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Since multicore systems offer greater performance via parallelism, future computing is progressing towards
use of multicore machines with large number of cores. However, the performance of emerging multithreaded
programs often does not scale to fully utilize the available cores. Therefore, simultaneously running multiple
multithreaded applications becomes inevitable to fully exploit such machines. However, multicore machines
pose a challenge for the OS with respect to maximizing performance and throughput in the presence
of multiple multithreaded programs. We have observed that the state-of-the-art contention management
algorithms fail to effectively coschedule multithreaded programs on multicore machines. To address the
above challenge, we present ADAPT, a scheduling framework that continuously monitors the resource usage
of multithreaded programs and adaptively coschedules them such that they interfere with each other’s
performance as little as possible. In addition, it adaptively selects appropriate memory allocation and
scheduling policies according to the workload characteristics. We have implemented ADAPT on a 64-core
Supermicro server running Solaris 11 and evaluated it using 26 multithreaded programs including the TATP
database application, SPECjbb2005, programs from Phoenix, PARSEC, and SPEC OMP. The experimental
results show that ADAPT substantially improves total turnaround time and system utilization relative to the
default Solaris 11 scheduler.
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1. INTRODUCTION
The advent of the multicore architecture provides an attractive opportunity for achieving
high performance for a wide variety of multithreaded programs. The performance of
a multithreaded program running on a multicore machine often does not scale with
the number of cores. Therefore, to fully exploit a machine with a large number of cores,
it becomes inevitable that we simultaneously run multiple multithreaded programs.
However, coscheduling multithreaded programs effectively on such machines is a
challenging problem because of their complex architecture [Boyd-Wickizer et al. 2009;
Peter et al. 2010]. For effective coscheduling of multithreaded programs, the OS must
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understand their resource usage characteristics and then adaptively allocate cores as
well as select appropriate memory allocation and scheduling policies.

To address the above challenge, contention management techniques have been pro-
posed [Blagodurov et al. 2011; Zhuravlev et al. 2010; Bhadauria and McKee 2010;
Pusukuri et al. 2011; Knauerhase et al. 2008]. These techniques are primarily guided
by the cache usage characteritics of the programs, such as the last-level cache miss-rate,
and are aimed at coscheduling of multiple single threaded programs [Zhuravlev et al.
2010; Pusukuri et al. 2011; Knauerhase et al. 2008] or for coscheduling threads of a
single multithreaded program [Blagodurov et al. 2011]. When considering multiple
multithreaded programs, cache usage alone is not enough for effective coscheduling.
In particular, we demonstrate that it is necessary to also consider lock contention and
thread latency to guide coscheduling decisions. Therefore existing techniques are not
effective in coscheduling multithreaded programs. Moreover, existing techniques have
some additional limitations. The contention management techniques in [Blagodurov
et al. 2011; Zhuravlev et al. 2010; Bhadauria and McKee 2010; Pusukuri et al. 2011;
Knauerhase et al. 2008] are applicable to machines with a small number of cores and
their evaluations typically use one thread per core configuration. While this configura-
tion gives best performance for systems for machines with four or eight cores, this is not
true for machines with a larger number of cores [Pusukuri et al. 2011a]. Furthermore,
the performance metrics used in some of the existing techniques [Pusukuri et al. 2011]
are not appropriate for coscheduling multithreaded programs [Eyerman and Eeckhout
2008]. Finally, in a realistic scenario, programs randomly enter and leave the system.
Therefore, the OS must also adaptively assign process scheduling and memory alloca-
tion policies according to the resource usage characteristics of the programs along with
allocating cores. However, existing techniques only consider allocation of cores.

To address the above challenges, we develop ADAPT, a framework for effectively
coscheduling multithreaded programs on machines with large number of cores. ADAPT
uses supervised learning techniques for predicting the effects of interference between
programs on their performance and adaptively coschedules programs that interfere
with each other’s performance as little as possible. Moreover, using simple performance
monitoring utilities available on a modern OS, it adaptively allocates cores as well as
assigns appropriate memory allocation and scheduling policies according to the resource
usage characteristics of the multithreaded programs. We have implemented ADAPT on
a 64-core machine running Solaris 11 and evaluated it using 26 programs including
the TATP database application [TATP. 2003], SPECjbb2005 [SPECjbb 2005], programs
from PARSEC [Bienia et al. 2008], SPEC OMP [SPECOMP 2001], and Phoenix [Yoo et al.
2009]. The experimental results show that ADAPT achieves up to 44% improvement in
turnaround time and also improves throughput of TATP and JBB by 23.7% and 18.4%
relative to the default Solaris 11 Scheduler. The overhead of ADAPT is negligible and it
is an attractive approach as it requires no changes to the application source code or the
OS kernel. Furthermore, while existing techniques [Zhuravlev et al. 2010; Blagodurov
et al. 2011; Bhadauria and McKee 2010; Knauerhase et al. 2008] are based on fixed
heuristics, ADAPT dynamically learns appropriate contention factors and their effect
on the performance of target programs on any target architecture. Therefore, we believe
ADAPT will be able to evolve with changes in processor architecture and computing
environment. The major contributions of this work are as follows:

— We demonstrate that coscheduling decisions must not be exclusively based upon the
cache usage behavior, but rather lock contention and thread latency must also be
considered.

— We develop statistical models based on supervised learning for identifying the effects
of interference between programs on their performance.
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(a) Our 64-core machine.

No. Configuration #Cores
to A

#Cores
to B

1 All-cores 64 64
2 Processor-set 32 32
3 Processor-set 24 40
4 Processor-set 40 24
5 Processor-set 16 48
6 Processor-set 48 16

(b) Cores-configurations.

Fig. 1: The machine has four 16-core CPUs and are interconnected with HyperTransport.
Table shows the number of cores allocated to two programs A and B in different cores-
configurations.

— We develop ADAPT with simple utilities available on Solaris 11. ADAPT improves
the turnaround time by 21% on average and by a maximum of 44% relative to the
default Solaris 11 scheduler.

The remainder of this paper is organized as follows. Section 2 describes the motivation
of this work and Section 3 presents the development of ADAPT framework in detail.
Section 4 describes the experimental setup and Section 5 presents the evaluation of
ADAPT against a wide variety of multithreaded programs. Related work and conclusions
are given in Sections 6 and 7.

2. WHY EXISTING ALGORITHMS DO NOT WORK?
In this section we demonstrate why existing contention management techniques based
only on the last-level cache miss-ratio are inadequate for coscheduling multithreaded
programs. For this purpose, we conducted experiments involving coscheduling of four
multithreaded programs (facesim (FS), bodytrack (BT), equake (EQ), and applu (AP)) taken
from the PARSEC and SPEC OMP suites on a 64-core machine running Solaris 11. We run
multithreaded programs using OPT number of threads, where OPT for a multithreaded
program is the minimum number of threads that give the maximum performance
during a solo run on our 64-core machine. Figure 1(a) shows that the machine has four
16-core CPUs (four sockets), that is, it has a total of 64-cores. To capture the distance
between different CPUs and memories, a new abstraction called locality group (lgroup)
has been introduced in Solaris. The lgroups are organized in a hierarchy that represents
the latency topology of the machine [McDougall and Mauro 2006].

