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Abstract—A fundamental challenge of supporting mutable data repli-
cation in a Peer-to-Peer (P2P) system is to efficiently maintain con-
sistency. This paper presents a framework for balanced consistency
maintenance (BCoM) in structured P2P systems with heterogeneous
node capabilities and various workload patterns. Replica nodes of each
object are organized into a tree structure for disseminating updates, and
a sliding window update protocol is developed for consistency main-
tenance. We present an analytical model to optimize the window size
according to the dynamic network conditions, workload patterns and
resource limits. In this way, BCoM balances the consistency strictness,
object availability for updates, and update propagation performance for
various application requirements. On top of the dissemination tree, two
enhancements are proposed: (1) a fast recovery scheme to strengthen
the robustness against node and link failures, and (2) a node migration
policy to remove and prevent bottlenecks allowing more efficient update
delivery. Simulations are conducted using P2PSim to evaluate BCoM in
comparison to SCOPE [1]. The experimental results demonstrate that
BCoM outperforms SCOPE with lower discard rates. BCoM achieves a
discard rate as low as 5% in most cases while SCOPE has almost 100%
discard rate.

Index Terms—Peer-to-Peer, consistency, protocol design, simulations.

1 INTRODUCTION

STRUCTURED P2P systems have been effectively de-
signed for wide area data applications [2] [3] [4]

[5] [6] [7]. While most of them are designed for read-
only or low-write sharing contents, a lot of promis-
ing P2P applications demand support for mutable con-
tents. Such examples are modifiable storage systems (e.g.
OceanStore [4], Publius [8]), mutable content sharing
(e.g. P2P WiKi [9]), even interactive ones (e.g. P2P online
games [10], P2P Social Networking [11], and P2P col-
laborative workspace [12]). The P2P approach improves
data availability, fault tolerance, and scalability for static
content sharing. But mutable content sharing raises is-
sues of replication and consistency management. P2P
dynamic network characteristics combined with diverse
application requirements and heterogeneous resource
constraints pose unique challenges for P2P consistency
management [13].
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P2P systems are typically large, where peers with
heterogeneous resource capabilities experience varying
network latencies. Also, the frequent joining and leaving
of nodes make the P2P overlay failure prone. Neither
sequential consistency [14] nor eventual consistency [15]
individually works well in a P2P environment. It has
been proved [16] that among three properties, atomic
consistency, availability and partition-tolerance, only two
can be satisfied at a time. Applying sequential consis-
tency leads to prohibitively long synchronization delays
due to the large number of peers and the unreliable
overlay. Even “deadlock” may occur when a crashed
replica node causes other replica nodes to wait forever.
Hence, system scalability is restricted due to low data
availability resulting from long synchronization delay.
At the other extreme, eventual consistency allows replica
nodes to concurrently update their local copies, only
requiring that all replica copies become identical after a
long enough failure-free and update-free interval. Since
replica nodes are highly unreliable in P2P systems, the
node issuing update may have gone offline by the time
update conflicts are detected, leading to unresolvable
conflicts. It is infeasible to rely on a long duration with-
out any failure or further updates. As a result, eventual
consistency fails to provide any end-to-end performance
guarantee to P2P users.

This paper presents a Balanced Consistency Main-
tenance (BCoM) protocol for structured P2P systems
to balance between consistency strictness, object avail-
ability for updates, and update dissemination latency.
BCoM is designed for P2P implementations of social
networking [11] (e.g. Facebook) and collaborative editing
[9], [12] (e.g. WiKi or CVS). Users of these P2P appli-
cations frequently update common objects. They prefer
objects highly available for updating although they can
tolerate a certain extent of temporary inconsistency as
long as they get the latest version within a time bound.
Usually these updates are insertions where conflicts are
infrequent.

BCoM protocol serializes all updates to eliminate the
complicated conflict handling in P2P systems. It also
allows certain obsolescence in each replica node to re-
duce the update discard rate of implementing sequen-
tial consistency. BCoM limits the extent of temporary
inconsistency by developing a sliding window update

Digital Object Indentifier 10.1109/TPDS.2012.81 1045-9219/12/$31.00 ©  2012 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

protocol. The size of the sliding window regulates the
number of allowable updates buffered by each replica
node. Thus, BCoM provides a measure of consistency
guarantee which is specified by an application rather
than eventual consistency. BCoM develops an analytical
model to set the window size as follows: given an
inconsistency bound, the window size is set to minimize
the update discard rate while ensuring the expected
delay is no worse than the baseline by a small given
threshold.

Existing bounded consistency techniques for P2P sys-
tems can be divided into two categories: probabilistic
consistency [17] [18] and time-bounded consistency [19]
[20], both of which have limitations. Probabilistic con-
sistency only guarantees consistency on most nodes. It
cannot guarantee that every node receives all updates.
Thus, it is not applicable to the situation where all
intermediate updates are valued by every user. BCoM
overcomes this problem by ensuring consistency bounds
on every node. Besides, existing probabilistic consistency
protocols involve redundant update propagation, which
is eliminated in BCoM. Time-bounded consistency sets
a uniform temporal constraint on inconsistency for all
nodes. In the situation where nodes have various update
frequencies, it is impossible to set a temporal constrain
that works for all nodes. To solve this problem, BCoM
uses a sliding window to directly limit the number of
updates that have not been received by all replica nodes.

An update window protocol has been designed for
web-server systems [21] to limit the number of uncom-
mitted updates at each replica node. But the authors of
[21] do not address update conflicts and potential cas-
cading impacts. Moreover, their window size optimiza-
tion model requires information on each node. There are
two obstacles making it impractical to apply this tech-
nique to P2P systems: (1) unlike the web-servers, P2P
replica nodes are highly dynamic and unreliable which
makes the update conflict problem worse, (2) the num-
ber of replicas in P2P systems is orders of magnitude
larger than that in web-server systems. Hence, collecting
information from each node is infeasible in P2P systems.
BCoM develops a sliding window protocol that avoids
these obstacles. In BCoM, updates are serialized to avoid
conflicts and a distributed analytical model is developed
to optimize the window size with simple system-wide
information, such as the total layers of replica nodes
and the bottleneck service time. This information can be
collected periodically with low overhead. Therefore, the
consistency maintenance provided by BCoM scales well
in dynamic P2P systems.

