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With the explosive growth in Inter-
net traffic, requests have been overloading
Web servers. Many ISPs and search engines
employ a server cluster to build a cost-effec-
tive, scalable, and reliable server system. To
make such a distributed-server system trans-
parent to clients, architects usually place a
switching device with one virtual Internet Pro-
tocol (VIP) address in front of the server clus-
ter as a common interface.

The switch routes packets on the basis of
Layer-5 information such as request content
or application data. Figure 1 shows such a
Layer-5 or content-aware switch1-3 for a server
cluster. Compared with a traditional Layer-4
switch, a content-aware switch has the fol-
lowing advantages:

• Better load balancing. The switch directs
incoming requests on the basis of con-
tent type, such as static or dynamic, to
dedicated servers optimized for a partic-
ular type.

• Faster response. Servers maintain in-cache
copies of recent service results, so sending
requests to servers that have already sat-
isfied the same request can exploit cache
affinity and reduce latency.

• Better resource use. Servers can be dedicat-
ed to an application type, such as static

HTML pages or database transactions,
making it possible to partition Web con-
tent to the different servers to eliminate
replication and use resources efficiently.

We designed and implemented a content-
aware switch based on an ENP2611 board
that contains an Intel IXP2400 network
processor (NP). Our performance evaluation
results show that this switch significantly
improves processing latency as well as
throughput. To the best of our knowledge, no
other study has focused on the design of con-
tent-aware switches based on NPs (see the
“Related Work” sidebar).

Overview of content-aware switches
Content-aware switches built based on

application-specific integrated circuits1-3

(ASICs) or general-purpose processors4-6 have
been prevalent for the last 10 years. However,
although ASIC-based switches can achieve
high-processing capacity, they lack flexibility
and programmability. Moreover, switches
based on general-purpose processors can’t pro-
vide satisfactory performance, because of
interrupt and moving packets over the periph-
eral component interconnect (PCI) bus.
Using NPs that operate at the protocol’s link
layer, as with ASICs, solves these problems
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Researchers have studied content-aware switches extensively. Cohen
et al.1 implement a content-aware switch in Linux using TCP splicing. They
use an application-level proxy to determine the destination server on the
basis of client requests. Yang et al.2 move all the processing down to the
Linux kernel, so that the switch performs all the data forwarding as well
as the routing decisions at the kernel level. This move can avoid the over-
head of passing the HTTP request packet through the protocol stack to
the user-level proxy, as Cohen’s team has done. Our approach, imple-
mented on NPs, moves the whole processing further down to the NIC
level, thus reducing the end-to-end latency as much as possible. Apos-
tolopoulos et al.3 built a content-aware switch based on a switch core
with custom, intelligent, port controllers and a PowerPC processor. As an
application-specific integrated circuit (ASIC) design, this switch can
achieve very high throughput. However, we can hardly extend it to incor-
porate new services such as quality of service scheduling. In addition to
ASICs, we can use field-programmable gate arrays to speed up pattern
matching in the content-aware switches.4 However, FPGAs have higher
power consumption compared to NPs.

Spalink et al.5 suggest separating TCP splicing processing on a data
forwarder and a control forwarder, which run on the IXP2400 microengines
and the host processor (a Pentium), respectively. However, our analysis
shows that performing all the processing on the microengines gives bet-
ter performance. Therefore, we put not only the data forwarder, but also
the control forwarder on the microengines.

Besides TCP splicing, TCP hand-off6 is another mechanism for build-
ing a content-aware switch. To reduce the switch’s load, TCP hand-off
lets the response from the server reach the client directly without going
through the switch. This approach requires modifying the TCP state
machine in servers’ operating system. This would be impractical for
large-scale server clusters. Papathanasiou et al.7 exploit both the TCP
splicing and hand-off techniques on a Web switch. The switch performs
TCP splicing, whereas back-end servers perform the hand-off opera-

tion. Their approach requires that a proxy application run on each of the
back-end servers, but it doesn’t require any modification to the operat-
ing system.
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and avoids the large overhead associated with
general-purpose processors. NPs are also pro-
grammable, so they can achieve the same flex-
ibility as general-purpose processors. In
addition, NPs have an instruction-set archi-
tecture optimized for packet processing, and
their hardware is usually equipped with mul-
tiprocessing and multithreading, which can
provide good throughput.