The existing contention management techniques for single threaded workloads [Zhu-
ravlev et al. 2010; Pusukuri et al. 2011] or threads of a single multithreaded pro-
gram [Blagodurov et al. 2011] minimize resource contention by separating memory-
intensive threads by scheduling them on different sockets or different processor-sets.
A processor-set is a pool of cores such that if we assign a multithreaded program to a
processor-set, then for the purpose of balancing load, the OS restricts the migration
of threads across the cores within the processor-set. A program is treated as being
memory-intensive if its last-level cache miss-ratio is high; otherwise it is considered to
be CPU-intensive. Other application characteristics such as lock contention and thread
latency are not considered by the existing contention management techniques. Here,
lock contention is the percentage of elapsed time a program spends waiting for user
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locks, condition-variables, etc. and thread latency is the percentage of elapsed time a
program spends waiting for CPU resources, i.e., although the thread is ready to run, it
is not scheduled on any core.

For effective coscheduling of multithreaded programs on a machine with large number
of cores, we need to run multithreaded programs on processor-sets such that memory-
hierarchy interference between them is minimized. Since number of processor-set
configurations can be numerous, we identify a subset that includes those that are most
suitable for coscheduling. We assume that at least one socket/CPU (16 cores) is needed
to obtain good performance for a multithreaded program on our 4 socket/CPU (64 cores)
machine. We derived this assumption by running 26 multithreaded programs with
varying number of threads. Based upon this assumption, we have chosen five reasonable
processor-set configurations shown in Figure 1(b).

In our study, in each of the coscheduled runs, we ran two multithreaded programs
concurrently in two configurations: 1) all-cores configuration; and 2) processor-set
configuration. In all-cores configuration we ran both programs on all the 64 cores while
in processor-set configuration we ran each program on a separate processor-set to
minimize interference between the programs. By default, the OS scheduler runs the
programs in all-cores configuration. Here we have chosen a processor-set configuration
that gives best performance in terms of TTT (smallest total turn-around time) among
the five applicable processor-set configurations shown in Figure 1(b). Since, there is a
maximum memory access latency gap between some CPU pairs, whenever possible, we
avoid placing cores belonging to those CPU pairs in a processor-set.

2.1. Cache Miss-Ratio vs Lock-contention vs Thread Latency
In the first coscheduling run, we run two memory-intensive multithreaded programs:
facesim (FS) from PARSEC and equake (EQ) from SPEC OMP on our 64-core machine
in the configurations mentioned above. The best processor-set configuration for this
pair of programs is (32, 32) – each program runs in a processor-set of 32 cores. In
all-cores configuration both FS and EQ share all the 64 cores. We also evaluated the
existing contention management technique DINO [Blagodurov et al. 2011], a NUMA
version of DI [Zhuravlev et al. 2010], for coscheduling FS and EQ. The key idea of
DINO [Blagodurov et al. 2011] is to monitor cache miss-ratio of each thread and then
coschedule threads that exhibit least interference with respect to memory hierarchy. It
consequently reduces overall last-level cache misses per accesses (MPA)1 and improves
performance. EQ is fairly memory-intensive with solo MPA of 0.79 in comparison to
FS which has solo MPA of 0.46. Moreover, different threads belonging to each program
experience nearly the same MPA. Therefore, DINO separates high memory-intensive EQ
threads by running them along with FS threads -- here we tried all possible combinations
of FS and EQ threads on all possible processor-set configurations and chose the one that
gives the best performance.

As we can see from Table I, all-cores configuration produces a high MPA, in compari-
son to both processor-set configuration and DINO, because of high memory-hierarchy
interference between EQ and FS. However, all-cores configuration gives low Total
Turnaround Time (TTT). Here TTT is the sum of turnaround times of EQ and FS in
the coscheduled run. We highlight MPA in this experiment to show that why existing
techniques such as DINO are not effective in coscheduling multiple multithreaded pro-
grams. This is because FS and EQ are not only memory-intensive, they are also exhibit
high lock contention. Therefore, when threads of EQ and FS compete and consequently
increase thread preemptions, they slow down the progress of lock-holder threads. As

1We also considered cache misses per instruction (MPI), but did not observe significant difference in using
between MPI and MPA.
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Table I: Coscheduling of memory-intensive programs EQ and FS. All-cores provides
high performance. TEQ and TFS are the average running times of EQ and FS. TTT =
(TEQ + TFS).

Configuration MPA TTT TEQ TFS

All-cores 0.78 381 141 240
Processor-set 0.69 409 158 251
DINO 0.72 436 174 262
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(a) Lock-contention of EQ .
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(b) Latency of EQ .
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(c) Lock-contention of FS.
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(d) Latency of FS.

Fig. 2: Lock-contention and Latency of EQ and FS are higher in processor-set configura-
tion.
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per state-of-the-art spin-then-block contention management policy, threads waiting for
locks have greater likelihood of having to block [McDougall and Mauro 2006; Johnson
et al. 2010]. In all-cores configuration, due to large number of cores, the OS scheduler
has a better chance of allocating CPU resources and achieving quick lock hand-offs
as the lock-holder threads can complete their critical section quickly and release the
lock. This leads to reduction in lock acquisition latencies [McDougall and Mauro 2006].
Figure 2 shows the lock contention and thread latency values of EQ and FS in the
coscheduling run. The data is collected by monitoring the percentage of lock contention
and the percentage of latency of whole programs at one second intervals. As we can see,
both EQ and FS experience higher lock contention and thread latency in processor-set
configuration than in all-cores configuration.

When we run two CPU intensive and high lock contention programs BT and AP,
processor-set configuration provides higher performance than all-cores configuration as
shown in Table II. We ran these programs in both all-cores and processor-set configura-
tions with their respective OPT threads (50 and 24). The best processor-set configuration
for BT and AP is (40, 24) -- 40 cores for BT and 24 cores for AP. This coscheduling run is
very interesting as there is a trade-off between latency and lock contention, instead of
MPA and lock contention that was observed in the previous coscheduling run. Since BT
and AP are CPU intensive programs, MPA is not a significant consideration in their
coscheduled run. Therefore, techniques presented in [Blagodurov et al. 2011; Bhadauria
and McKee 2010; Knauerhase et al. 2008; Pusukuri et al. 2011; Zhuravlev et al. 2010]
may not effectively deal with the coscheduling of BT and AP.

As we can see in Table II, the system run-queue length (RQ) is small in all-cores
configuration compared to processor-set configuration -- RQ is the total number of
runnable threads in the dispatcher queues of the system [McDougall and Mauro 2006].
Therefore, as shown in Figure 3 thread latencies (LAT) of BT and AP in all-cores
configuration are low compared to processor-set configuration. However, lock contention
(LOCK) for both BT and AP is high in all-cores configuration. Since BT and AP are
CPU-intensive and high lock contention programs and because of their high interaction
in all-cores configuration, they experience high context-switch (CX) rate [Pusukuri
et al. 2011b; Johnson et al. 2010]. Here, we used DTrace scripts for measuring RQ and
CX-Rate [Cantrill et al. 2004; McDougall and Mauro 2006].