In BCoM, replica nodes of each object are organized
into a d-ary dissemination tree (dDT ) to propagate
updates. dDT is built on top of the overlay structure,
an auxiliary structure for consistency maintenance of
an object. We evaluate the efficiency of BCoM with
comparison to SCOPE [1], which also builds an auxiliary
tree structure on top of the overlay for sending updates.
SCOPE proposed an ID partitioning algorithm to con-

struct their update dissemination tree for maintaining
sequential consistency in structured P2P networks. There
are other tree based consistency management for struc-
tured P2P (e.g., [22]), but the tree construction meth-
ods fundamentally are inherited from SCOPE. There-
fore, we choose to compare the performance of BCoM
with SCOPE. In SCOPE, the update dissemination tree
is built by recursively partitioning the identifier space
and selecting a representative node as the tree node
for each partition. The drawback is that a tree node
may not be a replica node, thus not all tree nodes are
interested in receiving or propagating updates about the
object. Including such nodes in the dissemination tree
introduces extra overhead for sending updates. The ID
partitioning algorithm may also assign a node to be
several tree nodes in SCOPE because of its ID. Such
nodes may be easily overloaded when sending updates.
BCoM avoids these two problems by constructing the
update dissemination tree dDT only from replica nodes,
with each replica node mapped to a tree node. BCoM
also builds a dDT as balanced as possible to reduce the
tree height. Smaller tree height reduces the number of
hops for update propagation and thus the delay, which
improves the object availability for updates.

For each object in BCoM, replica nodes join the dDT
of this object through the root node, and all updates
about the objects are sent to the root for serialization.
However, the root will not be a bottleneck caused by a
large number of replicas, as the root only sends updates
to its children, who in turn send the updates to their
children. The root only has a small constant number of
children, and the node degree is independent of the total
number of tree nodes (i.e. replicas). The update rates will
neither overload the root because the root only serializes
the updates it received. No communication overhead
is imposed on the root and the computation overhead
for serializing updates is negligible for any modern
computer. A root node may be overloaded by being
root for too many objects. Since the root of an object
is selected through hashing the object ID to the node ID
in a structured P2P overlay, load balance schemes may
solve the problem, which is beyond the scope of this
paper.

BCoM presents two enhancements to further improve
the performance of a dDT . One is the ancestor cache
scheme, where each node maintains a cache of ancestors
for fast recovery from parent node failures or leaving.
This relieves the tree-structure “multiplication of loss”
problem [23] (i.e. all the subtree nodes rooted at the
crashed node will lose updates), which is especially
critical in P2P systems. Maintaining the ancestor cache
does not introduce extra overhead since the needed
information conveniently piggybacks on update prop-
agation. A small size cache significantly improves the
robustness of dDT against node churn and failures.
The other is the node migration scheme, where more
capable nodes are migrated to upper layers and less
capable nodes are migrated to lower layers. The reason
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is that if an upper layer node is slow in propagating
updates, the consistency constraint blocks its ancestors
from receiving new updates, and all its subtree nodes
will not receive timely updates. The node migration
scheme is to prevent and remove bottleneck nodes. Two
forms of node migration are presented, one is to remove
blocking and the other is to prevent blocking.

The contributions of our paper are the following:
• We propose a consistency maintenance frame-

work (BCoM) in structured P2P systems. A slid-
ing window update protocol and two enhancement
schemes are presented. BCoM balances consistency
strictness, object availability for updating, and up-
date dissemination latency.

• We analyze the problem of setting the window
size in response to dynamic network conditions,
changing workload patterns, and different resource
constraints through a queueing model. Our model
serves diverse consistency requirements from vari-
ous data sharing applications.

• We evaluate the performance of BCoM with com-
parison to SCOPE [1] using the P2PSim simulation
tool. SCOPE is the most relevant work to BCoM,
and it is widely studied in structured P2P systems
for consistency management.

The rest of the paper is organized as follows: Section 2
describes BCoM techniques and deployment. Section 3
presents the analytical model for window size setting.
The performance of BCoM is evaluated in Section 4,
and case study results are presented in Section 5. The
scholarly literature is reviewed in Section 6. The paper
is concluded in Section 7.

Preliminary conference version of this paper was pub-
lished in [24].

2 DESCRIPTION OF BCOM
BCoM aims to: (1) provide bounded consistency for
maintaining a large number of replicas of a mutable
object; (2) balance the consistency strictness, object avail-
ability for updating, and update propagation perfor-
mance based on dynamic network conditions, workload
patterns, and resource constraints; (3) make the consis-
tency maintenance robust against frequent node churn
and failures. To fulfill these objectives, BCoM organizes
all replica nodes of an object into a d-ary dissemination
tree (dDT ) on top of the P2P overlay for disseminating
updates. It applies three core techniques: the sliding
window update protocol, the ancestor cache scheme, and
the tree node migration policy on a dDT for consistency
maintenance. In this section, we first introduce the dDT
structure, and then explain the three techniques in detail.

2.1 Dissemination Tree Structure
For each object, BCoM builds a tree with node degree d
rooted at the node whose ID is the closest to the object
ID in the overlay identifier space. We denote this d-ary
dissemination tree of object i as dDTi. Each node in dDTi

is a peer who holds a copy of object i. We name such
a peer as a “replica node” of i, or simply as a replica
node. An update can be issued by any replica node, but
it should be submitted to the root. The root serializes
updates to eliminate conflicts.

With node churn and failures in P2P systems, a dDT
serves two cases of insertions: (1) a single node joining,
and (2) a node with subtree rejoining. The goal of
constructing a dDT is to minimize the tree height with
low overhead in both cases.