A content-aware switch is usually built using
an HTTP proxy4-6 running on the application
level. The proxy maintains connections with
the client and the server separately and for-
wards data between these two connections.
Although this approach is easy to implement,
copying data between these two connections
results in high overhead. We solve this copying
problem through Transmission Control Pro-
tocol splicing, which splices the two connec-
tions after both are established.7,8 The switch
can then forward subsequent data packets on
the spliced connection by modifying particu-
lar fields (for example, sequence numbers) in
their TCP and Internet Protocol headers. This
data forwarding occurs at the IP level, thereby
avoiding the overhead of copying data between
the user space and the kernel space.

Implementing a content-aware switch using
an NP isn’t simple. NPs are programmed at a
low-level language (microC, or microcode

without a compiler to directly translate C code
to this language. Moreover, an NP has limited
instruction memory, so reducing and optimiz-
ing the existing code requires enormous effort.

We studied several design options for a con-
tent-aware switch built with an NP, and we
found key improvements that an NP-based
switch can provide over a Linux-based switch.
We also analyzed in detail the TCP splicing
technique and derived a splicing protocol for
NP, called SpliceNP. Finally, we carefully allo-
cated the workload among the NP’s resources
for optimal performance.

Design options
Designers have built content-aware switch-

es in Linux machines by inserting loadable
kernel modules into the operating system.6,9

In these switches, the proxy, which runs at the
application level, parses HTTP requests.
Hence, the request packet must go through
the protocol stack and then be copied from
the kernel space to the user space. It’s possi-
ble to reduce latency by removing the proxy
and moving all the processing, including pars-
ing the HTTP request, into the kernel space,
as Figure 2a shows.6,9 However, the switch
must move the data from the host DRAM to
the network interface card (NIC) and from
the NIC to the host DRAM over the PCI bus.

74

HIGH-PERFORMANCE INTERCONNECTS

IEEE MICRO

NIC NIC

(a)

CPU
User

DRAM

PCI bus

Kernel

CPU

DRAM

Kernel

PCI bus

User
CPU

DRAM

Kernel

PCI bus

User

(b)

DRAM User
Kernel

DPs

(c)

DRAM

DPs

Kernel
User

CP CP

CP
DP

NIC

Control processor
Data processor
Network interface card

NICNIC

Figure 2. Three architecture candidates for a content-aware switch: Linux-based interface in which processing occurs in the
kernel space (a); network-processor-based interfaces in which processing occurs in the control processor (b) as well as in the
data processor (c).



This traffic imposes heavy bandwidth pres-
sure on the PCI bus when the number of con-
nections is large. It also introduces interrupt
overhead to the host CPU.

To further improve switch performance, we
propose moving all processing down to the NIC
level. Figures 2b and 2c use NP-based network
interfaces. The NP usually has one control
processor and multiple data processors. Data
processors are tuned specifically for processing
network packets in the fast path, whereas con-
trol processors help maintain the control infor-
mation and processing exception packets. For
example, Intel’s IXP2400 contains one control
processor (XScale) and eight data processors
(called microengines, or MEs, in Intel’s
IXP2400). The control processor runs an
embedded Linux operating system and shares
DRAM with data processors. The data proces-
sors receive and transmit packets through NICs.

In Figure 2b, the TCP stack in the control
processor can create connections to clients and
servers and then splice these two connections
in the embedded Linux kernel. The switch
can process on the MEs the packets sent after
splicing. Many industrial projects use this
implementation for offloading the TCP to an
NP. However, splicing the processing in the
XScale increases latency because the XScale
must poll an input queue (that the MEs fill)
to retrieve packets. In addition, after process-
ing these packets, the XScale must put them
in an output queue. The ME sends out the
packets from there. The packet polling time,
enqueueing, and dequeueing together increase
processing latency. (Notice that processing
these packets falls within the critical path for
TCP splicing.) This delay is detrimental to
overall performance because longer delays
might cause time-outs for clients and lead to
packet retransmissions. In effect, this tech-
nique replaces Linux with embedded Linux
and a powerful Pentium CPU with a weak
XScale CPU. Nonetheless, we implemented
this technique and observed that it increases,
rather than decreases, latency.