Table II: Coscheduling of CPU-intensive programs BT and AP. Processor-set provides
high performance. TBT and TAP are the average running times of BT and AP. TTT =
(TBT + TAP ).

Configuration TTT RQ CX-Rate
All-cores 116.8 1.6 75552
Processor-set 107.2 4.7 51546

The above experiments demonstrate that MPA alone is not enough for effective
coscheduling of multithreaded programs on a multicore system. The OS must consider
application characteristics of lock contention and thread latency along with MPA. Based
on these observations, in the next section, we present a framework called ADAPT that
dynamically monitors resource usage characteristics of multithreaded programs, and
based upon these, it effectively coschedules the programs.

3. THE ADAPT FRAMEWORK
The ADAPT framework has two major components: the Cores Allocator; and the
Policy Allocator. The Cores Allocator is responsible for selecting appropriate cores-
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(d) Latency of BT.
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(a) Lock-contention of AP .
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(d) Latency of AP.

Fig. 3: Coscheduling of BT and AP. Thread latencies of BT and AP in all-cores configura-
tion are low compared to processor-set configuration. However, lock contention of BT
and AP are high in all-cores configuration

configuration. The Policy Allocator is responsible for adaptively applying appropriate
memory allocation and scheduling policies. The following sections provide detailed
description of these components.

3.1. The Cores Allocator
To capture application resource usage characteristics for effective coscheduling of
multithreaded programs, the Cores Allocator uses statistical models. These models are
constructed using supervised learning, where a set of sample input-output values is
first observed and then a statistical model is trained to predict similar output values
when similar input values are observed [Hastie et al. 2009]. The Cores Allocator uses
two statistical models: one for approximating performance loss of a program due to its
coscheduling with another program; and another for approximating performance of a
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Table III: Initial predictors and the target usr ab of the PAAP model. The goal is to
predict usr ab of program a when it is running with program b and vice-versa.

Predictor Description
mpa x average last-level cache miss ratio of program x.
usr x the percentage of elapsed time program x spends in user mode.
sys x the percentage of elapsed time program x spends in processing

system calls, system traps, etc.
lat x latency of program x.
lock x lock contention of program x.
ct x cores to threads ratio of program x, i.e., (#cores / #threads of x).
usr ab the percentage of elapsed time program a spends in user mode

when it is running with program b.

program when we change the configuration from processor-set to all-cores configuration,
and vice-versa. Let us call the first model as PAAP (Performance Approximation of a
program when it is running with Another Program) and the second model as PACC
(Performance Approximation of a program when it is running with different Cores
Configuration). Using the PAAP model, Cores Allocator predicts average performance
of a program in all-cores configuration, and using the PACC model, it predicts average
performance of a program in the five different processor-set configurations listed in
Figure 1(b). Then it chooses the configuration that gives the best average performance.

To develop the models we proceed as follows. To cover wide range of resource usage
characteristics, we categorize the programs as memory intensive, CPU intensive, high
lock contention, or low lock contention programs. To develop the models we selected
12 programs from a total of 26 such that a few of programs were chosen from each
category. The chosen programs include: bodytrack, facesim, ferret, fluidanimate, streamcluster
from PARSEC; applu, art, swim, equake from SPEC OMP; SPEC JBB2005; kmeans and pca from
Phoenix. The resource usage characteristics of these programs are used as inputs to the
statistical models as explained next.

3.1.1. The PAAP Model.

Data Collection. The goal of the PAAP model is to predict the performance of a
program A when it is running with another program B. We chose six types of predictors
for developing the PAAP model. Since we have two programs, we have 12 predictors
in all representing the resource usage characteristics of both programs A and B. The
seventh parameter shown in Table III is the response variable. r x represents a resource
usage characteristic value ‘r‘ of program ‘x‘ in its solo run with OPT Threads. Figure 4
explains the relationship between the elapsed time and the predictors. We use prstat(1)
utility [McDougall et al. 2006] to monitor the predictors. prstat(1) provides microstat
information for the individuals threads and for the whole application, which is simply
the average across threads, according to the options we provide. Since ADAPT considers
application level scheduling instead of thread level, we monitor microstat information
of whole application in this work. The elapsed time for the full program in terms of
other microstat information is given in Fig 4.

From the combinations of the aforementioned 12 programs, we collect 144 data points,
where each data point is a 13-tuple containing 12 predictors and the observed usr ab as
the target parameter shown in Table III. Here each of the 12 programs contributes 12
data points including a combination with itself. We collect 100 samples using Solaris
11 utilities prstat(1) and cpustat(1) with 100 ms time interval and the averages of
these samples are used as the final values of the predictors. The cpustat(1) utility is
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100% of elapsed time of a program = the percentage of time program spends in user space
+ the percentage of time program spends lock contention
+ the percentage of time program spends latency
+ the percentage of time program spends in kernel space.

Fig. 4: Relationship between elapsed time (or turnaround time) and the predictors.

Table IV: VIF values of PAAP predictors.
mpa a lock a lat b ct b sys a

1.6 2.1 2.1 1.6 1.3

usr ab = (65.2)+(−0.6 ∗ lock a)+(−0.8 ∗ lat b)+(−9.6 ∗mpa a)+(−10.2 ∗ sys a)+(7.8 ∗ ct b) (1)

used to collect mpa and the prstat(1) utility is for the remaining predictors. Here, we
assume that the percentage of elapsed time a program spends in user mode represents
its progress or performance in the coscheduling run. Solaris provides utilities that
effectively monitors application resource usage characteristics even in the presence of
thread migrations.

Finding Important Predictors. To balance the prediction accuracy and cost of the
approximation, we use forward and backward input selection techniques with Akaike
Information Criterion (AIC) for finding important predictors among the 12 initial pre-
dictors. The AIC is a measure of the relative goodness of fit of a statistical model [Hastie
et al. 2009]. Using R stepAIC() [R ] method, we identified the five most important
predictors: lock a, lat b, ct b, mpa a, and sys a. We also tested the predictors against
multicollinearity problem for developing robust models. Multicollinearity is a statistical
phenomenon in which two or more predictor variables in a multiple regression model
are highly correlated. In this situation the coefficient estimates may change erratically
in response to small changes in the model or the data. We use R Variance Inflation
Factor (VIF) method to observe the correlation strength among the predictors. If VIF >
5, then the variables are highly correlated [vif ]. As shown in Table IV, the variables
are not highly correlated and therefore there is no multicollinearity problem.