We show an example of dDTi construction with node
degree d set to 2 in Figure 1. The replica nodes are
ordered by their arrival times as node 0, node 1, node
2, etc. At the beginning, node 1 and node 2 joined. Both
were assigned by node 0 (i.e., the root) as its children.
Then, node 3 joined. Since node 0 cannot have more
child, it passed node 3 to a child who has the smallest
number of subtree nodes. Since both children (i.e., node
1 and node 2) had the same number of subtree nodes,
node 0 randomly selected one to break the tie, say node
1, and increased the number of subtree nodes at node
1 by one. Node 1 assigned node 3 as its child because
it had a space for a new child. When node 4 joined,
node 0 did not have space for a new child and passed
node 4 to the child with the smallest number of subtree
nodes, node 2. Similarly, node 5 and node 6 joined. When
node 6 crashed, all of its children detected the crash
independently and contacted other ancestors to rejoin
the tree. Every child of node 6 acts as a delegate of
its subtree to save individual rejoining of the subtree
nodes. Section 2.3 explains how to contact an ancestor
for rejoining. The tree construction algorithm is given in
Algorithm 1. We use Subno.(x) to count the number of
subtree nodes of node x, including itself.

Fig. 1. Dissemination Tree Example

The dDT construction algorithm uses the number of
subtree nodes as the metric for insertions, instead of the
tree depth used in traditional balanced tree algorithms.
This is because a rejoining node with a subtree may
increase the tree depth by more than one, which is
beyond the one by one tree height increase handled
by traditional balanced tree algorithms. In addition,
maintaining the total number of nodes in each subtree
is simpler and more time efficient than maintaining the
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Algorithm 1 dDT Construction (p, q)

Input: node p receives node q’s join request
Output: parent of node q in dDT
if p does not have d children then
Subno.(p)+ = Subno.(q)
return p

else
find a child f of p s.t. f has the smallest Subno.
Subno.(f)+ = Subno.(q)
return dDT Construction (f, q)

depth of each subtree. Internal nodes need to wait until
an insertion completes, then the updated tree depth can
be collected layer by layer from leaf nodes back to the
root. This makes the real time maintenance of the tree
depth difficult and unnecessary when tree nodes are
frequently joining and leaving. However, internal nodes
can immediately update the total number of subtree
nodes after forwarding a new node to a child. In BCoM,
the tree depth is periodically collected to help set the
sliding window size, where its result does not need to
be updated in real time as discussed in Section 2.2.2. But
using an outdated tree depth for insertions to dDT will
lead to an unbalanced tree and degrade the performance.

2.2 Sliding Window Update Protocol
2.2.1 Basic Operations in Sliding Window Update

The sliding window update protocol regulates the
consistency strictness in a dDT . “Sliding” refers to the
incremental adjustment of the window size based on dy-
namic system conditions. If dDTi of object i is assigned
a sliding window size ki, any replica node in dDTi can
buffer up to ki unacknowledged updates before getting
blocked from receiving new updates. In other words,
each node in dDTi is given a buffer of size ki. At the
beginning, the root receives the first update, sends it to
all children and waits for their ACKs. There are two
types of ACKs, R ACK and NR ACK. Both indicate
that the update has been received. The difference is
that R ACK means the sender is ready to receive the
next update; NR ACK means the sender is not ready.
While waiting, the root accepts and buffers the incoming
updates as long as its buffer is not overflowed. When
receiving an R ACK from a child, the root sends the
next update to this child if there is a buffered update
that has not been sent to this child. When receiving an
NR ACK from a child, it marks the update to be received
by this child and stops sending update to this child. After
receiving ACKs from all children, the update is removed
from the root’s buffer.

There are two cases of buffer overflow: 1) when the
root’s buffer is full, the new updates are discarded until
there is a space; 2) when an internal node’s buffer
is full, the node sends NR ACK to its parent for the
last received update. An R ACK is sent to its parent

when the internal node has a space in its buffer to
resume receiving updates. A leaf node does not have any
buffer. After receiving an update, it immediately sends
an R ACK to its parent.

Figure 2 shows an example of the sliding window
update protocol with the window size set to 8. V stands
for the version number of an update, as V 10−V 13 means
that the node keeps the updates from the 10th version
to the 13th version. Each internal node keeps the next
version for its slowest child up to the latest version it
received. Each leaf node only keeps the latest version it
received.
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Fig. 2. An example of sliding window update protocol.

2.2.2 Window Size Setting

The sliding window size ki is critical for balancing the
consistency strictness, object availability for updating,
and update dissemination latency. A large ki masks the
long network latency and the temporary unavailability
of replica nodes, thus lowers the update discard rate.
But a large ki enlarges the discrepancy between the
local version of a replica node with the latest version
at the root. Thus, a large window size ki weakens the
consistency and increases the queueing delay of update
propagation in dDTi. On the extremes, infinite buffer size
provides eventual consistency without discarding updates, and
buffer size zero provides sequential consistency with the worst
update discard rate.

We present an analytical model in Section 3 to set
the sliding window size ki so that the discard rate is
minimized under a delay constraint and a consistency
constraint. The detail formula is given in Section 3. Here,
we explain the procedure for setting the window size.
The root sets the window size for all tree nodes and
adjusts it periodically when needed. The root measures
the input metrics for computing the window size every T
seconds and adjusts the value of ki only after the metrics
stabilize and the old ki violates certain constraints. In
this way, unnecessary changes due to temporary distur-
bances are eliminated to keep dDTi stable. If ki needs to
be adjusted, it is incrementally increased or decreased
until the constraints are satisfied.
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The input metrics of computing the window size ki
include the update arrival rate λ, the tree height L, and
the bottleneck service time μL. The arrival rate is directly
measured by the root. The tree height and bottleneck
service time are collected periodically from leaf nodes
to the root in a bottom-up approach. The values of the
two metrics are aggregated at every internal node so
that the maintenance message keeps the same size. The
aggregation is performed as follows: each leaf node ini-
tializes the tree height to zero (L = 0) and the bottleneck
service time μL to the update propagation delay between
itself and its parent. Each node sends the maintenance
message to its parent. Once an internal node receives
the maintenance messages from all children, it updates
L as the maximum value of its children’s tree height plus
1 and μL as the maximum value among its and every
child’s service time. If its service time is longer than a
child’s, a non-blocking migration is executed to swap the
parent with the child. The aggregation continues until
the root is reached.