Because of the large number multiple MEs
and threads in NPs, Figure 2c is a natural evo-
lution over Figure 2b. After receiving packets
from NICs, the packet processors create and
splice the connection, and forward the data
without needing to communicate with the
control processor or the host CPU. The mul-

tiple hardware threads in packet processors are
capable of fast packet processing for multiple
connections simultaneously, and eliminating
data copying though the PCI bus. We used
this architecture to design and implement our
content-aware switch. However, implement-
ing complex splicing software in an ME is dif-
ficult. Unlike the XScale control processor,
MEs are programmed in microC (instead of
C) and have limited control memory. Com-
pared with the Linux-based switch in Figure
2a, an NP-based switch can reduce process-
ing latency in four ways:

• Interrupt versus polling. When the NIC in
the Linux machine receives packets, it rais-
es an interrupt to the CPU. Although cur-
rent NICs can accumulate multiple
packets and then notify the processor using
a single interrupt, the interrupt’s overhead
is still high. To reduce this overhead, NPs
use polling instead of interrupts.

• NIC-to-memory copy versus no copy. In the
Linux-based switch, the NIC must copy
the received packets to the main memo-
ry, which requires a direct-memory-
access (DMA) transfer through the PCI
bus. Similarly, when the processor sends
out the packets, they are transferred from
the memory to the NIC buffer through
DMA again. In an NP-based switch,
however, packets are processed inside the
NIC without the need for copying.

• Linux processing versus IXP processing.
Even if the switch implemented the
entire TCP splicing in the Linux kernel,
there would still be operating-system
overhead, as there is with a content-aware
switch. In NP, the optimized instruction-
set architecture for packet processing lets
us process packets more efficiently and
reduce the number of instructions exe-
cuted. For example, we can load an IP or
TCP header in one instruction and hide
the memory latency by switching to
other threads.

• General-purpose processor versus multiple
MEs and threads. The multiple MEs and
threads in an NP can process many pack-
ets in parallel, thus increasing throughput.

The first two factors involve significant
packet processing. To measure the time taken
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by the various kernel parts, we used a Linux
PC with a Pentium CPU running at 400

MHz and equipped the ker-
nel code with instructions
that read the time-stamp
counter for the functions we
were interested in. Figure 3
shows the time line for receiv-
ing a 41-byte message using
TCP/IP. After the NIC copies
the packet through DMA to
the host memory (t0), the
interrupt handler (t1) saves all
the CPU registers on the
stack and invokes the NIC
interrupt service routine tulip
interrupt()(t2), which

raises a soft interrupt. When the interrupt
handler intrStop ends, the CPU executes
the soft interrupt softirq, which calls
net_rx_action() (t3). This prompts the
network layer function ip_rcv() to initi-
ate TCP/IP stack processing. The DMA and
interrupt handling (t0 through t3) in the Linux
machine took about 11.7 microseconds (μs),
whereas this part is almost negligible in an NP
implementation that employs Figure 2b or 2c.

TCP splicing technique
As we mentioned, TCP splicing eliminates

the overhead of copying data between the ker-
nel and the user space. We modified the TCP
splicing protocol to suit our context-aware
switch.

TCP splicing state transition
TCP splicing is based on standard TCP/IP,

which maintains each connection’s state infor-
mation.10 Therefore, we also must maintain
state information. To implement TCP splic-
ing, we must clearly understand various states
of this process, as the state transition diagram
in Figure 4 shows. The state transition from
CLOSED to SYN_RCVD and ESTAB-
LISHED states is the three-way handshaking
standardized in TCP/IP protocol. Figure 4
shows two three-way handshakings. The client
initiates the first handshaking, which leads to
ESTABLISHED state for the first connection.
Receiving an HTTP request packet triggers the
second handshaking. After the second con-
nection also enters ESTABLISHED state, the
switch splices together these two connections,
and the state migrates to SPLICED. The
spliced connection’s termination starts when a

76

HIGH-PERFORMANCE INTERCONNECTS

IEEE MICRO

t0 t1 t2 t3

0 1 2 3 4 5 6 7 8 9 10 11 12

intrStart
Direct

memory
access

interrupt()

softirq

intrStop

net_rx_action()

Time (μs)

Figure 3. Direct-memory-access and interrupt handling for receiving a 41-byte packet
through TCP/IP in a Linux machine.