Model Selection. Using the above five important predictors we develop three popular
models based on supervised learning techniques. The models are: a) Linear Regression
(LR); b) Decision Tree (DT); and c) K-Nearest Neighbour (KNN) [Hastie et al. 2009].
We use R statistical methods lm() [R ], rpart() [R ], and kknn() [R ] for developing
these models. Here the decision tree model is pruned using R prune() [R ] method
to avoid the over-fitting problem. As we can see in the LR model (Equation 1), lock
contention, latency, cache miss-ratio, system overhead of program A negatively affects
A’s performance when it is running with program B. Thus, if there is an increase in any
of these four predictors, then usr ab decreases. If cores-to-threads ratio of program B is
increased (i.e., number of threads of B is decreased), then the performance of program
A will improve and vice-versa.

We evaluate the three models: LR, DT, and KNN using a 12-fold cross-validation (CV)
test [Hastie et al. 2009]. Table V shows the adjusted R2 values of these models on full
training data and prediction accuracies in the 12-fold CV test. In a 12-fold CV test, we
split the data (144 points) into 12 equal-sized partitions. The function approximator
is trained using all the data except for one partition and a prediction is made for that
partition. For testing the models thoroughly, we trained the models using the data from
11 different programs (132 data points) and tested it against the data of 12th program.
The testing data used is different from the training data.
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Table V: Models
Model Adjusted R2 Prediction Accuracy

LR 0.90 88.5
DT 0.94 90.4

KNN 0.88 87.1

sMAPE =
1

N

N∑
i=1

|Ai − Fi|
(Ai + Fi)/2

× 100 (2)

where Ai is the actual value and Fi is the forecast value.

Table VI: Models

Model Adjusted R2 Prediction Accuracy
LR 0.88 89.2
DT 0.86 87.6

KNN 0.86 85.2

We use the metric Symmetric Mean Absolute Percentage Error (sMAPE) for mea-
suring prediction accuracy. The metric prediction accuracy is defined as: (100 -
sMAPE), where sMAPE is symmetric mean absolute percentage error defined in Equa-
tion 2 [smape ]. We use sMAPE instead of Mean Absolute Error Percentage (MAPE)
due to the following drawbacks of using MAPE [mape ]:

— If there are zero values, which sometimes happens for demand series, there will be
a division by zero.

— When having a perfect fit, MAPE is zero. But in regard to its upper level the MAPE
has no restriction.

Moreover, when calculating the average MAPE for a number of time series, the following
problem may arise. Few of the series that have a very high MAPE might distort a
comparison between the average MAPE of time series fitted with one method, when
compared to the average MAPE using another method.

DT model is found to have the highest prediction accuracy among the three models
and therefore we chose the DT model as the PAAP model.

3.1.2. The PAAC Model.

Data Collection. We chose six predictors for developing the PACC model. The goal
is to predict the performance of a program A when it is running under different cores-
configuration. The six predictors are: usr A, sys A, lat A, lock A, ct A, and rct A. As
in case of the PAAP model, the first five predictors represent the resource usage
characteristics values of program A in its solo run and, the remaining predictor rct A,
is a cores-configuration with reduced cores to threads ratio of program A. The goal is to
predict the performance, i.e., usr acc (the percentage of user-mode time), of program
A when it is running with different cores-configuration. We ran each of the above 12
programs using OPT threads on 64, 56, 48, 40, 32, 24, and 16 cores to collect 6 points
from each run. Therefore from the solo runs of the above 12 programs, we collected
72 data points, where each data point is a 7-tuple containing six predictors and the
observed usr acc.
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Table VII: VIF values of the PACC model predictors.

Predictor lock a rct a
VIF 1.2 1.2

usr acc = (18.6) + (−0.3 ∗ lock a) + (32.5 ∗ rct a) (3)

Finding Important Predictors and Model Selection. We identified the two most im-
portant predictors for the PACC model from among the six predictors and the two
predictors are: lock a and rct a. The LR model developed with these two predictors
is shown in Equation 3. As we can see in the LR model (Equation 3), lock contention
negatively affects performance when it is running in different processor-set configu-
rations, i.e., if there is an increase in lock contention then usr acc decreases. If rct a
increases (i.e., number of cores) increases then the performance of the program also
increases. As we can see in Table VII, the VIF values of these predictors are also less
than 5. Therefore, there is no multicollinearity problem.

As in deriving the PAAP model, we develop LR, DT, and KNN models using the two
important predictors: lock a and rct a. As shown in Table VI, LR model (Equation 3)
has the best prediction accuracy in a 12-fold CV test. Therefore, we chose the LR model
as the PACC model.

Using the PAAP and PACC models, Cores Allocator selects appropriate cores-
configurations based upon the resource usage characteristics of programs. The overhead
of these models is modest as they use very few predictors that capture all of the
important information. In the next section, we describe the design of Cores Allocator.

3.1.3. Design of Cores Allocator. Cores Allocator considers a realistic scenario where
programs can enter and leave the system at any time. Let us consider the case of
coscheduling two programs. While program P1 is running with its corresponding OPT
threads, another program P2 enters the system. If P2 is CPU-intensive and low lock
contention program, then irrespective of the current cores-configuration and the pro-
grams already running on system, Cores Allocator allocates all-cores configuration
to P2. Otherwise, it predicts performances of P1 and P2 using the PAAP and PACC
models, and allocates the cores-configuration that gives better average TTT. Likewise, it
coschedules N programs by allocating appropriate cores-configuration using the PAAP
and PACC models. Let us consider another scenario, where programs P1, P2, ..., PN are
already running and then the program Pi completes its execution and leaves the system.
If Pi is CPU-intensive and contention-free program, the current configuration for the
remaining programs is maintained. Otherwise, the cores released by Pi are distributed
equally among the remaining programs.

Let us consider an example that shows how Cores Allocator selects an appropriate
cores-configuration for programs fluidanimate (FA) and swim (SM). Both FA and SM are
memory-intensive and low lock contention programs, and their corresponding OPT
threads are 49 and 32. Using the PAAP and PACC models, first Cores Allocator predicts
the performance of FA and SM in all-cores and in the best processor-set configuration
(40 cores to FA, 24 cores to SM). Table VIII shows that both FA and SM programs have
high %USR (the percentage of elapsed time a program spends in user-mode) in the
all-cores configuration. Therefore, Cores Allocator selects the all-cores configuration for
coscheduling FA and SM. The all-cores configuration improves TTT of FA and SM by 14%
compared to the processor-set configuration.
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Table VIII: The actual and predicted usr FA and usr SM values with the PAAP and
PACC models are shown here.

Program All-cores Processor-set
Actual Predicted Actual Predicted

FA 52.3 56.4 41.2 44.5
SM 49.4 45.2 46.8 41.6
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Fig. 5: While APSI has steady behavior, FMA shows a significant phase change.

Dealing with Phase Changes. Since FA and SM do not show significant phase changes
on our machine, there is no switching back and forth between different cores configu-
rations. The initial predicted processor-set configuration gives the best performance.
Thus the Cores Allocator maintains all-cores configuration for the entire duration of the
FA and SM coscheduled run. However, some programs show significant phase changes.
Therefore, we continuously monitor the program for adaptively allocating appropriate
cores-configuration according to the phase changes of the programs.