2.3 Ancestor Cache Maintenance
Each replica node maintains a cache of mi ancestors
starting from its parent leading to the root in dDTi. The
value of mi is set based on the node churn rate (i.e., the
number of nodes joining and leaving the system during
a given period) so that the probability that all mi nodes
simultaneously fail is negligibly small. If a node does
not have mi ancestors, it caches all the ancestors from
its parent to the root.

A node contacts its cached ancestors sequentially layer
by layer upwards when its parent becomes unreachable.
This can be detected by ACKs and maintenance mes-
sages. Sequentially contacting enables a node to find the
closest ancestor. The root is finally contacted if all the
other ancestors are unavailable. The root failure is han-
dled by the overlay routing, as a node with the nearest
ID will replace the crashed node to be the new root.
Different replication schemes may be used to reduce the
cost of root failure, which is specific to a structured P2P
overlay and beyond the scope of this paper.

The contacted ancestor runs the tree construction Al-
gorithm 1 to find a new position for a rejoining node
with its subtree. BCoM does not replace a crashed node
with a leaf node to maintain the original tree structure
because migration brings down a bottleneck node to
the leaf layer for performance improvement. The new
parent node transfers the latest version of the object to
the new child if necessary. Since each node only keeps ki
previous updates, content transmission is used to avoid
the communication overhead for getting the missing
updates from other nodes. The sliding window update
protocol resumes for incoming updates.

The ancestor cache provides fast recovery from node
failures with a small overhead. Assuming the probability
of a replica node failure is p, an ancestor cache of size
mi has a successful recovery probability as 1 − pmi . An
ancestor cache is easily maintained by piggybacking an

ancestor list on each update. Whenever a node receives
an update it adds itself to the ancestor list before prop-
agating the update to its children. Each node uses the
newly received ancestor list to refresh its cache. There
is no extra communication, and the storage overhead
is also negligible for keeping the information of mi

ancestors.

2.4 Tree Node Migration
Any non-leaf node will be blocked from receiving new
updates if one of its descendants has a buffer overflow in
the sliding window update protocol. It is quite possible
that a lower layer node performs faster than a bottleneck
node. This motivates us to promote the faster node to
a higher level and degrade the bottleneck node to a
lower level. For example in Figure 1, assume node 1 is
the bottleneck node causing the root 0 to be blocked.
The faster node may be a descendant of the bottleneck
node as shown in (A) or a descendant of a sibling of the
bottleneck node as shown in (B). When blocking occurs,
node 0 can swap the bottleneck node 1 with a faster
descendant who has more recent updates, like node 4,
to remove blocking. Before blocking occurs, node 1 can
be swapped with its fastest child who has the same
update version to prevent blocking. The performance
improvement through node migration is confirmed by
our analytical model in Section 3.

There are two forms of node migration, as described
below.

• Blocking triggered migration: the blocked node
searches for a faster descendant who has a more
recent update than the bottleneck node, and swaps
them to remove blocking.

• Non-blocking migration: when a node observes a
child performing faster than itself, it swaps with this
child. Such migration prevents blocking and speeds
up the update propagation for the subtree rooted at
the parent node.

The swapping of (B) in Figure 1 is an example of
blocking triggered migration and (A) is an example of
non-blocking migration. Both forms of migration swap
one layer at a time and, hence, multiple migrations
are needed for multi-layer swapping. The non-blocking
migration helps promote faster nodes to upper layers,
which makes the searching in blocking-triggered migra-
tion easier. Since the overlay DHT routing in structured
P2P networks relies on cooperative nodes, we assume
BCoM is run by these cooperative P2P nodes transparent
to end users. Tree node migration uses only the local in-
formation and improves the overall system performance.

2.5 Basic Operations in BCoM
BCoM provides three basic operations:

• Subscribe: if a node p wants to read the object i and
keep it updated, p sends a subscription request to
the root of dDTi through the overlay routing. After
receiving the request, the root runs Algorithm 1 to
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locate a parent for p in dDTi, who will transfer its
most updated version of object i to p. p receives
the subsequent updates by following the sliding
window update protocol. The message overhead of
a subscription is at most the tree height as inserting
a new node searches along a path from the root to
a leaf in dDTi.

• Unsubscribe: if a node p is not interested in object
i anymore, it promotes its fastest child as the new
parent and transfers its parent and other children’s
information to the newly promoted node. p also
notifies them of the newly promoted node to update
their related maintenance information. The message
overhead of an unsubscription is constant, since the
number of involved nodes is no more than the tree
node degree, and each node has a constant overhead
to update its local maintenance information.

• Update: after subscribing, if a node p wants to up-
date the object, it sends an update request directly to
the root using the IP routing. The root’s IP address
is obtained through the subscription or the ancestor
cache. If the root crashed, p submits the update to
the new root through the overlay routing. Updates
are serialized at the root by their arrival times. The
specific policy for resolving conflicts is application
dependent. The message overhead of an update is
constant for the direct submission to the root.

3 ANALYTICAL MODEL FOR SLIDING WINDOW
SETTING

The frequent node churn in P2P systems forbids us to use
any complicated optimization techniques that require
several hours of computation at workstations (e.g., [25])
or every node information in the system (e.g., [21]).
BCoM adjusts the sliding window size to the dynamic
P2P systems relying on limited information.

This section analyzes the setting of the sliding window
size ki for object i, where the update propagation to
all replica nodes is modeled by a queuing system. We
first analyze the queueing behavior of the dissemination
tree dDTi when it begins to discard an update. We then
calculate the update discard probability and the expected
latency for a replica node to receive an update. Finally,
we set ki to minimize the update discard rate given a
consistency bound while ensuring the expected delay is
no worse than the baseline by a small given threshold.