CLOSED

ESTABLISHED

rec:SYN, send:SYN/ACK

rec:ACK

SPLICED

FIN_RELAYED1

ACK_RELAYED1

FIN_RELAYED2

TIME_WAIT

2MSL timeout

rec:FIN/ACK

SYN_RCVD

rec:FIN

rec:ACK

rec:FIN

rec:ACK

rec:SYN/ACK  send:ACK/Request

rec:ACK/Request

CLOSED

SYN_SENT

send:SYN

ESTABLISHED
Control 
packets

Data 
packets

Figure 4. State transition in TCP splicing.



FIN packet is received from one side (server or
client). This leads to the state transition to
FIN_RELAYED1. When the ACK (acknowl-
edgment) to this FIN (finish)packet is received,
the state becomes ACK_RELAYED1. The
arrival of a FIN packet from another side
changes the state to FIN_RELAYED2. The
last ACK packet leads the state to
TIME_WAIT. After 2MSL (maximum seg-
ment lifetime, which is usually 120 seconds10),
the state transitions to CLOSED. Notice that
data forwarding occurs from SPLICED state
until FIN_RELAYED2.

Based on this state diagram, we classify
packets into two types: control packets and data
packets. Control packets are those the client
or server sends before the two connections are
spliced. The switch uses these packets, such
as SYN (synchronization) packets, to set up
connections. We also treat the HTTP request
packet as a control packet because it triggers
the second connection. Data packets are
response packets the server sends, ACK pack-
ets the client send and FIN packets that both
the server and client sends after the switch
splices the two connections.

The SpliceNP protocol
To build an NP-based switch, we simpli-

fied the splicing protocol in comparison to the
original TCP protocol, because the TCP code
must handle every situation (some of which
aren’t needed for the switch). Also, to fit the
code in an ME’s control memory, we dropped
several functions from the Linux-based
switch. We developed this protocol for NP,
and we call it SpliceNP protocol.11 Table 1
compares processing a SYN packet for three

implementations: traditional TCP, Linux-
based switch, and NP-based switch using
SpliceNP protocol.

Processing a SYN packet. To process a SYN
packet, the switch dequeues the packet from
where the device driver put it and checks it to
confirm that it is a valid IP packet, as shown
in steps 1 and 2 in Table 1. The IP validation
includes checking the packet’s version, length,
and header checksum. Corrupted packets or
packets other than IP or TCP are dropped. In
NP, we don’t process IP options (step 3),
because they’re rarely used. Next, the switch
validates the TCP header, including TCP
checksum and sequence number (step 4).
Then, the control block lookup takes place
based on a hash value calculated from the
packet’s source port and IP address (step 5).
A new socket (together with the TCP control
block) is created and its state is set to LISTEN
(step 6). NP doesn’t have socket operations
because we don’t need an interface between
the TCP and the application.

In step 7, the switch creates the TCP and IP
header template. While a packet is being sent,
the switch copies this template as a whole to
the TCP and IP header, rather than filling each
field one by one. In NP, however, we don’t cre-
ate this template because the switch updates
IP and TCP headers on the fly. In step 8, the
switch resets the keep-alive timer. In NP, we
do not implement any timers; however, we
plan to work on this in the future. The next
step is TCP-option processing (step 9). In NP,
we process only the maximum segment size
(MSS) option. We know that TCP options
like MSS and SACK (selective acknowledg-
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Table 1. Processing a SYN packet.

Step Functionality TCP Linux-based NP-based
1 Dequeue packet Yes Yes Yes
2 IP header verification Yes Yes Yes
3 IP option processing Yes Yes No
4 TCP header verification Yes Yes Yes
5 Control block lookup Yes Yes Yes
6 Create new socket and set state to LISTEN Yes Yes No socket, only control block
7 Initialize TCP and IP header template Yes Yes No
8 Reset idle time and keep-alive timer Yes Yes No
9 Process TCP option Yes Yes Only maximum segment size option

10 Send ACK packet, change state to SYN RECEIVED Yes Yes Yes



ment) are negotiated between the two end
points in a three-way handshake. Because the
server cluster may have various options, the
switch might reject all TCP options or main-
tain a minimum set of options for the Web
servers. Currently, we implement MSS-option
processing in the switch (1,460 bytes in Eth-
ernet). Otherwise, if we reject the TCP
options, the clients and servers will use a small-
er MSS (534 bytes), which affects performance
such as throughput. Finally, in step 10, the
switch changes the state to SYN_RECEIVED
state and sends out an ACK packet.