Let us consider a coscheduled run of two high lock contention programs apsi (APSI)
and fma3d (FMA) with their OPT threads 16 and 56 respectively. As we can see from
Figure 5, FMA has one significant phase change, while APSI shows steady behavior.
FMA experiences very high lock contention in its first 11 seconds of its life-time, while
APSI experiences very high lock contention steadily throughout its life-time. Therefore,
by continuous monitoring, using the PAAP and PACC models, the Cores Allocator
applies (16, 48) processor-set configuration during the first 11 seconds and then all-
cores configuration for the remaining time. This results in performance improvement of
8% relative to the default OS scheduler (i.e., all-cores configuration).

Overhead of Cores Allocator. Since we monitor resource usage information of the
whole application instead of individual threads, the overhead of Cores Allocator is
negligible and it scales well. For n programs, (n)C(n-2) combinations are evaluated by
PAAP. For example, for 4 applications (A, B, C, D), we evaluate 6 combinations (AB, AC,
AD, BC, BD, CD). Cores Allocator takes a maximum of 2 milliseconds on our machine
for selecting the best cores-configuration for coscheduling four applications.
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We have shown that, using the PAAP and PACC models, Cores Allocator adaptively
allocates appropriate cores-configuration according to the resource usage characteristics
of the programs and effectively deals with the phase changes of programs. In the next
section, we describe how the Policy Allocator adaptively selects appropriate memory
allocation and processor scheduling policies based on the resource usage characteristics.

3.2. The Policy Allocator
Contemporary operating systems such as Solaris and Linux do not distinguish between
threads from multiple single threaded programs and multiple threads corresponding
to a single multithreaded program. Though, the default OS scheduling and memory
allocation policies work well for multiple single threaded programs, this is not the case
for multithreaded programs. This is because many multithreaded programs involve
communication between threads, leading to contention for shared objects and resources.
Since the OS does not consider application level characteristics in scheduling and mem-
ory allocation decisions, the default OS scheduling and memory allocation policies may
not be appropriate for achieving scalable performance. Most of the existing contention
management techniques are primarily designed for single threaded programs and they
only deal with allocation of cores among the threads. To address these limitations,
ADAPT uses another component, the Policy Allocator, which is responsible for dynami-
cally selecting appropriate memory-allocation and process scheduling policies based on
programs resource usage characteristics.

3.2.1. Memory Allocation vs OS Load-balancing. As shown in Figure 1, the HyperTransport
(HT) is used as the CPU interconnect and the path to the I/O controllers. Using HT,
CPUs can access each other’s memory, and any data transferred from the I/O cards
travels via the HT. Effective utilization of HT on a NUMA machine is important for
achieving scalable performance for multithreaded programs, particularly when for
memory-intensive multithreaded programs the OS scheduler distributes the threads
across the CPUs for load balancing.

In Solaris 11, next policy (which allocates memory next to the thread) is the default
memory allocation policy for private memory (heap, stack) and random policy is the
default memory allocation policy for shared memory when the size of shared memory
exceeds the threshold value of 8 MB. This threshold is set based on the communication
characteristics of Message Passing Interface (MPI) programs [McDougall and Mauro
2006]. Therefore, it is not guaranteed that the random policy will be always applied
to the shared memory for multithreaded programs that are based on pthreads. If the
shared memory is less than 8 MB, then the next is also used as the memory allocation
policy for shared memory. Moreover, with the default next policy, a memory-intensive
thread can experience high memory latency overhead, and consequently high cache
miss-ratio, when it is started on one core and then migrated to another core not in
its home lgroup. More importantly, this makes HT a performance limiting hot spot.
Therefore, the interaction between inappropriate memory allocation policy and OS
load balancing degrades memory bandwidth and prevents scalable performance for
memory-intensive multithreaded programs.

Unlike the next policy, the random policy picks a random leaf lgroup to allocate
memory for each page and it eventually allocates memory across all the leaf lgroups.
Thus the threads of memory intensive programs get a chance to reuse the data in both
private and shared memory. This reduces memory latency penalty and cache miss-ratio.
Moreover, it spreads the allocated memory across the memory banks; thus, distributing
the load across many memory controllers and bus interfaces, thereby preventing any
single component from becoming a performance limiting hot spot [McDougall and
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Fig. 6: CPI is high with next policy. Random policy improves memory-bandwidth.

Mauro 2006]. Next this is demonstrated by running a very memory-intensive program
streamcluster (SC) with both next and random policies in all-cores configuration.

In this experiment, we run SC with its OPT Threads of 17 in all-cores configuration.
Cycles per instruction (CPI) indicates whether HT and Memory buses are performance
limiting spots or not. As shown in Figure 6, CPI of SC with next-touch is higher than
with random policy and total memory bandwidth (GB/sec) is improved by 17% with
random policy. Therefore, random policy relieves pressure on HT, improves overall
performance of memory-intensive programs, and also improves system utilization.
Thus, multithreaded programs with huge private memory benefit greatly from the
random policy. Moreover, random policy not only improves performance, it also reduces
performance variation in multithreaded programs [Pusukuri et al. 2012].

Memory-allocation vs Access-latency of Locks. The performance of SC is dramatically
improved by 56% with random policy in comparison to next policy. This improvement is
not only because of the improved memory-bandwidth, there is also a reduction in lock
contention because of the random allocation of private memory (heap and stack) across
lgroups. Allocating private memory across lgroups using random policy allows threads
to quickly access lock data structures in the shared cache; thus minimizing memory
traffic and the delay loop time for acquiring locks. As shown in Figure 7(a), applying
random policy for private memory reduces lock contention of SC by 19% and improves
performance.

3.2.2. Scheduling Policy vs Lock-contention. The default Time Share (TS) scheduling policy
is not appropriate for high lock contention multithreaded programs under high loads.
Prior work has shown that the interaction between TS policy and the state-of-the-
art spin-then-lock contention management policy dramatically increases the thread
context-switch rate and leads to drastic degradation in the performance [Johnson et al.
2010; Pusukuri et al. 2011b]. We considered both the Load Controller [Johnson et al.
2010] and FF policy [Pusukuri et al. 2011b] solutions as replacement of TS policy for
dealing with lock contention of the programs in coscheduled runs. However, since Load
Controller requires changes to application code, and its overhead increases linearly with
the number of threads, we decided to make use of the FF policy. Our Policy Allocator
selectively uses the FF policy. By assigning same priority to all the threads of a given
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Fig. 7: Random policy reduces lock contention of SC by 19%. FF policy reduces context-
switch rate of APSI.

multithreaded program, FF policy breaks the vicious cycle between thread priority
changes and context-switches. This dramatically reduces the context-switch rate (CX-
Rate) and improves the performance especially under high loads. FF policy allocates
time-quantum based on the resource usage of a multithreaded program for achieving
fair allocation of CPU cycles among the threads. For example, when we run a high
lock contention program apsi with its OPT threads (16), FF policy reduces its CX-Rate
(shown in Figure 7(b)) and improves its performance by 9%.