3.1 Queueing Model

Assuming the total number of replica nodes is N , the
node degree is d, and there are L (L = O(logd N)) layers
of internal nodes with an update buffer of size ki (i.e.,
each node in layer 0 . . . L− 1 has a sliding window ki).
The leaf nodes are in layer L and do not have any buffer.
The update arrivals are modeled by a Poisson process
with an average arrival rate λi (simply as λ), since
each update is issued by a replica node independently

and identically at random. The latency of receiving an
update from the parent and an acknowledgment from
the child is denoted as the service time for an update
propagation. The service time for one layer to its adjacent
layer below is the longest parent-child service time in
these two layers. μl denotes the service time for update
propagation from layer l to layer (l+1). For example, μ0

is the longest service time from the root to its child, μL−1

is the longest service time from a layer (L − 1) node to
its child (i.e., a leaf node). The update propagation delay
is assumed to be exponentially distributed. The update
propagation in dDTi is modeled as a queuing process as
shown in Figure 3 (a): updates arrive at the root with an
average rate λ, then go to the layer 0 node’s buffer of
size ki. The service time for propagating from layer 0 to
layer 1 is μ0. After that, the updates go to a layer 1 node’s
buffer of size ki with service time μ1 for propagating to
a layer 2 node. The propagations end when updates are
received by a leaf node in layer L.

Fig. 3. Queuing Model of Update Propagation.

An update may only be discarded by the root when
its buffer is overflowed. This happens when the root is
waiting for an R ACK from its slowest child in layer
1, who is waiting for an R ACK from its slowest child
in layer 2. The waiting cascades until a bottleneck node
of dDTi is reached, say in the layer l, 0 ≤ l ≤ L. The
nodes in layers l + 1 . . . L (if l < L) do not receive
any update even when their buffers are not full. All
the nodes in the path from the root to the bottleneck
node have buffer overflow. The nodes along the path
are denoted as p0, p1 . . . pl, where p0 is the root and
pl is the bottleneck node. After the bottleneck node pl
has a space in its buffer and sends an R ACK to its
parent, the R ACK is then propagated to the root p0
such that the root can purge the update from its buffer
and accept a new one. The update propagation from
p0 → p1, p1 → p2, . . . pl−1 → pl is in parallel and the
service time μl−1 between pl and pl−1 should be the
longest along this path (i.e., μl−1 > μj , 0 ≤ j < l − 1).
Therefore, the queuing model of the update discard is
transformed to a queue with an effective buffer of size
l ∗ ki for dDTi, and the service time is μl−1, as shown in
Figure 3 (b).

This queuing model explains that given a ki, the
effective buffer size l ∗ ki is determined by l, which is
the layer of the bottleneck node. The larger the effective
buffer size, the lower the discard probability. When the
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bottleneck node is a leaf node (l = L), buffer resources
of dDTi are fully used with an effective buffer size
L ∗ ki. This inspires the Tree Node Migration techniques
presented in Section 2.4, which moves down bottleneck
nodes to the leaf layer. The discard probability of an
update is computed based on the queuing model of dDTi

after being optimized by tree node migrations as shown
in Figure 3 (c). The queue becomes an M/M/1/ queue
with a buffer size L ∗ ki, an arrival rate λ and a service
time μL−1.

3.2 Availability and Latency Computation
Define the update request intensity as ρ.

ρ =
λ

μL−1
(1)

Define the probability of n updates in the queue as πn.
Based on the queueing theory for M/M/1 finite queue
[26], πn is represented as Eq.2.

πn = ρnπ0 (2)

The discard probability is πL∗ki , which indicates the
buffer overflow. From ΣL∗ki

n=0 πn = 1, we get π0 = 1−ρ
1−ρL∗ki

.
And the discard probability is computed in Eq.3.

πL∗ki
=

1− ρ

1− ρL∗ki
ρL∗ki (3)

The expected number of packets in the queue E[NL∗ki ]
is calculated in Eq.4.

E[NL∗ki
] =

∑

0≤n≤L∗ki

n ∗ πn (4)

Plug in the Eq.2 for πn, the final form of E[NL∗ki ] is
given in Eq.5.

E[NL∗ki
] =

(L ∗ ki + 1)ρL∗ki+1

(ρL∗ki+1 − 1)
+

ρ

(1− ρ)
(5)

The expected delay E[TL∗ki ] is calculated by Little’s
law in Eq.6, where E[NL∗ki ] is the expected number of
packets in the queue and λ(1− πL∗ki) is the arrival rate
of the accepted updates.

E[TL∗ki
] =

E[NL∗ki
]

λ(1− πL∗ki
)

(6)

3.3 Window Size Setting
The effectiveness of a consistency protocol is measured
by three attributes: consistency strictness, object avail-
ability, and latency for receiving an update. The three are
in subtle tension towards each other. Given the update
arrival rate and the service time, increasing the window
size ki lowers the discard probability, while prolongs the
expected latency and weakens the consistency strictness.
πL∗ki is the discard probability. The expected latency
E[TL∗ki ] indicates the average delay for an update to
be received by a replica node. The consistency strictness
is measured by the number of updates a replica node
has not yet received, which is at most L ∗ ki in dDTi.

BCoM sets the window size to minimize the update
discard rate under the constraints that the number of
not-yet-received updates is bounded to Km and the
latency for receiving an update is no worse than the
sequential consistency for a small bound Ts as calculated
in Eq.7. E[TL∗k] is the expected latency with a window
size k and E[TL] is the expected latency when applying
sequential consistency to dDTi, which serves as the base-
line for bounding the latency performance. The latency
threshold Ts and the consistency strictness threshold Km

are set according to application requirements. In our
simulation, empirically setting Ts to 1.3 achieves good
results as shown in Figure 9 and Figure 11, the discard
probability is improved from almost 100% to 5% at the
cost of latency increases less than one third most of the
time. Km is set to 60 for a network of 1000 nodes.

ki = argmin πL∗k s.t.
E[TL∗k]
E[TL]

≤ Ts, L ∗ k ≤ Km (7)

4 PERFORMANCE EVALUATION

In this section, we extend the P2PSim tool [27] to sim-
ulate BCoM with heterogeneous node capacities and
transmission latencies. While BCoM can be applied
to any type of structured P2P systems, we choose
Tapestry[28] as a representative network for simulations.
We evaluate the efficiency of BCoM with comparison to
SCOPE[1], which is the most relevant work and a widely
studied consistency technique in structured P2P systems.