Processing a SYN-ACK packet. Table 2 illus-
trates processing a SYN-ACK packet, and
Table 3 illustrates processing a data packet.
Most of the steps are the same for all three
cases in SYN-ACK processing, except that the
NP processes only the MSS option. NP avoids
the TCP header verification because only for-
warding is performed in the SPLICED state.

Packet type determines Step 8 in Table 3. Data
packets follow 8a, and ACK packets follow
8b. When we enable splicing, we avoid the
copying that TCP requires.

NP also avoids the window-control processing
implemented in the traditional TCP. With
TCP splicing, after the two connections are
spliced together, only the client and the serv-
er handle the flow control. The switch does
not need to maintain any window size infor-
mation. However, representing the server, the
switch must send the advertised window size
in the TCP header when it accepts the con-
nection from the client. Because the switch
has no idea which server it will connect at that
moment, it should choose a number that
won’t be too different from the one the real
server uses. Otherwise, after the splicing, the
client will see a smaller or a bigger window
size than the one the switch sent before the
splicing, which could trigger unnecessary data
transmission or retransmission.8 Fortunately,
because the client receives mainly data pack-
ets from the server and sends only ACK pack-
ets, this window-size change doesn’t affect the
client’s performance. This problem doesn’t
happen on the server side, because the switch
uses the client-window size when connecting
to the server. Still, the switch must choose a
window size when it sends the SYN-ACK
packet to the client. One solution is to probe
the back-end servers to get a set of data to
choose the minimum.

Design and implementation
In addressing the various design and imple-

mentation issues associated with our content-
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Table 2. Processing a SYN-ACK packet.

Linux NP
Step Functionality TCP based based
1-5 Same as steps 1-5 in Table 1

6 Reset idle time and keep-alive timer Yes Yes No
7 Process TCP option Yes Yes Only 

MSS 
option

8 Verify ACK number and flags Yes Yes Yes
9 Connection-establishment timer Yes Yes No

10 Initialize receive-sequence number Yes Yes Yes
11 Set state to ESTABLISHED Yes Yes Yes
12 Send ACK packet Yes Yes Yes

Table 3. Processing a data or an ACK packet.

Step Functionality TCP Linux based NP based
1-5 Same as 1-3 and 5 in Table 1. Skip 4.

6 Reset idle time and keep-alive timer Yes Yes No
7 Process TCP option Yes Yes Only MSS option

8a Wake up receiving process Yes Direct forwarding Direct forwarding
Copy data to application Yes No No

8b Delete acknowledged data from send buffer Yes Direct forwarding Direct forwarding
Wake up waiting process Yes No No

9 Flow-control processing Yes Yes No



aware switch, we examined the Intel IXP2400
NP’s architecture and analyzed how to effi-
ciently distribute workload among resources
in such a hardware environment.

Hardware
Figure 5 shows an ENP2611 board with an

embedded IXP2400 NP connected to the
host machine through a PCI bus. The
IXP2400 contains a general-purpose XScale
core and eight MEs, which have instruction
sets tuned specifically for processing network
packets. Each ME has a 16-Kbyte-instruction
memory that the XScale processor core pre-
loaded. Up to eight threads can run in paral-
lel on each ME. The XScale runs an
embedded Linux operating system. All proces-
sors share an SRAM and a DRAM.

When a packet arrives at the Ethernet inter-
face, one of the media access controller devices
attached to the media switching fabric receives
it. Threads in MEs are programmed to move
packets into a receive FIFO buffer, do some
processing, and put outgoing packets in a
transmit FIFO buffer, where they are trans-
mitted to the line.