3.2.3. Design of Policy Allocator. Policy Allocator continuously monitors cores-
configuration selected by the Cores Allocator and the resource usage characteristics,
MPA and Lock-contention, of the multithreaded programs for selecting appropriate
memory-allocation and scheduling policies. If the program is CPU-intensive and low
lock contention, and it is in all-cores configuration, then the Policy Allocator applies
next policy and TS policy. Otherwise, it applies random policy (or random pset policy for
processor-set configuration) and FF policy with appropriate time-quantum. Since, there
is interference between programs in all-cores configuration, Policy Allocator always
applies one of the policies (TS or FF) in all-cores configuration. This is because, we
observe that running the programs with different scheduling policies (TS and FF) in
all-cores configuration dramatically degrades overall performance for some programs.
However, we apply both policies (TS and FF) at a time in processor-set configuration
selectively according to the resource usage characteristics of applications. This is not
clear from [Pusukuri et al. 2011b; 2012] as those works did not explore coscheduling
of multithreaded programs. However, in this work, we selectively apply FF policy for
effectively coscheduling multithreaded programs.

3.3. Implementation of ADAPT
Our implementation of ADAPT uses a daemon thread for continuously monitoring
running programs, maintaining their resource usage characteristics, assigning cores-
configuration using the Cores Allocator, and selecting memory allocation and scheduling
policies using the Policy Allocator. A Resource Usage Vector (RSV) is maintained for
each program. More specifically, RSV of a program contains the following: resource
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usage characteristics including usr, lock, lat, sys, ct, mpa; CPU utilization per processor-
set if program is coscheduled in a processor-set configuration; and cores-configuration
selected by the Cores Allocator. Based on the cores-configuration, cores-to-threads (ct a)
ratio is interpreted as either ct a for the PAAP model or rct a for the PACC model.

For monitoring programs and collecting resource usage data, assigning different
cores-configurations as well as memory allocation and scheduling policies, ADAPT uses
the following Solaris 11 utilities: prstat, mpstat, priocntl, pmadvise, mdb, and cputrack.
prstat is used to collect usr, lock, lat, and sys characteristics, while cputrack is used to
collect mpa. mpstat collects system-wide resource usage characteristics such as overall
system utilization and CPU utilization per processor-set. We use mdb and pmadvise to
apply memory allocation policies and priocntl for applying scheduling policies. While
mdb is used to apply memory allocation policies system-wide for all programs, pmadvise
is used for applying memory-allocation policy per program.

With the minimum time interval of one second provided by the default implemen-
tation of prstat and mpstat utilities, it is difficult to respond to rapid phase changes
in programs. Therefore, we enhanced these utilities2 to allow time intervals with mil-
lisecond resolution and capture phase changes of programs. Furthermore, the default
cpustat utility does not support the use of performance monitoring events to collect
system-wide resource usage characteristics (e.g., last-level cache miss-ratio) when there
is more than one active processor-set. Therefore, we have also enhanced the cpustat
utility to collect system-wide characteristics with arbitrary number of processor-sets.

Selecting Appropriate Monitoring Time-interval:. Using the above enhanced utilities,
ADAPT is able to collect resource usage characteristics of the target programs with
millisecond resolution. The time interval for collecting resource usage data directly
impacts the overhead of ADAPT. Although small time interval allows fine-grain details
of the resource usage data to be collected, it increases the monitoring overhead. There-
fore selecting appropriate time interval is very important. To select an appropriate
time interval, as shown in Figure 8, we evaluated ADAPT with different time intervals
for monitoring four multithreaded programs simultaneously running on our machine.
As Figure 8 shows, when we use ADAPT with 50 ms and 100 ms time intervals, the
system overhead is considerably high. This is because the high rate of interprocessor
interrupts and cross-calls leads to high system time [McDougall and Mauro 2006]. With
time interval of 200 ms or greater, the overhead of ADAPT is negligible (< 1.5% of
system time). Therefore, ADAPT uses 200 ms time interval for collecting RSVs of the
multithreaded programs. ADAPT collects 10 samples of the resource usage data of the
target programs with 200 ms time interval and updates RSVs of programs with the
average of these 10 samples every two seconds. Therefore, every two seconds, based on
the phase changes, it applies appropriate cores-configuration, memory allocation, and
scheduling policies.

We have observed that rapid changes in cores-configuration diminishes the benefits of
ADAPT. Therefore ADAPT keeps the last three RSVs of each program and then changes
cores-configuration if one of the following conditions is satisfied:

(1) If programs are running in a processor-set configuration, and the average CPU
utilization of any processor-set is less than that of any other processor-set by a
threshold of at least α.

(2) For any program Pi, if its usr P i decreases at a rate greater than a threshold of β
in the last two intervals.

2Source code is at http://www.cs.ucr.edu/∼kishore/hipeac13.html

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



ADAPT: A Framework for Coscheduling Multithreaded Programs A:17

●
●

● ●
0

1
2

3
4

5
6

#Programs

%
S

ys
te

m
 T

im
e

1 2 3 4

●
●

●

●

●

●

50ms
100ms
200ms
400ms
1000ms
without ADAPT

Fig. 8: Time interval duration vs. system overhead.

(3)
∑N

i=1
(usr PP

i )

N > (

∑N

i=1
(usr PC

i )

N +γ) in the last two-intervals, where γ is the threshold
value.

where usr PC
i is the actual %USR time of Pi in current cores-configuration, while

usr PP
i is the predicted %USR time of program Pi using either the PAAP or the PACC

model based on the current cores-configuration. From extensive experimentation with
the programs used, we derived the threshold values α, β, and γ as 6%, 4%, and 8%.
By employing these thresholds, we are able to reduce the impact of unnecessary rapid
changes between cores configurations on the performance of the programs. In the
current implementation of ADAPT, we assume that solo run RSVs of the target programs
are available. Alternatively, we can run the application for a few millisecond as it enters
the system and collect its RSV. Using signals (SIGSTOP/SIGSTART) we can pause other
applications while the RSV of the new application is being collected.

4. EXPERIMENTAL SETUP
4.1. Target Machine and OS
Our experimental setup consists of a 64-core machine running Solaris 11. Table IX
shows its configuration.

Table IX: Target Machine and Operating System.

Supermicro 64-core server:
4 × 16-Core 64-bit AMD OpteronTM 6272 Processors (2.1 GHz);
L1 : 48 KB; Private to a core; L2 : 1024 KB; Private to a core;
L3 : 16384 KB; Shared among 16 cores; Memory: 64 GB RAM;

Operating System: Oracle Solaris 11TM

Why Solaris. The Memory Placement Optimization feature and Chip Multithreading
optimization allow Solaris OS to effectively support hardware with asymmetric memory
hierarchies such as NUMA [McDougall and Mauro 2006]. Specifically Solaris kernel is
aware of the latency topology of the hardware via lgroups which allows it to optimize
decisions on scheduling and resource allocation. Moreover, Solaris provides a rich user
interface to modify process scheduling and memory allocation policies. It also provides
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several effective low-overhead observability tools including DTrace, a dynamic kernel
tracing framework [Cantrill et al. 2004].