Simulation Setting: We simulate a network of 1000
nodes because anything larger cannot be executed stably
in P2PSim. The number of objects ranges from 102 to
104. The object popularity follows a Zipf’s distribution,
and the update arrivals are generated by a Poisson
process with different average arrival rates. By default,
each node issues 200 updates during a simulation cycle,
which is 7.2 ∗ 106 time slots. We simulate the situation
where frequent updates may overload the servers, which
motivates the use of P2P systems. Given that trans-
mitting one update uses only 10 to 100 time slots, the
number of time slots covered in a simulation cycle (i.e.,
7.2 ∗ 106) is large enough to generate sustainable results.
The data points in our figures are the average values of
20 trials.

The heterogeneity of node capacities follows a Pareto
distribution [22]. We set the shape parameter a = 1 and
scale parameter b = 900 to get 900 different node capac-
ities. Network topology is simulated by two transit-stub
topologies generated by GT ITM [29] to model dense
and sparse networks: (1) ts1k-small (dense) - 2 transit
domains each with 4 transit nodes, 4 stub domains
attached to each transit node, and 31 nodes in each stub
domain. (2) ts1k-large (sparse) - 30 transit domains each
with 4 transit nodes, 4 stub domains attached to each
transit node, and 2 nodes in each stub domain.

The node degree is set to 5 based on the average
Gnutella node degree, which is 3 to 5. To have a fair
comparison, we also set the vector degree of each SCOPE
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node to 5. The update discard rate (the ratio of the number
of discarded updates to the total number of updates),
and the update dissemination latency (the average delay for
a replica node to receive an update) are used to measure
the performance.

Efficiency of the Window Size: This simulation exam-
ines the efficiency of applying sliding window update
protocol. The curves in Figure 4 and Figure 5 show
that by increasing the window size from 1 to 20, the
discard rate is dropped from 80% to around 5%, and the
latency is increased only by 20%. The results confirm
that BCoM significantly improves the object availability
with slightly increased latency compared to applying the
sequential consistency.
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Impacts of the Window Size on the Extent of
Inconsistency: This simulation examines the extent of
inconsistency among all replicas of an object by varying
the window size. Figure 6 shows the results, where the
inconsistency extent is defined as the average number
of updates a replica falls behind the latest version at the
root. Since the upper bound of inconsistency in BCoM
is the window size multiplied by the tree height of a
dDT, we use the average to show the real situation
instead of the theoretical upper bound. As expected, the
inconsistency extent grows larger as the window size
increases, however, it grows much slower than the upper
bound. When the window size is 20 and the tree height is
around 4 to 6, the upper bound is around 80 to 120. But
the average inconsistency extent is only 11, much smaller
than the upper bound. Given the total number of replica

nodes is 1000, such inconsistency is quite acceptable
when the update discard rate is dropped to only 5% as
shown in Figure 4.
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Fig. 6. The impact of window size on inconsistency
degree.

Accuracy of the Analytical Model: This simulation
examines the accuracy of the analytical model for win-
dow size setting presented in Section 3. We compare the
latency estimated by Eq.6 with the simulation latency
results as shown in Figure 5. We also show the error rate
of latency estimation in Figure 7, which is the ratio of
the difference between the estimation and the simulation
results over the simulation results. The discrepancy is
mainly caused by the node churn because node leavings
and rejoinings introduce extra delay and change parts
of the tree structure. However, the error rates are less
than 25% with different window sizes. Such small error
rates indicate that our analytical model has captured
the queueing behavior of the update dissemination in
BCoM, which is the dominant factor to the system
performance.
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Fig. 7. The impact of window size on latency estimation.

Storage Overhead: This simulation shows the storage
overhead for buffering updates. The upper bound of
storage overhead at a replica is the update packet size
multiplied by the window size (i.e., the maximum buffer
size). Figure 8 presents the average buffer occupancy
of all replicas to show the storage overhead in the
real situation instead of the theoretical upper bound.
The average buffer occupancy decreases as the window
size increases, when the window size is 20 the average
buffer occupancy is only 10%. Thus, most replicas have
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small storage overhead. This is because the window
size is determined by the bottleneck service time (i.e.,
the slowest replica’s service time) to reduce the update
discard rate, other replicas only have a small number of
udpates buffered even when the window size is large.
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Fig. 8. The impact of window size on storage overhead.

Scalability of BCoM: This simulation verifies the
scalability of BCoM with comparison to SCOPE[1] by
varying the number of replica nodes and the update rate
of each object. The results in Figure 9 and Figure 10 show
that the discard rate of BCoM is maintained to less than
10% as the number of replicas per object increases from
10 to 1000 and the number of updates issued per node
increases from 1 to 200. On the other hand, applying the
sequential consistency makes the discard rate of SCOPE
almost 100%, except for a very small number of replica
nodes (i.e., 10 replicas per object) or an extremely low
update rate (i.e., 1 update per node). An update cannot
be accepted by SCOPE until the previous update is
received by every replica node. The prohibitively long
synchronization for the sequential consistency makes
SCOPE discard most updates.

We intentionally relax the consistency requirement
for SCOPE when calculating their discard rate, latency
and overhead results by not requiring their new join-
ing/rejoining nodes to be synchronized. This relaxation
gives better results to SCOPE for all three metrics.
Without this relaxation, SCOPE’s discard rate is even
worse, which is not useful for comparison. Thus, the
results of BCoM include content transfer delay for all
joining/rejoining nodes while the results of SCOPE ex-
clude the synchronization delay for all joining/rejoining
nodes. This is an important reason why BCoM has
slightly longer dissemination latency than that of SCOPE
when the number of replica nodes is large as shown
in Figure 11 or the updates are frequent as shown in
Figure 12.

Another critical reason why SCOPE has slightly better
latency and overhead is that it discards a large portion
of updates. The measurements of latency and overhead
only count accepted updates. With such high discard
rate, SCOPE takes advantage of accepting much fewer
updates than BCoM when measuring latency and over-
head.

Overhead of BCoM: This simulation compares the
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Fig. 9. The impact of replica number on discard rate.
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Fig. 10. The impact of update pattern on discard rate.

overhead of BCoM with that of SCOPE as shown in
Figure 13. The consistency maintenance overhead of
each object consists of three parts: subscription overhead,
update overhead, and crash/migration overhead. We
use the label ”migrate” to indicate the migration and
crash recovery overhead in BCoM. BCoM keeps the
overhead at the same level as that in SCOPE because
the ancestor cache maintenance and the node migration
mostly piggyback on update dissemination.