Resource allocation
Given the IXP2400’s hardware environ-

ment, which consists of multiple processors
and threads and various memory modules,
allocating these resources for minimum pack-
et processing time is a challenge. We must also
carefully allocate data in the memory. The two
off-chip memory modules—SRAM and
DRAM—have not only different sizes but also
different access latencies. When unloaded,
SRAM’s access latency is about 90 cycles, and
DRAM’s access latency is about 120 cycles.12

Because SRAM is faster than DRAM, we use
SRAM to maintain all the control-data struc-
tures. We use DRAM, which is relatively large,
for buffering packets.

Figure 6 shows the resource allocation for
our content-aware switch. We first differenti-
ate client ports from server ports. Client ports
connect with the external world (clients).
Server ports connect to servers in the cluster
and are responsible for receiving packets from
servers. MEs fall into four groups: those that
receive (RX ME), those that transmit (TX
ME), those that process packets from the
client ports (clientME), and those that process

packets from the server ports (serverME).
These MEs form a packet-processing pipeline.
RX MEs receive packets from the input ports
and put them in the input queue. ClientMEs
or serverMEs process packets from these
queues and move them to the next output
queue. TX MEs transmit those packets out to
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the line.
The input and output queues convey pack-

et information between MEs. These queues,
which are implemented in SRAM, store pack-
et descriptors containing the DRAM address,
length of packets, input and output ports, and
so on. TX MEs send these packets out based
on the output port number.

Our switch uses three major data structures:
a client-side control block list (C-list), a serv-
er-side control block list (S-list), and a URL
table. The C-list records the state for the con-
nection between the client and the switch, and
the state for forwarding data packets after con-
nections are spliced. The S-list records the state
for the connection between the switch and the
selected server. This switch uses the URL table
to select a back-end server for an incoming
HTTP request. This table contains a set of pre-
defined mappings from URL suffixes to back-
end servers. Future work will include
implementing more advanced algorithms. The
switch maintains all these data structures in
SRAM. In addition, because multiple threads
or MEs might access the control blocks simul-
taneously, updating these control blocks must
be atomic. To accomplish this, we exploit the
SRAM locks supported in the IXP2400.

Processing on microengines
When a packet arrives, the clientME or the

serverME extracts its IP and TCP headers and
performs a control block lookup in the con-
trol block list. The processing on this packet
is based on the state in the control block.

ClientMEs. Figure 7 shows the clientME data
flow, starting when the clientME dequeues a
packet from the input queue, as we described
under “Processing a SYN packet.”

Control packet processing and data packet
processing are shown in the two shaded boxes
in Figure 7. For a control packet, the clientME
first validates the packet’s TCP checksum and
sequence number. Then it checks whether this
packet is a SYN, an ACK, or an ACK-request
packet. These three types of packets are the only
control packets that must be processed at the
clientME. The handshake-processing part
processes SYN or ACK for connection estab-
lishment. For a SYN packet (with CSEQ as its
initial sequence number), a control block is
inserted into the C-list for the new connection,
and its processing is based on steps described
in Table 1. The ACK packet finishes establish-
ing the connection. The switch parses the
request packet in the request-processing mod-
ule and chooses a back-end server on the basis
of the URL table. Next, the clientME sets up
the second connection with the selected server
by sending a SYN packet with the client’s IP
and port as its source IP address and port num-
ber. The initial sequence number of this SYN
packet is set as CSEQ. Thus, in effect, the
switch masquerades as the client to send this
SYN packet, so only minimum changes are
required in the subsequent forwarding part. For
this second connection, the clientME inserts a
control block in the S-list.

If the incoming packet is found to be a data
packet—in few cases, it’s a FIN packet used
to close the connection—the switch process-
es the packet based on the steps in Table 3.
The switch then directly forwards the packet
with its updated IP and TCP header and
changes the packet’s destination IP address to
that of the server IP. The acknowledge num-
ber is updated with the following formula:
new acknowledge number = old acknowledge
number − DSEQ + SSEQ, where DSEQ and
SSEQ are initial sequence numbers in the
SYN packet sent from the switch and the serv-
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er, respectively. The checksum in both the IP
and TCP header are recalculated using the
incremental checksum calculation method.13

ServerMEs. Processing on the serverME has a
data flow that differs slightly from that in Fig-
ure 7. One difference is that the serverME
accesses the C-list using a hash value based on
the destination IP address and port number.
For the control packet, the serverME must
handle only the SYN-ACK packet from the
server because the clientME sends the SYN
packet that initializes a connection with the
chosen server. The SYN-ACK packet pro-
cessing is based on the steps in Table 2. In
response to this SYN-ACK packet, the
serverME can send an ACK packet, and then
the HTTP request. Because the data can pig-
gyback on the ACK packet, we send the saved
request along with the ACK. The state of the
C-list control block changes to SPLICED
thereafter. The switch deletes the corre-
sponding entry in the S-list.