4.2. Benchmarks and Performance Metrics
We evaluate ADAPT using 26 programs -- TATP [TATP. 2003] database transaction
application; SPECjbb2005 [SPECOMP 2001]; eight programs from PARSEC [Bienia et al.
2008] including streamcluster (SC), facesim (FS), canneal (CA), x264 (X264), fluidanimate (FA),
swaptions (SW), ferret (FR), and bodytrack (BT); 11 programs from SPEC OMP [SPECOMP
2001] including swim (SM), equake (EQ), wupwise (WW), gafort (GA), art (ART), apsi (AS),
ammp (AM), applu (AP), fma3d (FMA), galgel, (GL), and mgrid (MG); and five programs from
Phoenix [Yoo et al. 2009] including kmeans (KM), pca (PCA), matrix-multiply (MM), word-count
(WC), and string-match (STRM).

The implementations of PARSEC programs are based upon pthreads and we ran them
using native inputs (i.e., the largest inputs available). SPEC OMP programs were run
on medium input data sets. SPECjbb2005 (JBB) with single JVM is used in all our
experiments. TATP (a.k.a NDBB and TM-1) uses a 10000 subscriber dataset of size 20MB
with a solidDB [solidDB ] engine. TATP is not IO-intensive and disk performance does not
affect it significantly [Johnson et al. 2010]. Phoenix programs are based upon MapReduce.
We are unable to use some other programs of the above benchmark suites because they
have very short running-times. In this work, we ran each experiment 10 times and
present average results from the ten runs.

Performance Metrics. We use two metrics inspired from [Eyerman and Eeckhout
2008] to evaluate ADAPT: a user-oriented metric: average total turnaround time (TTT);
and a system-oriented performance metric: average system utilization, where system
utilization = 100 − (%CPU idle time).

5. EVALUATING ADAPT
In this section, we analyze the effectiveness of ADAPT framework using several
coscheduling experiments with the 26 multithreaded programs as shown in Figure 9(a).
As we can see, we evaluate ADAPT by coscheduling either two, three, or four programs.
As we can see from Figure 9(b), TTT improvement with ADAPT is on average 21%
(average lies between 16.1% and 25.2% with 99% confidence interval) and up to 44%
relative to the default Solaris 11 scheduler.

As shown in Figure 9(b), while ADAPT achieves high TTT improvements for the
coscheduled runs of memory-intensive and high lock contention programs (e.g. FS), it
achieves moderate TTT improvements for the coscheduled runs of CPU-intensive and
low lock contention programs (e.g. SW). ADAPT achieves high throughput improvements
for the coscheduled runs of TATP database transaction application and JBB. ADAPT
improves throughput of TATP and JBB by 23.7% and 18.4% compared to the default
Solaris scheduler. For CPU-intensive and low lock contention programs, Policy Allo-
cator contributes more to the improvements in TTT than the Cores Allocator because
Cores Allocator allocates all-cores configuration like the default OS scheduler for these
programs. Figure 9(c) shows that ADAPT achieves high system utilization, compared to
the default Solaris scheduler. Thus ADAPT simultaneously improves performance of
programs and system utilization.

ADAPT vs Existing Techniques:. As discussed in Section 3, the existing coscheduling
algorithms [Zhuravlev et al. 2010; Blagodurov et al. 2011; Pusukuri et al. 2011] are
primarily designed for a mix of single threaded workloads or threads of a single mul-
tithreaded workload. Therefore they use thread level scheduling while ADAPT uses
application level scheduling to enable handling of multiple multithreaded programs.
Since DINO [Blagodurov et al. 2011] uses one thread per core configuration, to compare
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# Programs OPT Threads # Programs OPT Threads
1 FS;EQ (32,32) 9 AM;SC (56,17)
2 BT;AP (50,24) 10 TATP;JBB (54,69)
3 AS;FMA (16,56) 11 SM;EQ (32,32)
4 SW;MG (73,16) 12 PCA;STM (48,16)
5 FA;SC (49,17) 13 MG;PCA (16,48)
6 GL;BT (16,50) 14 KM;ART (24,40)
7 FA;SM (49,32) 15 MM;SW (64,73)
8 ART;x264 (40,68) 16 WC;MG (48,16)
17 KM;CA;X264 (16,33,68) 20 FS;AP;STM (32,24,16)
18 AS;BT;FR (16,50,83) 21 AM;WW;PCA (56,24,48)
19 GA;SM;FA (64,32,24)
22 FS;SC;EQ;WW (32,17,32,24) 24 PCA;AM;AS;ART (48,48,34,40)
23 AS;AP;BT;FMA (16,24,50,56) 25 GA;FMA;x264;FA (64,56,68,49)

(a) Coschedule run numbers and corresponding programs.
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(b) % Improvement in TTT.
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(c) Improvement in System Utilization.

Fig. 9: ADAPT improves TTT and system utilization compared to the default Solaris
scheduler. Here, improvement in system utilization = (utilization with ADAPT - utiliza-
tion with Solaris).

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



A:20 K.K.Pusukuri et al.

1 11 12 13 14 16
−1

0
10

30
50 DINO ADAPT

#Co−schedule Run

%
 im

pr
ov

em
en

t i
n 

TT
T

Fig. 10: TTT improvements are relative to the default Solaris scheduler. ADAPT signifi-
cantly outperforms DINO.
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Fig. 11: ADAPT improves performance of all the four memory-intensive programs: FS,
SC, EQ, and WW.

ADAPT with DINO, we have chosen coscheduling runs where ADAPT also uses number
of threads that equal the number of cores. There are only 6 coscheduled runs with
this configuration (see Figure 9(a)). Figure 10 shows the % TTT improvements of both
ADAPT and DINO relative to the default Solaris scheduler. As we can see in Figure 10,
ADAPT significantly outperforms DINO. Though DINO is also effective in coscheduling
some multithreaded programs, its performance is the worse for coscheduling of high
lock contention programs.

Since the above existing techniques are based on cache usage, they are very effective
for a mix of workloads where half of the threads are memory-intensive and other
half are CPU-intensive. However, they may not work well on a mix of workloads
where all the threads are either CPU-intensive or Memory-intensive. Therefore, we
evaluated ADAPT against a mix of four Memory-intensive multithreaded programs
(FS:SC:EQ:WW) and as well as against a mix of four CPU-intensive multithreaded
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Fig. 12: ADAPT improves performance of all the four CPU-intensive programs: AS, AP,
BT, and FMA.

Table X: Normalized running-times of the memory-intensive programs in a coschedule
run.