Fault Tolerance of BCoM: This simulation examines
BCoM’s robustness against node failures by varying the
node mean life time. The node life time is the ratio
of the average number of slots a node stays online at
one time to the total number of slots in a simulation
cycle. The smaller the life time is, the more frequently
the nodes join and leave. The results of SCOPE are not
presented because their discard rate is nearly 100% in
the presence of nodes joining and leaving. Figure 14,
Figure 15, and Figure 16 show the impacts of various
churn rates on the dDT tree height, the update discard
rate, and the update dissemination latency. The results
demonstrate that BCoM is robust against the node churn.
Figure 14 shows that the tree height is ranging from 4
to 6, which means our dDT is nearly complete as a 5-
ary tree of 1000 nodes has tree height more than 4. The
discrepancy caused by node churn on the tree height
is less than 2, which helps BCoM maintain consistent
discard rate and latency. Buffering some earlier updates
in each intermediate node masks the delay for nodes to
rejoin/join the tree and keeps the discard rate low under
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Fig. 13. Overhead comparison between BCoM and SCOPE
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the node churn as shown in Figure 15. The efficient dDT
construction and the use of ancestor cache reduce the
delay for node joining/rejoining and prevent the degra-
dation of update dissemination as shown in Figure 16.
Note that the latency goes down sharply when node life
time is small. The reason is that a node clears its buffer
when it goes offline. Therefore, with an extremely short
life time, a node’s buffer is always near empty so that
the queueing delay in this case is also extremely short.

5 CASE STUDY

In this section, we evaluate the performance of BCoM
using a large-scale social networking application Friend-
Feed [30]. FriendFeed is a real-time feed aggregator
that consolidates the updates from social media and
social networking websites. It is created in 2007 and
acquired by Facebook in 2009. Existing solutions to
implement social networking is using dedicated servers,
which are notoriously difficult to scale. Social network
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Fig. 14. The impact of churn rate on tree height
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Fig. 15. The impact of churn rate on discard rate

applications are incessantly evolving as more new users
join with more frequent social interactions. Servers’ ca-
pacities should continuously keep up for the growing
demand. Twitter engineers have famously described re-
architecting Twitters servers multiple times to keep up
with rapid increases in throughput as the system became
more popular [31]. We believe that the P2P approach is
the direction for the future social network applications
with better scalability. Moreover, the P2P implementa-
tion is economic-friendly, which is particularly appealing
to start-ups as we envision new social network applica-
tions are emerging.

5.1 Trace Data and Experimental Setup
Friendfeed users share posts on his/her blog with a
list of subscribers, who can comment directly under the
original blog post. BCoM is applied to FriendFeed for
maintaining consistency between a FriendFeed user and
all his/her subscribers. Each user’s blog is modeled as an
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object in BCoM. Either a post or a comment is an update
about the object, and a subscriber to a FriendFeed user
is a replica node of the object (i.e., the user’s blog).

Workload Model. We use the real trace data in [30] to
generate the workload of subscriptions and updates. The
trace includes 671840 FriendFeed users, and is collected
from Aug 1, 2010 to Sep 30, 2010. Table 1 gives the
summary of the trace data.
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We examine the main features of the trace data in
Figures 17, 18, 19. Figure 17 shows the cumulative
distribution function (CDF) of the number of replica
nodes per object. The object popularity is highly skewed.
More than 90% of objects have replica nodes less than
100, yet around 1% of objects have replica nodes more
than 800. The maximum number of replica nodes per
object reaches 113923. Figure 18 shows the CDF of the
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number of updates per object. The update distribution is
also highly skewed. More than 90% of the objects have
updates less than 50, while, around 2% of objects have
updates more than 200. Figure 19 shows the total number
of updates generated in the system, where we can see the
udpate generation is unpredictable with frequent bursts.
These trace analysis results show that the workload of
update delivery and consistency maintenance is highly
skewed among objects and constantly changing over
time. One of the goals of BCoM is to provide balanced
consistency maintenance for such workload patterns
through our sliding window update protocol.

Network Model. In our experiments, each peer is an
individual machine in a simulated network, represent-
ing a general Internet user experience. To measure the
update dissemination latency, we adopt the widely used
statistics of the user bandwidth capacity collected at U.S.
Broadband report [32]. The upload capacity of peers is
shown in Figure 20, which is in a range from 256 Kb/s
to 10 Mb/s. To simulate wide geographic areas where
peers come from, the inter-peer round-trip time (RTT) is
simulated by drawing n (n = 671840 in our experiments)
nodes from the real data set [33] which represents a
wide area interactive application. The mean, median,
and standard deviation of inter-player RTT of this data
set are 81 ms, 64 ms, and 63 ms. Vivaldi 3D coordination
system [34] is used to extrapolate the RTT values among
pairs of nodes who did not probe each other in the data
set. We use a two-state Gilbert model [35], which models
the packet loss property of Internet paths, setting loss
rate to 1% and mean loss burst time to 100 ms. The churn
probability is set to 20% according to churn studies in
[36]. The update dissemination tree structure in BCoM
is configured the same as in our simulation in Section 4.

Performance Metrics. We use the update discard rate,
update dissemination latency, and buffer occupancy to mea-
sure the performance of BCoM. These metrics are de-
fined in our simulation Section 4.