ServerME data-packet processing is also
similar to that on the clientME. The differ-
ence lies in the updated fields. The source IP
is set to the switch IP address, which is a VIP.
The switch updates the sequence number with
the following formula: new sequence number =
old sequence number − SSEQ + DSEQ.

Other implementation issues
When the switch terminates the connection

between the server and the client, it must
delete the corresponding control block after
2MSL. To implement this time control, we
maintain a time-out table in SRAM, with each
entry containing a pointer to a control block
and a time stamp that records the time when
the control block should be deleted. Because
the control block’s deletion is not on the crit-
ical path for a connection, we run a program
on XScale that checks the time-out table reg-
ularly and deletes the control block if it expires.

Performance evaluation
Our experiments compared our NP-based

content-aware switch with a Linux-based
switch, focusing on latency and throughput.

Experimental setup
We implemented a content-aware switch

that uses a RadiSys (http://www.radisys.com)

ENP2611 board containing an Intel IXP2400
processor. The XScale and microengines run
at 600 MHz. This board has 8-Mbyte SRAM,
128-Mbyte DRAM, and three 1-Gbps Eth-
ernet ports. We used one port as the client
port and the other as a server port. The serv-
er port was connected with an Apache
(http://www.apache.org) Web server running
on an Intel 3.0-GHz Xeon processor. The
client port was connected to a Layer-2 switch
that connected two clients. Each client ran
httperf14 on a 2.5-GHz Intel Pentium 4
processor. All PCs ran Linux 2.4.20. To com-
pare its performance with that of a Linux-
based switch, we also built a Linux-based
switch by inserting a loadable kernel module
(from the Linux Virtual Server Project,
http://www.linuxvirtualserver.org) into its
operating system. This switch ran a Linux
2.4.20 kernel on a 2.5 GHz Pentium 4 sys-
tem with two 1-Gbps Ethernet NICs.

We obtained the following results with one
ME for RX ME and one ME for TX ME. In
our experiments, we varied the number of
clientMEs and serverMEs. However, using
one clientME and one serverME yielded the
same results as using two clientMEs and two
serverMEs. This implies that a pool of proces-
sors might not be helpful, because all the MEs
compete for the shared SRAM and DRAM.

Latency
First, we conducted experiments to obtain

the latency of packet processing for an HTTP
session. Figure 8 shows the latency spent on
the switch when we vary the request file size.
Compared with the Linux-based switch, the
latency on the NP-based switch is reduced by
83.3 percent (0.6 μs to 0.1 μs) with as small a
file size as 1 Kbyte. The larger the file size, the
higher the reduction. At 1,024 Kbytes, the
latency drops by 89.5 percent.

Using read-time-stamp instruction, we
measured the processing latency for data and
control packets separately. The timing starts
when the clientME or serverME takes the
packet from the input queue, and ends when
it puts a processed packet in the output queue.
For example, the latency on an ACK/request
packet records from the time this packet is
assembled in the DRAM to the instant the
SYN packet to the server is put in the queue.

Table 4 shows the average processing laten-
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cy on control packets and data packets for
both a Linux-based and IXP-based switch. In
a Linux-based switch, control-packet pro-
cessing takes much longer than data-packet
processing. This is mainly because the con-
trol packets travel through the protocol stack
in Linux, whereas the data packets do not.
Among control packets, the ACK/request
packet has the longest processing time. This
request packet, in addition to traversing the
protocol stack, is copied into the user space,
where the proxy running at the user level
parses it. The data packets in Linux-based
splicing do not travel through the TCP layer;
hence, they consume far less time than the
control packets.