Program Normalized Running-time
Solaris ADAPT

FS 2.1 1.6
SC 1.6 1.2
EQ 1.5 1.3
WW 1.7 1.4

programs (AS:AP:BT:FMA). Figures 11 and 12 show the total running-times (or TTT) of
the four programs in each run. As we discussed in Section 3, for memory-intensive and
high lock contention programs, ADAPT simultaneously improves memory bandwidth
and reduces lock contention. It relieves pressure on HT module, and consequently
reduces paging activity and improves performance. In the second coscheduled run
of four programs, we evaluated ADAPT for a mix of four CPU-intensive and high
lock contention programs. By assigning appropriate cores-configuration and the FF
scheduling policy with appropriate time-quanta, ADAPT dramatically reduces context-
switch rate and improves overall TTT of the programs.

Furthermore, as we can see in Figures 11 and 12, ADAPT not only improves perfor-
mance of programs, it simultaneously reduces variation in their performance. We also
computed normalized running-times of the programs to see how fairly the resources are
distributed across the four programs in the above mentioned coscheduled runs. Here
normalized running-time is computed as the ratio of running-time of the program in
the coschedule run to the running-time of the program in solo run. As we can see in
Tables X and XI, not only ADAPT improves TTT, it also distributes the resources fairly
across the coscheduled programs. Thus, ADAPT improves fairness and does better than
default Solaris scheduler.

In summary the above experiments demonstrate that ADAPT is effective in coschedul-
ing multithreaded programs on multicore systems. By using simple and efficient modern
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Table XI: Normalized running-times of the CPU-intensive programs in a coschedule
run.

Program Normalized Running-time
Solaris ADAPT

AS 2.3 1.2
AP 1.9 1.2
BT 1.5 1.3
FM 1.9 1.3

OS performance monitoring utilities, ADAPT continuously monitors the resource usage
characteristics of programs, adaptively allocates resources such as cores, and assigns
appropriate memory allocation and scheduling policies. Moreover, it is an attractive
approach as it does not require any changes to either the application source code or
the OS kernel. Furthermore, the overhead of ADAPT is negligible for the appropriately
chosen monitoring interval. Thus ADAPT scales well with the number of multithreaded
programs on machines with large number of cores.

6. RELATED WORK
While coscheduling of programs on a multicore system is a well studied area, there are
only a few works [Bhadauria and McKee 2010] that deal with contention management
during coscheduling of multithreaded programs. Bhauaria et al. [Bhadauria and McKee
2010] proposed a symbiotic scheduler based on memory-hierarchy contention consid-
erations (i.e., last-level cache miss-rate) for coscheduling multithreaded programs on
a machine with a small number of cores (eight cores). However, they [Bhadauria and
McKee 2010] pursue a different goal of balancing power and performance. Moreover,
they used one thread per core configuration for evaluating their scheduler using the
metric of overall throughput per watt.

[Moore and Childers 2012] uses statistical models to predict appropriate number of
threads for a multithreaded program when it is running with another multithreaded
program on a multicore system for achieving high throughput. [Moore and Childers
2012] shows that varying number of threads for an application according to the work-
load improves throughput. This is a good observation but exploiting this observation
requires that the applications written to accept number of threads as input be mod-
ified. In contrast to this work, ADAPT does not require modification of applications.
ADAPT always runs multithreaded programs with OPT threads. Here, OPT threads is
the minimum number of threads of a multithreaded programs in its solo run on our
multicore machine. Moreover, unlike the above work, ADAPT aims to achieve both
low total turnaround times and high system utilization. More importantly, [Moore and
Childers 2012] does not exploit application characteristics such as lock contention,
scheduling, and memory allocation policies that ADAPT exploits. Allocating appropriate
number of cores is also a critical factor in coscheduling multithreaded programs that
ADAPT considers. One can view ADAPT and [Moore and Childers 2012] technique
as complimentary techniques that can be potentially combined to further improve
performance.

Other existing contention management techniques [Zhuravlev et al. 2010; Blagodurov
et al. 2011; Pusukuri et al. 2011; Knauerhase et al. 2008; Merkel et al. 2010] are
also based upon consideration of memory-hierarchy contention factors such as cache-
usage. However, as we demonstrated in this work, cache-usage alone is not enough
for coscheduling multithreaded programs on machines with large number cores. We
showed better results by considering characteristics of lock contention and thread
latency. Complementary to these works, some researchers [Tam et al. 2007] developed
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techniques for coscheduling threads of a single multithreaded program that share data
on the same chip, but they did not address coscheduling of multithreaded programs.

Several researchers [Brecht 1993; LaRowe et al. 1992; Corbalan et al. 2003; VMware
2005; Gamsa et al. 1999; Li et al. 2007] have developed NUMA-related optimization
techniques for efficient colocation of computation and related memory on the same
node. However, they have not addressed resource contention management in multicore
machines. Likewise, [Severance and Enbody 1997] developed adaptive scheduling tech-
niques for parallel applications based on MPI on large discrete computers. However,
this scheduling technique does not address the contention of shared resources when
coscheduling multiple programs concurrently. Corbalan et al. [Corbalán et al. 2000] use
techniques to allocate processors adaptively based on program efficiency. However, like
the above works, they also do not consider resource contention among the programs.
McGregor et al. [McGregor et al. 2005] developed coscheduling techniques using archi-
tectural factors such as cache resource usage for coscheduling NAS parallel benchmarks
on a quad core machine. However, each of the workload used in this work is either
a single threaded or a multithreaded with only two threads. Like the above existing
contention management techniques, this technique also will not work for coscheduling
multithreaded programs on large multicore machines. Gupta et al. [Gupta et al. 1991]
explored the impact of the scheduling strategies on the caching behavior of the applica-
tions. Likewise, Chandra et al. [Chandra et al. 1994] evaluated different scheduling
and page migration policies on a CC-NUMA multiprocessor system.

Unlike the above approaches, by considering appropriate contention factors and using
supervised learning techniques for identifying the interference between multithreaded
programs, our work provides efficient coscheduling techniques for multithreaded pro-
grams on a multicore machine. Several other researchers also explored machine learning
and control theory for developing adaptive resource optimization techniques for utility
computing [Padala et al. 2007; Padala et al. 2009], network management [Barham
et al. 2008], mobile computing [Narayanan and Satyanarayanan 2003], computer ar-
chitecture [Ipek et al. 2008], and compiler optimizations [Pekhimenko and Brown
2008].

7. CONCLUSIONS
Coscheduling multithreaded programs on a multicore machine is a challenging problem.
We presented ADAPT, a framework for effective coscheduling multithreaded programs
on multicore systems. ADAPT is based on supervised learning techniques for identifying
the effects of the interference between multithreaded programs on their performance.
It uses simple modern OS performance monitoring utilities for continuously monitor-
ing the resource usage characteristics of the target programs, adaptively allocating
resources such as cores, and selecting appropriate memory allocation and scheduling
policies. Moreover, it is an attractive approach as it does not require any changes to ei-
ther the application source code or the OS kernel. Furthermore, the overhead of ADAPT
is negligible with appropriate choice of monitoring interval. Thus, ADAPT scales well
with the number of multithreaded programs on machines with a large number of cores.
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