Performance Results. Figure 21 shows the update
discard rate in BCoM. Most of the time BCoM has
zero discard rate except two short periods around 200th

hour and 600th hour, where BCoM has non-zero discard
rates due to update bursts as shown in Figure 19. Even
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TABLE 1
Summary of FriendFeed Traces

Total nodes 671,840
Time duration 2 months
Total updates 16,200,549 (12,450,658 posts + 3,749,891 comments)

Average number of replica nodes per object 41.40
Average number of updates created each second in the whole system 3.07

Average update packet size 354.91 bytes
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Fig. 20. CDF of peers upload capacity
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Fig. 21. The update discard rate

though the maximum update discard rate is less than
0.04%, which is negligible in such a large network of
more than 6.7 ∗ 105 nodes. Figure 22 shows the average
update dissemination latency in BCoM, which is kept
between 400 and 500 milliseconds. Such fast and stable
update delivery confirms the efficiency of the sliding
window update protocol with the two enhancements in
BCoM. Figure 23 shows the average buffer occupancy
in BCoM. The buffer size (i.e., window size) is adjusted
around 1 to 20 for different objects and dynamic update
workloads as shown in figures 17, 18, 19. The buffer size
is set for accomodating the slowest node in an update
dissemination tree, while most of the nodes have buffer
occupancy less than 10% so that the buffer overhead
introduced is quite small. All these results demonstrate
the applicability and efficiency of BCoM in large-scale
social network applications.

6 RELATED WORK

Consistency Maintenance in P2P systems: In structured
P2P systems, strong consistency is provided by organiz-
ing replica nodes to an auxiliary structure on top of the
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overlay for update propagation. Examples include the
tree structure in SCOPE [1], the two-tiered structure in
OceanStore [4], and a hybrid of tree and two-tiered struc-
ture in [22]. The tree construction algorithms in SCOPE
[1] and in [22] build a tree by recursively partitioning the
identifier space and selecting a representative node as a
tree node for each partition. Only leaf nodes store object
copies, all the intermediate nodes only store information
of the tree structure in their sub-space. Nodes who may
not be interested in the object are in the object’s update
dissemination tree, which adds unnecessary overhead of
maintaining the tree from node failures. To the contrary,
BCoM constructs the dissemination tree dDT by only
involving replica nodes who are interested in the object,
which greatly reduce the overhead of maintenance and
update propagation. BCoM also efficiently builds the
dissemination tree dDT to make it balanced and robust
under the node churn.

In unstructured P2P systems, mainly two types of
bounded consistency are provided: (1) probabilistic
bounded consistency: rumor spreading [17] and replica
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chain [18] are used to ensure a certain probability of
an update being received. The probability is tuned by
adjusting the redundancy degree in propagating an
update to balance the communication overhead with
the consistency strictness. (2) time-bounded consistency:
TTL guided push and/or pull methods are used (e.g.,
[19] [20]) to indicate a valid period for a replica copy.
When the period expires, the replica node checks the
validity of the replica copy with the source to serve
the following read requests. The problems of these tech-
niques are (1) node-level consistency is not ensured by
probabilistic bounded consistency, and (2) time-bounded
consistency sets a uniform TTL timer for all nodes. In the
situation where nodes have various update frequencies,
it is impossible to set a TTL timer that works for all
nodes. BCoM avoids both drawbacks by using a sliding
window update protocol, which directly limits the incon-
sistency by the number of buffered updates and ensures
the bounded consistency for each replica node.

Overlay Content Distribution: Update dissemination
in P2P systems has four requirements: (1) a bounded
delay for update delivery, (2) robustness to the frequent
node churn and different workload patterns, (3) aware-
ness of heterogeneous peer capacities, and (4) scalabil-
ity with a large number of peers. The LagOver [37]
constructs an update dissemination tree by considering
each user’s capacity and latency requirements to address
(1) and (3), both of which are also handled by the
tree node migration in BCoM. The major difference is
that LagOver improves the performance to meet the
individual replica node’s requirement, while the tree
node migration in BCoM improves the overall system
performance. Moreover, LagOver requires information
on each user’s latency requirement and capacity, which
are infeasible to be implemented in P2P systems. To
the contrary, BCoM’s node migration only involves local
information, which is also performed on demand to
support (2) without asking a replica node to specify
requirements in advance.

The “side link” is used in content dissemination tree
in [23] to address (2), where each node keeps multiple
side links from other subtrees to minimize the impact
of loss multiplication in a tree structure. The two end
nodes of a side link do not share any ancestor except the
root. The ancestor cache in BCoM achieves the same goal
by caching only ancestors and contacting the ancestors
sequentially one layer upwards from the failed nodes.
Our ancestor cache has extra benefits by avoiding com-
munication overhead to maintain end nodes on other
subtrees. All the ancestors’ information can be piggyback
on the update propagation. In BCoM a node sequentially
contacts the cached ancestors to avoid conflict relocation
decisions while in [23] a node uses multiple side links
in parallel to retrieve the lost packets.

Tunable Consistency Models: Previous works [38][39]
have proposed continuous models for consistency main-
tenance, which have been extended by a composable
consistency model in [13] for P2P applications. The core

technique for maintaining consistency used in [13] is a
hybrid of push and pull methods, which are also used
to provide application tailored cache consistency in [40]
[19]. Although each node can specify its consistency
requirement, the model in [13] makes each node per-
form the strongest consistency maintenance from all its
descendant nodes in the overlay replica hierarchy. Thus,
the overhead of maintaining consistency at a node is
not reduced even it only requires a weak consistency as
long as one of its descendant nodes requires a strong
consistency. An analytical model for adaptive update
window protocol is presented in [21], where the window
specifies the number of uncommitted updates in each
replica node’s buffer. The information of each node’s
update rate and propagation latency are required to
optimize the window size in [21]. Such optimization
is unrealistic for P2P systems due to their required
global information. To the contrary, every BCoM node
has a fair amount of consistency maintenance overhead
because of the uniform buffer size and node degree in
dDT. Moreover, BCoM provides incentives for nodes to
contribute more bandwidth to update dissemination, as
we promote faster nodes closer to the root and they will
receive updates sooner. The window size optimization
model in BCoM only requires limited information that
can be obtained in a fully distributed way.

7 CONCLUSION

This paper presents a balanced consistency maintenance
framework (BCoM) for balancing the object availability,
update propagation latency and consistency strictness
in structured P2P systems. A sliding window update
protocol is applied with two enhancement schemes. The
window size setting is analyzed through a queueing
model, which works well for dynamic network con-
ditions, different workload patterns and heterogeneous
node capabilities. Various application consistency re-
quirements are also smoothly served. The simulation re-
sults from P2PSim demonstrate that BCoM outperforms
SCOPE [1] by greatly improving the update discard rate
from almost 100% to 5%.
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