Both control-packet and data-packet pro-
cessing in an IXP-based switch takes consid-
erably less time than in the Linux switch,
even though the Linux machine (2.5 GHz)
is much faster than the microengines (600

MHz). The response packets from the serv-
er and the ACK packets from the client take
the same time because our measurement does
not include data assembly. We make this
exclusion, keeping in mind the latency mea-
surement in Linux, in which we also don’t
include data assembly. The reduction for
control packets and data packets is about 83
percent and 52 percent, respectively.
Although many optimized TPC/IP protocol
implementations in Linux use polling
instead of interrupt, our design still main-
tains the reduction advantages.

Throughput
To measure the throughput that these two

switches achieve, we sent requests of a uniform
size as fast as possible from the clients. Figure
9 shows the results. We can see that through-
put increases by 5.7 times for small requests,
such as 1 Kbyte, in which throughput increas-
es from 8.2 Mbps to 46.4 Mbps. For much
larger file sizes, such as 1,024 Kbytes, through-
put improves by 2.2 times. Requests for small
files show greater improvement because con-
trol packets take a larger portion of an HTTP
session for small files, and latency reduction
for control packets is larger than that of data
packets. Therefore, the throughput improve-
ment is more apparent for small requests. As
we increase the request file size, data-packet
processing becomes dominant, so we see rela-
tively smaller improvement on NP. Here, we
use only one clientME and one serverME to
process the packets, as Figure 6 shows. We can
further improve throughput by using more
microengines in the IXP2400.

SRAM versus DRAM
We obtained our results by maintaining the

control blocks in SRAM. We also use SRAM
to maintain hash tables that help fast table
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Figure 8. Latency in a Linux-based switch versus an NP-based switch for an
HTTP session.

Table 4. Control- and data-packet processing latency using a TCP protocol stack.

               IXP2400                       Linux     
Packet type Microengine Latency (μs) Latency (μs) Latency reduction  
Control packet SYN client ME 7.2 48.0 85%

ACK/request clientME 8.8 52.0 83%
SYN-ACK serverME 8.5 42.0 80%

Data packet Data serverME 6.5 13.6 52%
ACK clientME 6.5 13.6 52%



lookup for control blocks, and we use locks
provided in SRAM. Therefore, for each pack-
et to access its control block, there are at least
three contiguous SRAM accesses: one for the
control block, one for the hash table, and one
for the lock. When the switch processes thou-
sands of connections simultaneously, these
SRAM accesses can become a bottleneck.
Also, maintaining thousands of control
blocks in SRAM is impossible because of its
size limitation. So, we measured performance
when maintaining the control blocks in
DRAM, and maintaining the hash tables and
implementing the locks in SRAM. In this
way, we can also distribute the memory
accesses more evenly into the SRAM and
DRAM modules and pipeline their accesses.
Furthermore, because DRAM is much larg-
er than SRAM, we can increase the number
of control blocks so that the switch can sup-
port far more connections simultaneously.
We’ve found that the latency obtained on the
client side is the same whether we implement
the control blocks in SRAM or DRAM.
Although latency is greater in DRAM than
in SRAM (120 cycles versus 90 cycles), the
difference in HTTP latency is negligible
given the extensive waiting time for SRAM
when we implement all the tables in SRAM.

We then measured the throughput when
we implemented the control blocks in DRAM
and SRAM as a function of the request rate.
We also increased the number of servers to
two so that the switch satisfied more requests.
Figure 10 shows the results when we fix the
request file size at 64 Kbytes. The x-axis is the
request rate in the unit of requests per second
(or connections per second as we send one
request in one connection). As we increase the
request rate, the inter-arrival time between
packets drops accordingly. When we increase
the request rate to 1,300, the throughput sat-
urates at 665.6 Mbps when we implement the
control blocks in SRAM. However, with con-
trol blocks in DRAM, the throughput con-
tinues to increase until 720.9 Mbps. This data
verifies that we can increase throughput by
distributing memory requests to as many
modules as possible.

This article presents the latest results in our
effort to enhance our NP-based content-

aware switch.15 Our future work includes pro-

cessing all the TCP options in the network
processor because they can affect perfor-
mance. We plan to further break down the
clientME’s and serverME’s functionality and
assign them to more MEs, so that we can cre-
ate parallel and pipelined processing to
improve throughput. In addition, we plan to
incorporate other functionalities such as qual-
ity of service by identifying the packet flows
and providing differentiated service to an indi-
vidual flow.
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