Figure 4 shows some of the
examples. All the operations are simple functions like
AND and XOR. However since logical instructions take
only two operands, these operations take at least two
instructions like (b). For (a) and other operations, many
more instructions are needed. In addition, since these
operations can only employ the limited set of x86
registers, this series of computations also introduces
several move operations to save the data to memory and
fetch it back. To avoid these overheads, a single
instruction that allows for three operands can replace
these series of operations. Another approach is to
continue to use two operands but require larger registers
(like MMX registers). One 128-bit MMX register can
contain multiple 32-bit or 64-bit data and therefore can
implicitly represent more than two operands.

 X Y Z

xor
and

xor

(a)

xor

xor

X Y Z

(b)
Figure 4. Basic logical operations in MD5 and SHA1

(2) Hardware support can be added to perform some

crypto operations at a higher level. For instance, there
are a lot of table lookup operations in AES and
DES/3DES. Figure 5 shows hardware support that can
be used to perform one round in AES algorithm. S0 to
S3 and T0 to T3 are the four inputs and outputs
respectively. Te0 to Te3 are the four tables that contain
constant values. KS is the key schedule. As described in

the previous section, each round consists of four basic
operations. As shown in the figure, in the first basic
operation (in solid lines indicated by ‘0’), the first byte
from S0 is indexed to table Te0, the second byte from
S1 is indexed to table Te1, and so on. The four values
from the four tables are XORed with the corresponding
key value from the key schedule. This results in the first
output (T0) for this round. In the next basic operation
(in dashed lines indicated by ‘1’), the fourth byte from
S0 is indexed to table Te3, the first byte from S1 is
indexed to table Te0, and so on. The next two outputs
are generated in a similar way. Note that these four
basic operations have no dependency on each other,
therefore can be performed in parallel completely. To
drive this hardware unit, a new instruction needs to be
added after assigning the four input registers. Since T0
~ T3 become the inputs for the next round, this
hardware unit can be extended to perform all rounds
and return the final four outputs.

+

S0 S2 S1 S3

Te0 Te1 Te2 Te3
KS

T0 T1 T2 T3

0 0 0 01
11

1

Figure 5. Hardware support for AES table lookup

3) Crypto engines can be used at an even higher level
than the hardware unit. It can support a complete
encryption algorithm. For instance, a crypto engine that
supports AES can take a string as its input and

generates the encrypted data as the output. In addition,
crypto engines can run asynchronously with the CPU,
so that the throughput can be improved significantly.
Furthermore, several crypto units within one engine can
run in parallel in the bulk transfer phase. For instance,
when the web server tries to send a 1K bytes data to the
client using AES encryption, the data actually sent is an
encrypted fragment that consists of the 1K bytes data,
the MAC value and some padding (to make the
fragment a multiple of the block length). What the
server does is that it first calculates the MAC of the
data, and then performs AES encryption on the
fragment. With the support of a crypto engine that
includes an AES encryption unit and a hashing unit, the
AES encryption and the MAC calculation can be
performed in parallel. As shown in Figure 6, the control
unit in the engine fetches data from the memory (via
reading descriptors set by the user program) and feed it
into the AES encryption unit as well as the hashing
unit. The AES encryption unit generates the first part of
the fragment. When the hashing unit finishes the MAC
calculation, the MAC value and the padding are feed
into the AES encryption unit and generate the last part
of the fragment.

Figure 6. Pipelining/parallelism in crypto engines

7. Conclusions and Future Work

In this paper, we analyzed the SSL performance in
secure web transactions. It turns out that about 70% of
the total processing time of an HTTPS transaction is
spent in SSL processing. As a result, a more detailed
understanding of the key overheads within SSL
processing was required. By presenting a detailed
description of the anatomy of SSL processing, we
showed that the major overhead incurred during SSL
processing lies in the session negotiation phase when
small amount of data are transferred (as in banking
transactions). On the other hand, when the data
exchanged in the session crosses over 32K bytes, the
bulk data encryption phase becomes important. We then
showed the breakdown of time spent on the
cryptographic operations that were classified as
asymmetric encryption algorithms, symmetric
encryption algorithms and hash functions.

Our final contribution was a more detailed analysis
of the commonly used crypto algorithms to determine
the time consuming operations (table lookups,
permutations, logical operations, etc) occupies a
significant fraction of the execution time. We presented
the architectural characteristics of crypto operations by
analyzing CPI, path length and frequently used
instructions. Finally we presented our inferences on
ISA/hardware support to improve the SSL processing.
Our future work involves investigating the design and
performance of architectural support for security
protocols further.

References

[1] Apache, HTTP server project, http://httpd.apache.org/
[2] Jerome Burke, John McDonald, Todd Austin, “Architectural

Support for Fast Symmetric-Key Cryptography”, Proc. Int.
Conf. Architectural Support for Programming Languages and
Operating Systems (ASPLOS) , pp. 178-189, Nov. 2000

[3] D. Brumley and D. Boneh, “Remote Timing Attacks are
Practical”, USENIX, 2003

[4] Curl, http://curl.haxx.se/
[5] T. Dierks, C. Allen, The TLS Protocol Version 1.0,

http://www.ietf.org/rfc/rfc2246.txt
[6] Whitfield Diffie, Martin E. Hellman, “New Directions in

Cryptography”, IEEE Trans. Info. Th. 22, 644-654, 1976
[7] A.O. Freier, P. Karlton, P.C. Kocher, “The SSL Protocol,

V3.0”, IETF draft, http://wp.netscape.com/eng/ssl3/3-spec.htm
[8] Intel, “IXP2850 Network Processor”,

http://www.intel.com/design/network/products/npfamily/ixp2850.htm
[9] Intel, “VTune Performance Analyzers”,

http://intel.com/sfotware/products/vtune
[10] Krishna Kant, Ravi Iyer and Prasant Mahapatra, “ Architectural

Impact of Secure Socket Layer on Internet Servers”, Proc. Int.
Conf. on Computer Design, Sep. 2000

[11] S. Kent and R. Atkinson, “Security Architecture for the Internet
Protocol”, RFC 2401, Nov 1998

[12] Ruby B. Lee, Zhijie Shi and Xiao Yang, “Efficient Permutation
Instructions for Fast Software Cryptography”, IEEE Micro, Vol.
21, No. 6, pp. 56-69, December 2001

[13] A.J. Menezes, P.C. Van Oorschot, et al., “Handbook of Applied
Cryptography”, CRC Press, Oct. 1996

[14] NIST, Advanced Encryption Standard (AES), FIPS Pub. 197,
http://csrc.nist.gov/publications/fips, Nov, 2001

[15] NIST, Secure Hash Standard (SHS), FIPS Pub. 180-2,
http://csrc.nist.gov/publications/fips, Aug. 2002

[16] OpenSSL, http://www.openssl.org/
[17] Oprofile, http://oprofile.sourceforge.net/news/
[18] PKCS #1: RSA Cryptography Standard,

http://www.rsasecurity.com/rsalabs
[19] R. Uhlig, R. Fishtein, et al., “SoftSDV: A Pre-silicon Software

Development Environment for the IA-64 architecture”, Intel
Technology Journal, 4th quarter, 1999

[20] Lisa Wu, Chris Weaver, and Todd Austin, “CryptoManiac: A
Fast Flexible Architecture for Secure Communication”, Int.
Symposium on Computer Architecture (ISCA), 2001

Data

Hashing
unit

MAC

Padding

AES
encryption

unit

Control
unit

